Solar Probe Plus

A NASA Mission to Touch the Sun

Solar Probe Plus Introduction (payload focus)

Jim Kinnison SPP Mission System Engineer

Jim.Kinnison@jhuapl.edu

edu APL The Johns Hopkins University APPLIED PHYSICS LABORATORY

Science Questions Addressed by Solar Probe Plus

Solar Probe Plus NASA Mission to Touch the Sun

Overarching Science Objective

 To determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles.

Detailed Science Objectives

- Trace the flow of energy that heats and accelerates the solar corona and solar wind.
- Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind.
- Explore mechanisms that accelerate and transport energetic particles.

Level 1 Objectives & Processes require high quality, integrated measurements

Solar Probe Plus A NASA Mission to Touch the Sun

L1 Science	Sample	Needed	Instruments
Objectives	Processes	Measurements	
 Trace the flow of energy that heats and accelerates the solar corona and solar wind. Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind. Explore mechanisms that accelerate and transport energetic particles. 	 heating mechanisms of the corona and the solar wind; environmental control of plasma and fields; connection of the solar corona to the inner heliosphere. particle energization and transport across the corona 	 electric & magnetic fields and waves, Poynting flux, absolute plasma density & electron temperature, spacecraft floating potential & density fluctuations, & radio emissions energetic electrons, protons and heavy ions velocity, density, and temperature of solar wind e-, H+, He++ solar wind structures and shocks 	 FIELDS Magnetic Field Electric Field Electric/Mag Wave ISIS Energetic electrons Energetic protons and heavy ions (10s of keV to ~100 MeV) SWEAP Plasma e-, H+, He++ SW velocity & temperature WISPR White light measurements of solar wind structures

SPP Investigations to Answer the Science Questions

Investigation	Instruments	Measurements					
Fields Experiment (FIELDS) – S. Bale, Univ. of California, Berkeley	4 x Electric Antennas 2 x Fluxgate Magnetometers (MAG) 1 x Search Coil Magnetometer (SCM)	electric & magnetic fields and waves, Poynting flux, absolute plasma density & electron temperature, spacecraft floating potential & density fluctuations, & radio emissions					
Integrated Science Investigation of the Sun (ISIS) – D. McComas, Southwest Research Institute	High energy Energetic Particle Instrument (EPI-Hi) Low energy Energetic Particle Instrument (EPI-Lo)	energetic electrons, protons and heavy ions (10s o keV to ~100 MeV)					
Solar Wind Electrons Alphas and Protons (SWEAP) - J. Kasper, Smithsonian Astrophysical Observatory	Solar Probe Cup (SPC) 2 Solar Probe ANalyzers (SPAN)	velocity, density, and temperature of solar wind electrons, protons and helium ions					
Wide-field Imager for Solar PRobe (WISPR) – R. Howard, Naval Research Laboratiry	White light imager	images the solar wind, shocks and other structures in the solar corona and inner heliosphere					
Heliospheric Origins with Solar Probe Plus (HeliOSPP) – M. Velli, Jet Propulsion Laborar	Observatory Scientist	addresses SPP science objectives via multi- instrument data analysis and provides independent advice to optimize the scientific productivity of the mission					

Solar Probe: Science Payload

- FIELDS:
 - PI: Stuart Bale, UC Berkeley SSL
 - PWI (Plasma Waves Instrument)
 - MAG (Magnetometer)
- SWEAP (Solar Winds Electrons Alphas and Protons):
 - PI: Justin Kasper, Smithsonian CFA
 - SPC (Solar Probe Cup)
 - SPAN (A & B)
- ISIS (Integrated Science Investigation of the Sun)
 - PI: Dave McComas, SWRI
 - EPI-Hi
 - EPI-Lo
- WISPR (Wide-field Imager for Solar Probe)
 - PI, Russell Howard, NRL

FIELDS PWI (Plasma Waves Instrument)

- Measures DC & AC electric fields
- 2.3 m electric field antennas:
 - 4 whips (2 co-linear pairs) exposed beyond umbra: Niobium C-103 tube
 - Canted 5^o from orthogonal (for WISPR FOV reasons)
 - Mounted on TSA (coplanar) behind TPS
 - Heat shield: layers of Niobium sheet
 - Whips stowed back along S/C
 - P5 Pin-puller actuators (two per antenna: whip cage & hinge)
 - Dampers control deployment speed
- FIELDS Instrument Control Unit (ICU) provides internal processing, buffers data & controls both PWI and MAG
- Institutions: UC Berkeley, Univ. of Minnesota, LASP (CU, Boulder), LESIA (Obs de Meudon, France)

FIELDS MAG (Magnetometer)

- 2 fluxgate magnetometers (FGMs, inboard and outboard) for DC magnetic field
- 1 vector search-coil magnetometer (SCM) for AC magnetic fluctuations
- SCM and FGMs aligned on centerline (z-axis) of S/C
- Mounted on a ~4-m boom (APLprovided)
- FIELDS Instrument Control Unit (ICU) provides internal processing buffers data & controls both PWI a MAG
- Institutions: UC Berkeley, NASA/Goddard Space Flight Center Laboratoire de Physique et Chimier de l'Environnment et de l'Espace (LPC2E, France)

SWEAP SPC (Solar Probe Cup)

- Solar Probe Cup (SPC)
 - Sensor in direct sunlight
 - Faraday Cup faces Sun for high cadence bulk ion & electron measurements
- Uses same SWEM (SWEAP Electronics Module) as SPAN-A and –B (UC, Berkeley)
 - Electrical interface to spacecraft
 - Controls SPC & SPAN, formats data products, buffers data
 - Includes SAO boards:
 - Analog Processing Board (APB): analyzes analog signals from SPC
 - High Voltage Modulator Board (HMB): produces high voltage signal for SPC's modulator grid
- Smithsonian Astrophysical Observatory (SAO)

Above right: SPC mounted on TSA Above left: SPC prototype

Solar Probe Plus

SWEAP: SPAN-A and –B (Solar Probe Analyzers)

- Solar Probe Analyzers (SPAN)
 - Electrostatic analyzers (ESAs) in shadow at back of spacecraft on RAM (SPAN-A) & anti-RAM (SPAN-B) sides
 - Detailed measurements of 3D ion & electron velocity distribution functions
 - SPAN-A Plus enhancement:
 - Added time of flight (TOF) section to provide mass per charge resolution.
 - Separates minor ion species, enabling distinct proton & alpha velocity distribution functions.
- Uses SWEM (SWEAP Electronics Module) interface, along with SPC
 - Electrical interface to spacecraft
 - Controls SPC & SPAN, formats data products, buffers data
 - UC, Berkeley, Space Sciences Lab (SSL), as part of SAO SWEAP Investigation

Above: SPAN-A-Plus on Ram-side

Above: SPAN-B: Anti-ram: observes electrons

Above left: THEMIS ESA (heritage) Above right: MAVEN Solar Wind Ion Analyzer (SWIA)

ISIS-EPI-Hi Summary

Solar Probe Plus

Above: STEREO/IMPACT LET & HET (EPI-Hi heritage)

- Measures energetic particle spectra, composition, and angular distributions using the dE/dx vs. E technique in a sensor system consisting of:
 - Double-ended High Energy Telescope (HET)
 - Two Low Energy Telescopes (LETs), one of which is doubleended (LET1) and one of which is single-ended (LET2)
- Together they cover ~1 to >100 MeV/ nuc for protons and heavy elements and ~0.5 to 6 MeV for electrons
- EPI-Hi has its own internal data buffering and processing capability
 - Caltech/JPL/SWRI

Above: STEREO LET & HET Si Detectors

10

POC Motor Preliminary Design Review

EPI-Lo

Wedge

ISIS-EPI-Lo Summary

- High-heritage TOF-based mass spectrometer that measures:
 - energetic electron (25-500 keV)
 - ion spectra (~0.02-7 MeV protons & 0.02-2 MeV/nuc heavier ions)
 - Resolves all major heavy ion species and ³He and ⁴He over much of this energy range in multiple directions.
 - ³He measured as a key indicator of impulsive events.
- Covers the critical energy range from suprathermal energies (~20 keV/nuc) up to the lower portion of EPI-Hi energy range with a single instrument
- EPI-Lo has its own internal data buffering and processing capability
 - APL/SWRI

Solar Probe Plus

10 Look

Directions

per Wedge

Above: EPI-Lo PIDDP single-wedge prototype

WISPR (Wide field Imager for Solar Probe)

- Wide-Field Imager of the Heliosphere
- Visible light observations (500-700 nm)
- Only mechanism is a one-shot door (Starsys paraffin actuator with LED/photodiode encoders)
- 2 telescope design, with 2 next-generation 2K x 2K APS sensors
- Heritage from SECCHI/HI (STEREO)
- Images of coronal structures when they are close to the Sun, as they approach, and as they pass over the spacecraft
- Varying viewpoint supports fine-scale 3D reconstructions
- Image slow and fast solar wind structures and fluctuations directly
- Image CMEs and Shocks
- Provides the links between the solar wind structure and SPP *in-situ* instruments.
- APL provides WISPR DPU (Data Processing Unit)
- Naval Research Lab (NRL)

Reference Mission: Launch and Mission Design Overview

Solar Probe Plus

Launch

- Dates: Jul 31 Aug 19, 2018 (20 days)
- Max. Launch C3: 154 km²/s²
- Requires Atlas V 551 class with Upper Stage

Trajectory Design

7 Venus gravity assist flybys
 Final Solar Orbits

- Perihelion: 9.86 R_s
- Aphelion: 0.73 AU
- Inclination: 3.4 deg from ecliptic

Orbit period: 88 days
 Mission duration: 7 years

Reference Vehicle: Anti-Ram Facing View

Reference Vehicle: Ram Facing View

A NASA Mission to Touch the Sun

4P

Spacecraft Overview

Solar Probe Plus A NASA Mission to Touch the Sun

- NASA selected instrument suites
- 665 kg max launch wet mass
- Reference Dimensions:
 - S/C height: 3m (TBR)
 - TPS max diameter:2.3m (TBR)
 - S/C bus diameter: 1m (TBR)
- C-C Thermal protection system
- Hexagonal prism s/c bus configuration
- Actively cooled solar arrays
 - 364W (TBR) electrical power at encounter
 - Solar array total area: 1.54m² (TBR)
 - Radiator area under TPS: 4.4m² (TBR)
- 0.6m HGA, 34W TWTA Ka-band science DL
- Science downlink rate: 163kb/s (TBR) at 1AU
- Blowdown monoprop hydrazine propulsion
- Wheels for attitude control

Reference Vehicle: Concept of Operations

Solar Probe Plus A NASA Mission to Touch the Sun

Solar Probe Plus

A NASA Mission to Touch the Sun

Backup

Block Diagram February Baseline

Solar Probe Plus A NASA Mission to Touch the Sun

POC Motor Preliminary Design Review

Solar Probe Plus Organizational Chart

Solar Probe Plus

Solar Probe Plus Quad Chart

Solar Probe Plus

Sponsor: NASA SMD/Heliophysics Div

- Program Office GSFC/LWS
- Project Scientist APL
- Project Management APL
- S/C Development & Operations APL
- Science Investigations selected by AO:
 - SWEAP Smithsonian Astrophysical Observatory
 - FIELDS UC Berkeley
 - WISPR Naval Research Laboratory
 - ISIS Southwest Research Institute
 - HelioOrigins Jet Propulsion Laboratory

Overview

Using in-situ measurements made closer to the Sun than by any previous spacecraft, SPP will determine the mechanisms that produce the fast and slow solar winds, coronal heating, and the transport of energetic particles.

Solar Probe Plus will fly to less than 10 solar radii (Rs) of the Sun, having "walked in" from 35 Rs over 24 orbits.

Preliminary Mission Milestones (Assuming 2018 Launch)

Pre-Phase A:	07/2008 - 11/2009
Phase A:	12/2009 - 01/2012
Phase B:	02/2012 - 03/2014
Phase C/D:	03/2014 - 08/2018
Phase E:	09/2018 – 09/2025

Solar Probe History (1958 - present)

Solar Probe Plus

The Sun to the Earth —and Beyond

A Decadal Research Strategy in Solar and Space Physics

NATIONAL RESEARCH COUNCIL

System Engineering Organization

Phase Duration and Key Reviews

Solar Probe Plus

Task Name 🔹	Start 🔹 🔻	Finish 🔹	2006	2007	2008	3 2009	2010	2011	2012	2013 2	2014 2	015 (2016	2017	2018	2019
Solar Probe Plus Mission Schedule	7/2/08	11/1/18														
Mission Phases	7/2/08	8/31/18						- 								
Pre-Phase A	7/2/08	12/1/09	-													
Phase A	12/2/09	1/31/12							•							
Phase B	2/1/12	3/14/14														
Phase C	3/15/14	6/23/16						- 								
Phase D	6/24/16	8/30/18														
Phase E Start (Ends 9/1/25)	8/31/18	8/31/18	-												•	8/31
Mission-Level Milestones	9/29/09	11/1/18	-													
MCR	9/29/09	9/30/09	-			•	9/29									
MDR	11/1/11	11/3/11						4	11/1							
PDR	1/6/14	1/8/14						- 			1/6					
CDR	3/2/15	3/4/15									4	3/2				
MOR	10/14/15	10/14/15										•	10/14	l		
SIR	6/3/16	6/3/16											6	/3		
PER	10/6/17	10/6/17	-												10/6	
PSR	2/22/18	2/22/18	-												¢ 2/2	2
ORR	3/20/18	3/20/18	-												♦ 3/.	20
LRR/LRD	7/30/18	7/30/18													\	7/30
Orbital Checkout Complete	9/4/18	9/4/18													•	9/4
First Perihelion	11/1/18	11/1/18													•	11/1

Spacecraft Technology Development

Solar Probe Plus A NASA Mission to Touch the Sun

HYL

Subsystem	Description	Development Plan
Thermal Protection System (TPS)	Lightweight, non-ablative insulating layer. Provides umbra to protect spacecraft from near-Sun environment. Shaped to provide "knife edges" for solar array wings and "chamfers" for Solar Limb Sensors.	Significant materials and coatings testing. Full-scale mechanical prototype tested in the launch environment. Subscale prototype used in thermal testing in perihelion environment.
Solar Array Cooling System	Pumped-water cooling system for thermal control of the solar cell wings. Dissipates ~6000 W of heat at perihelion and is designed and operated to prevent freezing at aphelion.	Additional wing and radiator fabricated and structurally tested for launch environment. Full-scale "1/2" cooling system prototype in fabrication to include one wing, two radiators and pump. Testing includes thermal and hydraulic performance.
Solar cells	Primary and secondary sections with fixed cant angle between sections. Secondary section uses a thermally optimized cell stack illuminated to about 25 Suns at perihelion.	Full size secondary section in fabrication, including water-cooled substrate and flight- like cell assemblies to be tested at high solar irradiance, high temperature conditions.
Solar Limb Sensor	Positioned in umbra so that sensors are illuminated before any other item in the umbra. Provides early warning of umbra violation.	Prototype sensor fabrication and testing in penumbra environment.

Payload Technology Development

Solar Probe Plus A NASA Mission to Touch the Sun

Instrument	Description	Development Plan
FIELDS	Four niobium whip antennas extend beyond TPS for electric field measurements. Each mounted to TSA through thermal choke to prevent heat transfer into structure.	Significant materials testing in realistic solar environment. Fabrication and test of thermal choke prototype to validate thermal modeling.
SWEAP Solar Probe Cup	Faraday cup using a series of high voltage and ground grids to measure energy of incoming solar wind ions. Mounted on arm that extends beyond TPS for direct observation of radial solar wind flow.	Significant materials and coatings tests performed to develop characteristics over temperature. Mechanical and thermal tests of grid prototypes have been done Prototypes will be used in thermal and mechanical tests to prove concept and validate modeling.

Protecting Solar Probe Plus

Solar Probe Plus

SPP Design

TPS coating, foam thickness provides standard spacecraft thermal environment.

All spacecraft components are packaged within an 8° packaging umbra, from nominal TPS, providing at least 2° margin against 6° umbra at 9.5Rs. Spacecraft pointing accuracy is 6 arcmin (0.1deg), well within umbra margin.

Solar cell laydown designed for higher thermal conductivity, higher temperature tolerance. Solar array angle autonomously controlled, meets power load with minimum thermal load. Solar array cooling system sized for additional margin above margined power loads.

Designed to meet radiation environments.

Dust environment, impact analysis, design guidelines – s/c and instruments. Solar arrays oriented parallel to ram to minimize dust environment on arrays.

Spacecraft is designed to be single fault tolerant and to minimize fault management response time. Fault management designed for autonomous safing and recovery.

Solar Limb Sensors provide an additional sensor to warn of a nearing umbra violation. Solar array current and voltage sensors provide additional sensors to warn of high irradiance or over-temperature on the wings.

Mission design "walk-in" provides calibration opportunity in less severe environment

Launch System Overview

Solar Probe Plus

- Launch System is the Launch Vehicle and Upper Stage
- Mission performance is determined by combined LV and US performance
 - SC separated mass: 665 kg
 - C3 requirement: 154 km²/sec²
- Significant Phase B effort to define launch vehicle performance

Note: Mechanical interfaces designed to be compatible with all EELV Class vehicles Atlas V, 551 Launch Vehicle STAR 48 GXV Upper Stage

13 March 2013

POC Motor Preliminary Design Review