| | | | | | Effect | ct | | | | Detec | aon | | |---------|------|--------------|---|-------|--------------------|---------------------------|-----------------|-----------------|---------------|----------------------|---|----------| | FMEA ID | Name | Function Fai | ailure Mode / Possible
ait / Constraint Causes | Local | Next
Higher Mis | ission Umbra
Violation | Severity Type o | f
Observable | How Observed? | Tlm for
Diagnosis | Tlm Path for Detection Diagnosis (Local | (System) | | | <u> </u> | |-------------------------------|---| | Column Heading | Definition | | FMEA ID | Unique ID for each failure mode | | Name | HW or SW element name | | Function | What function does the failed element perform? | | Failure Mode/Limit/Constraint | Specific failure mode, i.e., sensor failure, SW error, electronic part failure | | Possible Causes | Credible causes for failure, i.e., radiation upset on FPGA | | Phase | See Table I in legend | | Effects | What are the effects of the failures at various levels? List N/A if effect level does not apply | | Local | Effect on the failed element | | Next Higher | Effect of failed element on subsystem/instrument | | Mission | Effect of failed element on mission | | Umbra Violation | Is there an effect that can lead to umbra violation? | | Severity | See Table II in legend | | Type of FM | Active, Passive, None | | Detection | | | Observable | Yes/No | | How Observed? | How is the fault observed (narrative) / Who observes the fault (HW, FSW, Autonomy, Ground)? | | Tlm for diagnosis | Telemetry needed for diagnosis of fault | | Tlm path for diagnosis | Where does the telemetry come from, who it is sent to/through | | Time to Detect (Local) | Time detect locally (is this persistence) | | Time to Detect (System) | Time to detect at system level (is this persistance?) | | Response | | | Response Level | Local, System, Instrument, or, None* | | Desired local response | Narrative description of desired action taken locally at subsystem/instrument level | | Allocation of local response | Who responds locally? HW, FSW, Autonomy, Ground | | Time to Transmit Signal | How long does it take before local response begins? | | Time to Fix Locally | Time to fix for local response | | Desired SC response | Narrative description of desired action taken at system level | | Allocation of SC response | Who responds locally? HW, FSW, Autonomy, Ground | | Time to Transmit Signal | How long does it take before system response begins? | | Time to Fix System | Time to fix for system response | | Ground Response/Contingency | Ground response needed (narrative); ideas for steps in contingency plans | | Quick Look Response | | | System Side Switch | Binary indication that system side switch occurs | | Processor Switch | Binary indication that processor switch occurs | | Safe Mode | Binary indication that SC enters Safe Mode as response to fault | # Notes: ## Indicates column instrument teams need to fill in * for instrument teams please list "instrument" if there is fault management internal to your instrument that will respond to fault condition, list "system" if you want the spacecraft to respond using one of the pre-determined rules | | | | | | | | | Respon | se | | | | | | Quick Look | | |---------|------|----------|--------------------------------------|----------------|---------------------------|---------------------------------|---------------------|-------------------------------|------------------------|-------------------------------------|----------------------|-------------------------------|---------------------------------|-----------------------|---------------------|--------------| | FMEA ID | Name | Function | Failure Mode /
Limit / Constraint | Response Level | Desired Local
Response | Allocation of Local
Response | Time to fix locally | Time to
Transmit
Signal | Desired SC
response | Allocation of
System
Response | Time to
ix system | Time to
Transmit
Signal | Ground Response/
Contingency | System
Side Switch | Processor
Switch | Safe
Mode | | | i | |-------------------------------|---| | Column Heading | Definition | | FMEA ID | Unique ID for each failure mode | | Name | HW or SW element name | | Function | What function does the failed element perform? | | Failure Mode/Limit/Constraint | Specific failure mode, i.e., sensor failure, SW error, electronic part failure | | Possible Causes | Credible causes for failure, i.e., radiation upset on FPGA | | Phase | See Table I in legend | | Effects | What are the effects of the failures at various levels? List N/A if effect level does not apply | | Local | Effect on the failed element | | Next Higher | Effect of failed element on subsystem/instrument | | Mission | Effect of failed element on mission | | Umbra Violation | Is there an effect that can lead to umbra violation? | | Severity | See Table II in legend | | Type of FM | Active, Passive, None | | Detection | | | Observable | Yes/No | | How Observed? | How is the fault observed (narrative) / Who observes the fault (HW, FSW, Autonomy, Ground)? | | Tlm for diagnosis | Telemetry needed for diagnosis of fault | | Tlm path for diagnosis | Where does the telemetry come from, who it is sent to/through | | Time to Detect (Local) | Time detect locally (is this persistence) | | Time to Detect (System) | Time to detect at system level (is this persistance?) | | Response | | | Response Level | Local, System, Instrument, or, None* | | Desired local response | Narrative description of desired action taken locally at subsystem/instrument level | | Allocation of local response | Who responds locally? HW, FSW, Autonomy, Ground | | Time to Transmit Signal | How long does it take before local response begins? | | Time to Fix Locally | Time to fix for local response | | Desired SC response | Narrative description of desired action taken at system level | | Allocation of SC response | Who responds locally? HW, FSW, Autonomy, Ground | | Time to Transmit Signal | How long does it take before system response begins? | | Time to Fix System | Time to fix for system response | | Ground Response/Contingency | Ground response needed (narrative); ideas for steps in contingency plans | | Quick Look Response | | | System Side Switch | Binary indication that system side switch occurs | | Processor Switch | Binary indication that processor switch occurs | | Safe Mode | Binary indication that SC enters Safe Mode as response to fault | # Notes: ### Indicates column instrument teams need to fill in * for instrument teams please list "instrument" if there is fault management internal to your instrument that will respond to fault condition, list "system" if you want the spacecraft to respond using one of the pre-determined rules # **Operational Phase** - Launch Commision - Encounter - Cruise | Severity | | | |----------|--------------|---| | 1 | | Failure modes that could result in serious injury, loss of life, or loss of spacecraft . | | 1R | Catastrophic | Failure modes of identical or equivalent redundant hardware or software elements that could result in Category 1 effects if all failed. | | 15 | | Failure in a safety or hazard monitoring system that could cause the system to fail to detect a hazardous condition or fail to operate during such condition and lead to Category 1 consequences. | | 2 | | Failure modes that could result in loss of three or more mission objectives | | 2R | Critical | Failure modes of identical or equivalent redundant hardware or software that could result in Category 2 effects if all failed. | | 2S | | Failure in a safety or hazard monitoring system that could cause the system to fail to detect a hazardous condition or fail to operate during such condition and lead to Category 2 consequences. | | 3 | Significant | Failure modes that could cause loss to any mission objectives. | | 4 | Minor | Failure modes that could result in insignificant or no loss to mission objectives | Subject Matter Expert(s): Sam Sawada (PDU) Notes: Yellow highlighted blocks are redundant components. Components are listed for completeness, but failure mode and FMEA information is only displayed in the first copy of the component. | | Sam Sawada (PDU) | in the first copy of the componen | t. | | | . | F#F-st | | | Ī | | : | | Datastian | 0.0-4hd | | | |--------------|---|-----------------------------------
--|---|---------------|--|--|----------------------------------|-----------------------------------|----------------------------------|----------|----------|---|-----------|-----------|----------|-------------| | FMEA ID | Name | Function | Function Failure Mode / Limit Possible Causes Phase Local Next Higher Mission Umbra Violation Severity Type of FM Observable How Observable Observable How O | | How Observed? | Detection
Tlm for Diagnosis | Tlm Path for | Time to Detect | Time to Detect | Severity | ,,,,,, | | | | Diagnosis | (Local) | (System) | | **** | D. d d d. D M d. l. | | | | | | | | | | | | | | | | | | AV-1 | Redundant Proc Module Avionics Redundancy | | | | | | | | | | | | | | | å | | | AV-1.1 | Controller | | | | | | | | | | | | | | | | | | AV-1.1.1 | Processor A (Prime) | If switchover | | | | | | | | | | | | | | 1) failed power supply | į | | | | doesn't happen
within required | | | | Hot spare would | | | | | | | | | | 2) software hangs | | No way to recongnize failure, | Hot spare or ARC would recognize | Loss of redundancy for | amount of time, | | | | see it via software, | | | | | | AV-1.1.1.a | | | No output | 3) hardware failure (chips, | all | so it'd just keep going | issue and ARC demotes Prime, | causes 1 & 3 | but system is | 2R | Active | yes | ARC acknowledge | | | | | | | | | | connectors, FPGA, etc.) | į | | making Hot Spare Prime | | designed to | | | | timer on Prime
would trigger | | | | | | | | | | | | | | | handle this | | | | would trigger | | | | | | | | | | | ļ | i
 | | | situation
If switchover | | | | | | | | | | | | | | | | | | | doesn't happen | | | | I | | | | | | | | | | 1) LVDS driver is flaky 2) SW issues | | Might get feedback from | Hot spare would recognize issue | | within required | | | | Hot spare would
see it via software, | | | | | | AV-1.1.1.b | | | Incorrect | 3) Communications path | | SpaceWire (either no data | (error detection on data transfer) | Loss of redundancy | amount of time, | 2R | Active | yes | ARC watchdog | | | | | | | | | output/timing | connector/harness issue | | return or bad data return). | and ARC demotes Prime, making
Hot Spare Prime | | but system is | | | ĺ | timer on Prime | | | | | | | | | | (intermittent connection) | • | May self-demote | not spare Prime | | designed to
handle this | | | | would trigger | | | | | | | | | | | | | | | situation | | | | | | | | | | | | | | | | | | | If switchover | | | | | | | | | | | | | | | | | | | doesn't happen | | | | | | | | | | | | | Loss of SPW | | • | Donands on SW configuration | Autonomy would command a side | | within required | | | | Hot spare or Prime | | | | | | AV-1.1.1.c | (Input?) | | Timecode | LVDS receiver fails | | Prime would stay as Prime. | switch. | Loss of redundancy | amount of time,
but system is | 2R | Active | yes | would see it | | | | | | | | | Timecode | | | Time would stay as Time. | | | designed to | | | | Would See It | | | | | | | | | | | | | | | handle this | | | | | | | | | | | | | | | ļ | | | | situation | | | | | | | | | | | | | | 1) PWB crack | į | | | | If switchover | | | | | | | | | | | | | | PWB crack Connector disconnects | ļ | | Hot spare would recognize issue | | doesn't happen
within required | | | | Hot spare would | | | | | | | | | | Converter card fails | | | and ARC demotes Prime, making | | amount of time, | | | | see it via software, | | | | | | AV-1.1.1.d | | | Hard failure | 4) Component failing short (could | | Processor dies | Hot Spare Prime. New Prime would eventually turn processor | Loss of redundancy | but system is | 2R | Active | yes | ARC watchdog
timer on Prime | | | | | | | | | | look like an overcurrent, which | | | off. | | designed to | | | | would trigger | | | | | | | | | | could cause an overtemp issue) | | | | | handle this | | | | | | | | | | AV-1.1.1.1 | Watchdog Timer | | | | ļ | | | | situation | | | | | | | | | | | watendog inner | | | · | | | | | If switchover | | Ě | | | | | <u> </u> | | | | | | | | | | | | doesn't happen | | | | | | | | | | | | | | | | | Hot spare would recognize issue or | Loss of redundancy if | within required | | | | | | | | | | AV-1.1.1.a | | | Failure to timeout | 1) FPGA or LEON fails | į | Lose software with no way | ARC watchdog timer would time | FSW branches to WDT | amount of time, | 2S/R | Active | yes | Hot spare would | | | | | | | | | (when it should) | | | locally to recover | out and ARC would demote Prime,
making Hot Spare Prime | again. | but system is
designed to | | | | see it or ARC WDT | | | | | | | | | | | į | | making froe Spare Frime | | handle this | | | | | | | | | | | | | | | | | | | situation | | | | | | | | | | | | | | | | | | | If switchover | | | | | | | | | | | | | | | | | | | doesn't happen
within required | 30 :fhala aasaasaa : | | | | | | | | | | | | Timeout when it | | | | Hot spare would recognize issue or
ARC watchdog timer would time | 1 | amount of time, | 2R if whole processor is
lost | | | Hot spare would | | | | | | AV-1.1.1.1.b | | | shouldn't | 1) FPGA fails | | Reboot | out and ARC would demote Prime, | Loss of redundancy | but system is | 3 if processor can keep | Active | yes | see it or ARC WDT | | | | | | | | | | | | | making Hot Spare Prime | | designed to | working with no WDT | | | | | | | | | | | | | | | | | | handle this | | | | | | | | | | | | | | 1 | ļ | <u> </u> | Switch avionics sides, detected at | | situation | | | | - | ļ | | ļ | | | | | | SpW Router A (only | | | S/C internal communications | SpW link level by autonomy rule; | | | | | | | | | | | | Inputs | | | one router active at
a given time) | | | fail, SpW timecode fails | Prime tells ARC to switch from | Loss of redundancy | | 2R | | | Autonomy rule | | | | | | | | | | | | | REM A to REM B | | | | | | | | | ļ | | | | | ļ | SpW Router B | | <u></u> | <u>i</u> | | | - | | ļ | | | ļ | | ļ | | | | | | | (ongoing SSR trade to potentially | | | | Loss of SSR redundancy, | | | | | | | | | | | | | | SSR 1 (Prime only) | change to one SSR local to each | | Couldn't access recorder | Lose playback ability | could switch to SSR 2 | N/A | | Active | | | | | | | | | | | | processor, but connected to the other two SSRs) | | | | without needing to
switch REM | | | | | | | | | | | | | ļ | | 50.0. two 55.15 ₁ | ļ | | | Santon Neivi | | | ļ | | | | | | | | | | | SSR 2 (Prime only) | | | | <u>. </u> | _ | | | | | <u>.</u> | ļ | | ļ | | | | | | | | | | No effect on spacecraft (loss of | | | | | | | | | | | | | | | ARC Mode Controller | | | Notes that Mode Controller 1
isn't providing data | redundancy), assuming that design
can catch all of the possible failure | | | 2R | Passive | | | | | | | | | | | 1 | | | ion r browning agra | modes | | | | | | | | | | | | | | | ADCIA L.C. | | | | | | | | | | | | | | | | | | | ARC Mode Controller | | | | | | | | | | | | | | | | | | | ARC Mode Controller | | | | | | | | | | | | | | | | | | | 3 | | | | | | I | | <u> </u> | | 1 | <u> </u> | | <u> </u> | | | AV-1.1.2 | Processor B (Hot) | ARC would recognize issue and | | [| | | | 1 | | | | | | | | | | 1) failed power supply | 1 | | demote Hot Spare, and promote | | | | | | | | | | | | AV-1.1.2.a | | | No output | 2) software hangs | all | | the Warm Spare or wrong data | Loss of redundancy for | None. | 2R | Active | yes | ARC would see it | | | | | | v 1.1.2.0 | | | 140 output | 3) hardware failure (chips, | ull | so it'd just keep going | would just be outvoted (via triple | causes 1 & 3 | onc. | ۷۱۸ | vc | 1-3 | c would see It | | | | | | | | | | connectors,
FPGA, etc.) | | | voting). If demoted, processor | | | | | | | | | | | | | | | | | <u> </u> | <u> </u> | would be demoted to "failed." | | | | <u> </u> | <u> </u> | <u> </u> | <u> </u> | Subject Matter Expert(s): Geff Ottman (Avionics) Richard Nichols (initial PDU) Sam Sawada (PDU) Sam Sawada (PDU) Notes: Yellow highlighted blocks are redundant components. Components are listed for completeness, but failure mode and FMEA information is only displayed in the first copy of the component. | AV-1.1 Avion
Contr | Name | Function | Failure Mode / Limit | Response Level | Desired Local | Allocation of Local | Time to fix | | ponse Desired System | Allocation of | Time to fiv | Time to Transmit | Ground Response / | System Side Switch | Quick Look | Cafa Manda | Remediation Helpful Autonomy Rule | . clas | | |-----------------------|---------------------|----------|---------------------------------------|----------------|------------------------|---------------------|-----------------|----------|-----------------------|---------------|-------------|------------------|--|--------------------|------------------|------------|---|----------|--| | AV-1.1 Avion
Contr | | | / Constraint | | Response | Response | locally | Signal | Response | System | system | Signal | Contingency | System side switch | Processor Switch | Safe Mode | Remediation Respiral Autonomy Rule | riag | Revisit Comments - KAF | | AV-1.1 Avion
Contr | lundant Proc Module | | | | | | | | | Response | | | | | | | | | | | | onics Redundancy | AV-1.1.1 Proce | cessor A (Prime) | | | <u> </u> | <u> </u> | | | | | | | | | | <u> </u> | | <u> </u> | | | | | , | - Switch to 2nd set of | | | | AV-1.1.1.a | | | No output | Local | Processor switch | HW - ARC | | | | | | | | | X | | - Cause 2 could | possibly be fixed with | reboot | Incorrect | | | | | | | | | | | | | | Could try to reboot to | | | | AV-1.1.1.b | | | output/timing | Local | Processor switch | HW - ARC | | | | | | | | | X | | fix software issue | Loss of timecode - would | | | | AV-1.1.1.c (Inpu | out?) | | Loss of SPW
Timecode | Local | Side switch | HW - ARC | | | | | | | | X | | | need to diagnose that it's
not a SCIF failure, but the | | | | | | | rimeedae | | | | | | | | | | | | | | LVDS receiver failing | AV-1.1.1.d | | | Hard failure | Local | Processor switch | HW - ARC | | | | | | | | | X | | Autonomy rule on hot
spare to detect hard | | | | 4V-1.1.1.u | | | riaiu iailuie | Local | Frocessor switch | TW - AIC | | | | | | | | | ^ | | failure of Prime | AV-1.1.1.1 Watc | tchdog Timer | tendog miner | | - | | | | ļ | | | | | | | | | • | | | <u></u> | AV-1.1.1.1.a | | | Failure to timeout | Local | Processor switch | HW - APC | | | | | | | | | X | | | | x | | | | | (when it should) | Local | Troccssor switch | AILC | | | | | | | | | Î . | | | | ^ | Timeout when it | | | | Less than 10 ms | | | | | | | | | | | | | | AV-1.1.1.1.b | | | shouldn't | Local | Processor switch | HW - ARC | demote/promot | t | | | | | | | X | | | | х | | | | | | | | | e | <u> </u> | | | <u> </u> | | | | | | SpW Router A (only | | | | | | | | | | | | | | | | | | nputs | | | one router active at
a given time) | | | | | | | | | | | | | | | | Х | | | | | SpW Router B | SSR 1 (Prime only) | Local | Side switch | Autonomy | | | | | | | | X | | | | | 3 SSRs tied to each SBC, initial thought is that SBC sees error with | | | | | , | | | , | | | | | | | | | | | | | SSR and requests demotion from ARC??? | | | | | SSR 2 (Prime only) | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | No action by ARC, but | | | | | | | | | | | ARC Mode Controller | None | | | | | | | | | if ground identified the
issue this processor | | | | | | x | | | | | 1 | | | | | | | | | | could be marked | | | | | | | | | | | ARC Mode Controller | r | | | | | | | | | "failed" | | | | | | | | | | | 2 | ARC Mode Controller | | | | | | | | | | | | | | | | | | AV-1.1.2 Proce | cessor B (Hot) | Hot spare | | | | | | | | | | | | Cause 2 could possibly | | | | AV-1.1.2.a | | | No output | Local | demoted to
"faield" | HW - ARC | | | | | | | | | | | be fixed with reboot | <u> </u> | | | .i | <u>.</u> | | | İ | | İ | | | | | | | | .i | | <u>.i</u> | | FMEA ID | Name | Function | Failure Mode / Limit
/ Constraint | Possible Causes | Phase | Local | Effect
Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Detection
Tlm for Diagnosis | Method
Tlm Path for
Diagnosis | Time to Detect
(Local) | Time to Detect
(System) | |--------------------------|--|----------|---|---|-------|--|---|--|--|--|------------|------------|--|--------------------------------|-------------------------------------|---------------------------|----------------------------| | AV-1.1.2.b | | | A)SpW->router
B) commands to ARC
C) SW issues | 1) LVDS driver is flaky
2) SW issues
3) Communications path
connector/harness issue
(intermittent connection) | | A) Might promote itself B) ARC acknowledge timer wouldn't get updated C) Depends on SW configuration | ARC would recognize issue and demote Hot Spare, and promote the Warm Spare. Processor would get demoted to "failed." | Loss of redundancy | None. | 2R | Active | yes | ARC would see it | | | | | | AV-1.1.2.c
AV-1.1.2.d | | | Loss of SPW
Timecode ("1PPS") | LVDS receiver fails | | Depends on SW configuration. | Hot spare could interpret this as a falsely failed Prime and request ARC demote Prime and promote the Hot Spare. The next Hot Spare would detect this as a failed Prime and the ARC would rotate everyone again or might switch side instead. | Loss of redundancy | None. When third processor is in "Cold" standby mode, we are far enough from the Sun that timing isn't critical and the s/c would be ok during the processor reboot. | 2R | Active | yes | ARC (or next Hot
Spare) may see it | | | | | | AV-1.1.2.e | | | Hard failure | 1) PWB crack 2) Connector disconnects 3) Converter card fails | | Processor dies | ARC would recognize issue and demote Hot Spare, and promote the Warm Spare | Loss of redundancy | None. | 2R | Active | yes | ARC would see it | | | | | | AV-1.1.2.1 | Watchdog Timer (This is the onboard WDT; the ARC hosts a second level WDT too) | | | | | | | | | | | | | | | | | | AV-1.1.2.1.a | | | Failure to timeout
(when it should) | 1) FPGA fails | | Lose software with no way locally to recover | ARC would recognize issue and
demote Hot Spare, and promote
the Warm Spare | Loss of redundancy if
FSW branches to WDT
again. | None. | 2S/R | Active | yes | ARC would see it | | | | | | AV-1.1.2.1.b | | | Timeout when it
shouldn't | 1) FPGA fails | | Reboot | ARC would recognize issue and
demote Hot Spare, and promote
the Warm Spare | Loss of redundancy | None. | 2R if whole processor is
lost
3 if processor can keep
working with no WDT | Active | yes | ARC would see it | | | | | | AV-1.13
AV-1.13.a | Processor C (Warm Spare) | | No output | 1) failed power supply 2) software hangs 3) hardware failure (chips, connectors, etc.) | | No way to recongnize failure,
so it'd just keep going | None. | Loss of redundancy for 1
&3, 2 could possibly be
fixed with reboot | None. | 2R | None | yes | Prime via SpW, if
failure is known,
ground could
demote processor
to "failed." | | | | | | AV-1.1.3.b | | | incorrect
output/timing | 1) LVDS driver is flaky
2) SW issues | | Depends on SW configuration. | None. | Loss of redundancy | None. | 2R | None | yes | Prime
via SpW | | | | | | AV-1.1.3.c | | | Loss of SPW
Timecode | LVDS receiver fails | | Depends on SW configuration. | None. | Loss of redundancy | None. | 2R | None | yes | Prime via SpW | | | | | | AV-1.1.3.d | | | Hard failure | 1) PWB crack 2) Connector disconnects 3) Converter card fails | | Processor dies | None. | Loss of redundancy | None. | 2R | None | yes | Prime via SpW | | | | | | AV-1.13.1
AV-1.13.1.a | Watchdog Timer | | Failure to timeout
(when it should) | 1) FPGA fails | | Lose software with no way
locally to recover | None. | Loss of redundancy if
FSW branches to WDT
again. | None. | 25/R | None | yes | Prime via SpW | | | | | | | | | | | | | Re | sponse | | | | | | Quick Look | | 1 | | | | |--------------|--|--------------------------------|----------------|-------------------------|-------------|----------------------------------|-----------------|------------------|--------------------|-------------|--------|---|--------------------|------------|-----------|---------------------|--|--------------|----------------| | FMEA ID | Name Function | Failure Mode / Limit | Response Level | | | | Time to Transmi | t Desired System | | Time to fix | | Ground Response / | System Side Switch | | Safe Mode | Remediation | Helpful Autonomy Rule | Flag Revisit | Comments - KAF | | | | / Constraint | | Response | Response | locally | Signal | Response | System
Response | system | Signal | Contingency | | | | | | | | | | | Incorrect | | | | | | | | | | | | | | | | | | | AV-1.1.2.b | | output/timing
A)SpW->router | Local | Hot spare
demoted to | HW - ARC | | | | | | | | | | | SW issue could | Prime could look for Hot | | | | AV-1.1.2.0 | | B) commands to ARC | | "faield" | TIVV - AIRC | | | | | | | | | | | reboot | Prime could look for Hot
Spare to be demoted | | | | | | C) SW issues | | | | | | | | | | | | | | | | | | | AV-1.1.2.c | | "Evil" hot spare | | | | | | | | | | | | | | | ý | Х | Loss of SPW | | | | | | | | | | | | | | | Loss of timecode - would
need to diagnose that it's | | | | AV-1.1.2.d | | Timecode ("1PPS") | Local | Side switch? | HW - ARC | | | | | | | | | | | | not a SCIF failure, but the | LVDS receiver failing | AV-1.1.2.e | | Hard failure | Local | Hot spare
demoted to | HW - ARC | | | | | | | | | | | | Prime could look for Hot | | | | | | | | "faield" | | | | | | | | | | | | | Spare to be demoted | | | | | Watchdog Timer (This is the | AV-1.1.2.1 | onboard WDT; the ARC hosts a second level WDT too) | Second level WDT (DD) | | | | | Less than 10 ms | | | | | | | | | | | | | | | ۸۷ 1 1 2 1 - | | Failure to timeout | | Hot spare | LINAY ARIC | for | | | | | | | | | | | | | | | AV-1.1.2.1.a | | (when it should) | Local | demoted to
"faield" | HW - ARC | demote/promot | i | | | | | | | | | | | Х | | | | | | | | | e | | | | | | | | | | | | | | | | | Timeout when it | | Hot spare | | Less than 10 ms
for | | | | | | | | | | | | | | | AV-1.1.2.1.b | | shouldn't | Local | demoted to
"faield" | HW - ARC | demote/promot | t | | | | | | | | | | | Х | | | | | | | Turcia | | e | | | | | | | | | | | | | | | AV-1.1.3 | Processor C (Warm Spare) | N/A. No fix possible other | than to demote | | | | | | No action by ARC, but
if ground identified the | | | | | | | | | AV-1.1.3.a | | No output | None | | | to cold spare. | | | | | | issue this processor | | | | Reboot might help a | | | | | | | | | | | ARC commanded to | | | | | | could be marked | | | | SW issue | | | | | | | | | | | not use this | | | | | | "failed" | | | | | | | | | | | | | | | board. | | ļ | | | | | | | | | | | | | | | | | | | N/A. No fix | possible other
than to demote | | | | | | No action by ARC, but | | | | | | | | | AV-1.1.3.b | | Incorrect | None | | | to cold spare. | | | | | | if ground identified the
issue this processor | | | | Reboot might help a | | | | | AV-1.1.5.0 | | output/timing | None | | | ARC commanded to | | | | | | could be marked | | | | SW issue | | | | | | | | | | | not use this | | | | | | "failed" | | | | | | | | | | | | | | | board. | N/A. No fix | possible other | | | | | | No action by ARC, but | | | | | | | | | A)/ 4 4 2 | | Loss of SPW | Naca | | | than to demote
to cold spare. | | | | | | if ground identified the | | | | | | | | | AV-1.1.3.c | | Timecode | None | | | ARC | | | | | | issue this processor
could be marked | | | | | | | | | | | | | | | commanded to
not use this | | | | | | "failed" | | | | | | | | | | | | | | | board. | N/A. No fix | | | | | ļ | | | | | | | | | | | | | | | | possible other | | | | | | No action by ARC, but | | | | | | | | | | | | | | | than to demote to cold spare. | | | | | | if ground identified the | | | | | | | | | AV-1.1.3.d | | Hard failure | None | | | to cold spare. | | | | | | issue this processor | | | | | Loss of timecode | | | | | | | | | | commanded to | | | | | | could be marked
"failed" | | | | | | | | | | | | | | | not use this board. | | | | | | | | | | | | | | | AV-1.1.3.1 | Watchdog Timer | N/A. No fix | possible other | | | | | | | | | | | | | | | | | Failure to timeout | | | | than to demote
to cold spare. | | | | | | | | | | | | | | | AV-1.1.3.1.a | | (when it should) | None | | | ARC | | | | | | | | | | | | Х | | | | | | | | | commanded to
not use this | board. | | | | | | | | | | | | | | | | ii | | .4 | k | | | i | | | i | .h | i | .X | .k | · | | .X | | J | | | | | | | | | Effect | | | | | | | Detection I | Method | | | |------------------------|--|----------|--------------------------------------|---|-------|---|---|--------------------|--|--|------------|------------|--|-----------------|---------------------------|---------------------------|----------------------------| | FMEA ID | Name | Function | Failure Mode / Limit
/ Constraint | Possible Causes | Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? Tin | n for Diagnosis | Tlm Path for
Diagnosis | Time to Detect
(Local) | Time to Detect
(System) | | | | | , | | | | | | | Sec, | | | | | 2105110 | (2000.) | (Gystem) | | AV-1.1.3.1.b | | | Timeout when it shouldn't | 1) FPGA fails | | Reboot | None. | Loss of redundancy | None. | 2R if whole processor is
lost
3 if processor can keep
working with no WDT | Active | yes | Prime via SpW | | | | | | AV-1.2 | Avionics Redundancy Controller (ARC) - Mode Controller 1 only (other MCs would have same answers; the three MCs are triple voted at each processor). | | | | | | | | | | | | | | | | | | AV-1.2.a | | | No output | 1) failed power supply
2) bad FPGA
3) hardware failure (chips,
connectors, etc.) | | Invalid output to all three processors and on-card voting circuits | None, due to two other MCs | None | None | 2R | Active | Yes | Processor reports
to autonomy/
ground a non-
responsive MC | | | | | | AV-1.2.b | | | Incorrect output | Single LVDS driver fails | | Invalid output to one
processor or on-card voting
circuit | None, due to two other MCs | None | None | 2R | Active | Maybe | Processor reports to autonomy/ ground a non- responsive MC or other MCs report to processor non- majority vote | | | | | | AV-1.2.c | | | Hard failure | 1) PWB crack 2) Connector disconnects 3) Converter fails 4) Overcurrent (required to include a current limiter) | | 1)Single failed MC; 1, 2, 3, and 4) Invalid output to all three processors (unique to individual MC) 4) MCs are individually fused in PDU for very large overcurrent, MC has built-in current limiting to mitigate internal fault | | None | None | 2R | Active | yes | Processor reports
to autonomy/
ground a non-
responsive MC | | | | | | Inputs | | | CCD Commands | Failed LVDS chip | | None, due to triple voting | None | None | N/A | 2R | Active | Yes | Processor reports
to autonomy/
ground a non-
responsive MC | | | | | | | | | SBC Prime or hot spare commands | Failed LVDS chip | | None, due to triple voting | None | None | N/A | 2R | Active | Yes | Processors report
bad triple vote.
Potential loss of
ARC MC telemetry. | | | | | | | | | Power inputs
(unswitched) | Blown fuse, bad connector, component failure | | None, due to triple voting | None | None. | N/A | 2R | Active |
Yes | Processors report
bad triple vote.
Loss of ARC MC
telemetry. | | | | | | AV-1.3 | Avionics Redundancy
Controller (ARC) - Mode
Controller 2 | | | | | | | | | | | | | | | | | | AV-1.4 | Avionics Redundancy
Controller (ARC) - Mode
Controller 3
Redundant Elec Module | | | | | | | | | | | | | | | | | | AV-2.1 | REM A | | | | | | | | | | | | | | | | | | AV-2.1.1
AV-2.1.1.a | TAC A | | No output (hard
failure) | 1) failed power supply connector
2) hardware failure (chips,
connectors, etc.)
3) Overcurrent | | Loss of thruster and G&C
control interfaces | Prime tells ARC to initiate side
switch, ARC switches sides of
avionics | None | Depends on side
switch and
reconfig time | 2R | Active | Yes | Prime, non-
responsive SpW
interface; G&C
closed loop SW | | | | | | AV-2.1.1.b | | | Incorrect output | 1) SpW failed
2) LVDS receiver fails | | a) Loss of thruster and G&C | a & b) Prime tells ARC to initiate
side switch, ARC switches sides of
avionics.
b only) Time to detect is much
higher than a. | None | Depends on side
switch and
reconfig time | 2R | Active | Yes | Prime, non-
responsive SpW
interface; G&C
closed loop SW | | | | | | AV-2.1.1.c | | | Incorrect timing | Bad board oscillator | | Loss of thruster and G&C control interfaces | Prime tells ARC to initiate side
switch, ARC switches sides of
avionics | None | Depends on side
switch and
reconfig time | 2R | Active | Yes | Prime, non-
responsive SpW
interface; G&C
closed loop SW | | | | | | | | | | | | | Res | sponse | | | | | | Quick Look | | | | | | |--------------|--|--|------------------|--|---------------------------------|--|----------------------------|------------------------------|-------------------------------------|-----------------------|----------------------------|----------------------------------|--------------------|------------|-----------|--|-----------------------|--------------|----------------| | FMEA ID | Name F | unction Failure Mode / Limit
/ Constraint | t Response Level | Desired Local
Response | Allocation of Local
Response | Time to fix
locally | Time to Transmit
Signal | t Desired System
Response | Allocation of
System
Response | Time to fix
system | Time to Transmit
Signal | Ground Response /
Contingency | System Side Switch | | Safe Mode | Remediation | Helpful Autonomy Rule | Flag Revisit | Comments - KAF | | AV-1.1.3.1.b | | Timeout when it
shouldn't | Local | Processor reboot | HW - ARC | N/A. No fix
possible other
than to demote
to cold spare.
ARC
commanded to
not use this
board. | | | | | | | | | | | | х | | | AV-1.2 | Avionics Redundancy Controller (ARC) - Mode Controller 1 only (other MCs would have same answers; the three MCs are triple voted at each processor). | AV-1.2.a | | No output | Local | Processor flags
faulted MC for
ground, but it will
be out voted so no
other action taken | HW - ARC | N/A. No fix, MC
are on
unswictched
power services. | | | | | | | | | | | | | | | AV-1.2.b | | Incorrect output | Local | Processor flags
faulted MC for
ground, but it will
be out voted so no
other action taken | HW - ARC | N/A. No fix, MC
are on
unswictched
power services. | | | | | | | | | | | | | | | AV-1.2.c | | Hard failure | Local | Processor flags
faulted MC for
ground, but it will
be out voted so no
other action taken | HW - ARC | N/A. No fix, MC
are on
unswictched
power services. | | | | | | | | | | | | | | | Inputs | | CCD Commands | Local | Processor flags
faulted MC for
ground, but it will
be out voted so no
other action taken | HW - ARC | | | | | | | | | | | | | | | | | | SBC Prime or hot
spare commands | Local | Processor flags
faulted MC for
ground, but it will
be out voted so no
other action taken | HW - ARC | | | | | | | | | | | | | | | | | | Power inputs
(unswitched) | Local | Processor flags
faulted MC for
ground, but it will
be out voted so no
other action taken | HW - ARC | | | | | | | | | | | | | | | | AV-1.3 | Avionics Redundancy Controller (ARC) - Mode Controller 2 Avionics Redundancy | AV-1.4
 | Controller (ARC) - Mode Controller 3 Redundant Elec Module | REM A
TACA | No output (hard
failure) | Local | Prime requests
ARC side switch | HW - ARC | Side switchover | | | | | | | X | | | Try power cycle
during check-out or
ground contact | | | | | AV-2.1.1.b | | Incorrect output | Local | Prime requests
ARC side switch | HW - ARC | Side switchover | | | | | | | X | | | Try power cycle
during check-out or
ground contact | | | | | AV-2.1.1.c | | Incorrect timing | Local | Prime requests
ARC side switch | HW - ARC | Side switchover | | | | | | | X | | | Try power cycle
during check-out or
ground contact | | | | | FINEALD Name Function Failure Mode / Limit Possible Causes Phase Local Next Higher Mission Umbra Violation Severity Type of IM Observed | Vable How Observed? Tim for Diagnosis Tim Path for Diagnosis (Local) Time to Obtact (Local) Prime, non-responsive SpW interface; G&C closed loop SW Prime, non-responsive SpW interface; G&C closed loop SW Prime, non-responsive SpW interface; G&C closed loop SW Prime, non-responsive SpW interface; G&C closed loop SW Prime, non-responsive SpW interface; G&C closed loop SW Prime, non-responsive SpW interface; G&C closed loop SW Prime Non-responsive SpW interface; G&C closed loop SW Prime via SpW interface; G&C closed loop SW | |--|--| | Inputs SpaceWire Loss of thruster and G&C control interfaces SpaceWire Loss of thruster and G&C control interfaces SpaceWire Loss of thrusters thru | Prime, non- responsive SpW interface; G&C closed loop SW Prime, non- responsive SpW interface; G&C closed loop SW Prime, non- responsive SpW interface; G&C closed loop SW Prime, non- responsive SpW interface; G&C closed loop SW Prime, non- responsive SpW interface; G&C closed loop SW Prime, non- responsive SpW interface; G&C closed loop SW | | SpaceWire Control Interfaces with ARC witches sides of avoid. Propulsion bus Propulsion bus Loss of thrusters Prime tells ARC to initiate side witch, ARC witches sides of avoid. SRC component data SRC component data Loss of GRC control Interfaces witch, ARC witches sides of avoid. Loss of GRC control Interfaces witch, ARC witches sides of avoid. Loss of GRC control Interfaces witch, ARC witches sides of avoid. None Depends on side switch and reconfig time. AV-2.1.2 SSR A Locks up/resets Bad FPGA Loss of SSR data Prime tells, ARC to initiate side witch, ARC switches sides of avoid. None Depends on side switch and reconfig time. Prime tells, ARC to initiate side witch, ARC switches sides of avoid. None Depends on side switch and reconfig time. ARIVE
Yes ALIVE Yes ALIVE Yes AV-2.1.2.1 SSR A Locks up/resets Bad FPGA Loss of SSR data Prime tells, ARC to initiate side witch, ARC switches sides of avoid. None Depends on side switch and reconfig time. ARIVE Yes ALIVE Yes ARIVE Yes ALIVE Yes ALIVE Yes ALIVE Yes ALIVE Yes ARIVE Yes | responsive SpW interface; G&C closed loop SW Prime, non- responsive SpW interface; G&C closed loop SW Prime, non- responsive SpW interface; G&C closed loop SW Prime, non- responsive SpW interface; G&C closed loop SW Prime, non- responsive SpW interface; G&C closed loop SW interface; G&C closed loop SW | | SpaceWire Control Interfaces with ARC witches sides of avoid. Propulsion bus Propulsion bus Loss of thrusters Prime tells ARC to initiate side witch, ARC witches sides of avoid. SRC component data SRC component data Loss of GRC control Interfaces witch, ARC witches sides of avoid. Loss of GRC control Interfaces witch, ARC witches sides of avoid. Loss of GRC control Interfaces witch, ARC witches sides of avoid. None Depends on side switch and reconfig time. AV-2.1.2 SSR A Locks up/resets Bad FPGA Loss of SSR data Prime tells, ARC to initiate side witch, ARC switches sides of avoid. None Depends on side switch and reconfig time. Prime tells, ARC to initiate side witch, ARC switches sides of avoid. None Depends on side switch and reconfig time. ARIVE Yes ALIVE Yes ALIVE Yes AV-2.1.2.1 SSR A Locks up/resets Bad FPGA Loss of SSR data Prime tells, ARC to initiate side witch, ARC switches sides of avoid. None Depends on side switch and reconfig time. ARIVE Yes ALIVE Yes ARIVE Yes ALIVE Yes ALIVE Yes ALIVE Yes ALIVE Yes ARIVE Yes | interface; G&C closed loop SW Prime, non- responsive SpW interface; G&C closed loop SW Prime, non- responsive SpW interface; G&C closed loop SW Prime, non- responsive SpW interface; G&C closed loop SW interface; G&C closed loop SW | | Propulsion bus Propulsion bus Loss of thrusters Prime tells ARC to initiate side switch, ARC with sides of avoinics which said experts and experiment to avoinics which said avoinic avoin the th | closed loop SW Prime, non- responsive SpW Interface; G&C closed loop SW Prime, non- responsive SpW Interface; G&C closed loop SW Prime, non- responsive SpW Interface; G&C closed loop SW Prime, non- responsive SpW Interface; G&C closed loop SW | | Propulsion bus loss of thrusters switch, ARC switches sides of avionics switch and reconfig time loss of SRC component data Cost of GRC component data Cost of SRC control interfaces switch, ARC switches sides of avionics Cost of thruster and GRC control interfaces switch, ARC switches sides of avionics Cost of thruster and GRC control interfaces cost o | responsive SpW interface; G&C closed loop SW Prime, non- responsive SpW interface; G&C closed loop SW Prime, non- responsive SpW interface; G&C closed loop SW Interface; G&C closed loop SW | | G&C component data control interfaces None Gends G&C component data G&C component data G&C component data G&C control interfaces co | interface; G&C closed loop SW Prime, non- responsive SpW interface; G&C closed loop SW Prime, non- responsive SpW interface; G&C closed loop SW Orime, non- responsive SpW interface; G&C closed loop SW | | G&C component data Loss of G&C control interfaces Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics | Prime, non- responsive SpW interface; G&C closed loop SW Prime, non- responsive SpW interface; G&C closed loop SW | | Loss of factive and G&C control interfaces switch, ARC switches sides of avionics Secondary power Loss of thruster and G&C control interfaces witch, ARC switches sides of avionics NV-2.1.2 SSR A Loss of thruster and G&C control interfaces witch, ARC switches sides of avionics None Depends and 2R Active Yes witch and reconfig time 2R Active Yes | responsive SpW Interface; G&C closed loop SW Prime, non- responsive SpW interface; G&C closed loop SW | | AV-2.1.2.b data data Loss of SSR data Prime tells ARC to initiate side switch, ARC switches sides of avionics None Depends on side switch and reconfig time Prime tells ARC to initiate side switch, ARC switches sides of avionics None Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to initiate side switch, ARC switches sides of avionics Prime tells ARC to | interface; G&C closed loop SW Prime, non- responsive SpW interface; G&C closed loop SW | | Secondary power Loss of thruster and G&C control interfaces Prime tells ARC to initiate side switch, ARC switches sides of avionics None Depends on side switch and reconfig time 2R Active Yes Active Yes Active Yes AV-2.1.2.a AV-2.1.2.a AV-2.1.2.b Hard failure 2) Connector disconnects Loss of SSR data 2 (ongoing trade) None. None Active Yes Active Yes | Prime, non-
responsive SpW
interface; G&C
closed loop SW | | Secondary power Control interfaces switch, ARC switch, ARC switch and reconfig time 2R Active Yes AV-2.1.2.a SSR A Locks up/resets Bad FPGA Loss of SSR data 7 (ongoing trade) None. None Active Yes AV-2.1.2.b Loss of SSR data 7 (ongoing trade) None. None Active Yes | responsive SpW interface; G&C closed loop SW | | AV-2.1.2.b SSR A Locks up/resets Bad FPGA Loss of SSR data ? (ongoing trade) None. None Active Yes | closed loop SW | | AV-2.1.2.a SSR A Locks up/resets Bad FPGA Loss of SSR data ? (ongoing trade) None. None Active Yes AV-2.1.2.b Hard failure 2) Connector disconnects Loss of SSR data ? (ongoing trade) None. None None Active Yes | | | AV-2.1.2.a Locks up/resets Bad FPGA Loss of SSR data ? (ongoing trade) None. None Active Yes AV-2.1.2.b Hard failure 2) Connector disconnects Loss of SSR data ? (ongoing trade) None. None Active Yes | Prime via SpW | | AV-2.1.2.b Hard failure 1) PWB crack 2) Connector disconnects Loss of SSR data ? (ongoing trade) None. None Active Yes | Prime via SpW | | AV-2.1.2.b Hard failure 1) PWB crack 2) Connector disconnects Loss of SSR data ? (ongoing trade) None. None Active Yes | Prime via SpW | | AV-2.1.2.b Hard failure 1) PWB crack 2) Connector disconnects Loss of SSR data ? (ongoing trade) None. None Active Yes | Prime via SpW | | AV-2.1.2.b Hard failure 2) Connector disconnects Loss of SSR data ? (ongoing trade) None. None Active Yes | | | AV-2.1.2.b Hard failure 2) Connector disconnects Loss of SSR data ? (ongoing trade) None. None Active Yes | | | AV-2.1.2.b Hard failure 2) Connector disconnects Loss of SSR data ? (ongoing trade) None. None Active Yes | | | AV-2.1.2.b Hard failure 2) Connector disconnects Loss of SSR data ? (ongoing trade) None. None Active Yes | | | AV-2.1.2.b Hard failure 2) Connector disconnects Loss of SSR data ? (ongoing trade) None. None Active Yes | | | AV-2.1.2.b Hard failure 2) Connector disconnects Loss of SSR data ? (ongoing trade) None. None Active Yes | | | | Prime via SpW | | | | | | | | | | | | | | | | | Inputs Loss of SSR data ? (ongoing trade) None. None Active Yes | Prime via SpW | | | | | | | | | | | | | | | | | secondary power Loss of SSR data ? (ongoing trade) None. None Active Yes | Prime via SpW | | | | | | | | AV-2.12.1 Memory | | | | | | | | | AV-2.1.2.1.a Memory IC failure Bad part Loss of some SSR data ? (ongoing trade) None. None Active Yes | File system on Prime would | | | notice bad sector | | | | | AV-2.1.3 | | | AV-2.1.3 SpW Router A | | | Consider reinitializatin of SCIF, but Donards on side | | | AV-2.1.4.a No output Failed FPGA Loss of SpW connectivity initiate ride putter APC suitches None switch and 2R Active Yes | Prime via SpW | | sides of avionics reconfig time | | | Prime tells ARC to initiate side Depends on side | | | AV-2.1.4.b Incorrect output Failed FPGA Bad data switch, ARC switches sides of None switch and 2R Active Yes avionics | Prime via SpW | | avionics reconfig time | | | Prime tells ARC to initiate side Depends on side | | | AV-2.1.4.c Incorrect timing Failed FPGA Bad data switch, ARC switches sides of None switch and 2R Active Yes avionics reconfig time | Prime via SpW | | Consider reinitialization of SCIE- but | | | logists otherwise Prime tells ARC to None switch and 2P Active Ver | Prime via SpW | | initiate side switch, ARC switches | crime via Spvv | | States of advices of a control of SCIE but | | | Bus voltage Uses of SnW connectivity otherwise Prime tells ARC to None switch and 2R Active Yes | Prime via SpW | | initiate side switch, ARC switches sides of
avionics | Control Spring | | Sides of avonics Will detect incorrect input | | | Incorrect input Router continues functioning elsewhere (depending on what the | | | normally input was and where it was routed to | | | Bad input | | | AV-2.1.5 SCIFA | | | Mail | nts - KAF | |--|-----------| | Figure 1 Service Servi | | | Property of the control con | | | Specified Space We shall be sh | | | AV 2.1.2.b 3.1.2.b 4.1.2.b 5.1.2.b AV 4.1.2.b 5.1.2.b AV 4.1.2.b 4.1 | | | Frequency of the secondary power secon | | | GGC Component data GGC Component data GGC Component data AC cide switch over requests AC cide switch over requests and control state of the switch over requests denoted by the state of the switch over requests denoted by reques | | | AV 2.1.2.b | | | AV-2.12.b Mark failure fail | | | Secondary power Local | | | AV-2.1.2. SSR A AV-2.1.2.a Locks up/resets Local Av-2.1.2.b Av-2.1.2.b Locks up/resets Local Av-2.1.2.b Locks up/resets Av-2.1.2.b Locks up/resets Local Av-2.1.2.b Locks up/resets Av-2.1.2.b Locks up/resets Local Av-2.1.2.b Locks up/resets Av-2.1.2.b Locks up/resets Av-2.1.2.b Locks up/resets Local Av-2.1.2.b Locks up/resets Av-2.1.2.b Locks up/resets Local Av-2.1.2.b Locks up/resets | | | AV-2.1.2.a SSR A AV-2.1.2.a Locks up/resets Local locks up/resets Local locks up/resets Local locks up/resets local locks up/resets local locks up/resets local local locks up/resets local loc | | | AV-2.1.2 a V-2.1.2 a V-2.1.2 b V-2.1 | | | AV-2.1.2.a Locks up/resets Local shart SSC sees error with SSR and requests demotion from ARC??? AV-2.1.2.b Hard failure Local shart SSC sees error with SSR and requests demotion from ARC??? SSR switchover; File system mount Try power cycle X SSR switchover; swi | | | AV-2.1.2.a Locks up/resets Local is that SBC sees error with SSR and requests demotion from ARC??? AV-2.1.2.b Hard failure Local is that SBC sees error with SSR and requests demotion from ARC??? SSR switchover; File system mount SSR switchover; File system mount SSR switchover; File system mount SSR switchover; File system mount Try power cycle Try power cycle X Try power cycle X Try power cycle X | | | AV-2.1.2.a Locks up/resets Local is that SBC sees error with SSR and requests demotion from ARC??? AV-2.1.2.b Hard failure Local is that SBC sees error with SSR and requests demotion from ARC??? SSR switchover; File system mount SSR switchover; File system mount SSR switchover; File system mount SSR switchover; File system mount Try power cycle Try power cycle X Try power cycle X Try power cycle X | | | AV-2.1.2.a Locks up/resets Local strat Successor are reported that Successor are reported to the report of the succe | | | AV-2.1.2.b | | | AV-2.1.2.b Hard failure Local SSRs tied to each SBC, initial thought is that SBC sees error with SSR and requests demotion | | | AV-2.1.2.b Hard failure Local SBC, initial thought is that SBC sees error with SSR and requests demotion on the content of | | | AV-2.1.2.b Hard failure Local SBC, initial thought is that SBC sees error with SSR and requests demotion requests demotion | | | AV-2.1.2.b Hard failure Local SBC, initial thought is that SBC sees error with SSR and requests demotion requests demotion | | | AV-2.1.2.D Hard failure Local error with SSR and requests demotion requests demotion requests demotion | | | requests demotion | | | TOM AKL??? | | | | | | | | | 3 SSRs tied to each SBC, initial thought | | | Inputs SpaceWire Local is that SBC sees Processor File system STV power cycle Y | | | error with SSR and requests demotion requests demotion | | | from ARC??? | | | | | | 3 SSRs tied to each | | | SBC, initial thought is that SBC sees SSR switchover; | | | secondary power Local error with SSR and Processor File Structure Industrial Information I | | | requests demotion from ARC??? | | | N/3131 Marian | | | AV-2.1.2.1 Memory | | | 3 SSRs tied to each SSRc, initial thought | | | is that SDC coor. Add to had | | | AV-2.1.2.1.a Memory IC failure Local States Secretary with SSR and Frequests demotion Processor | | | from ARC??? | | | AV-2.1.3 SSR B | | | AV-2.1.4 SpW Router A | | | Power cycle during prime requests pround contact & | | | AV-2.1.4.a NO Output Cocal ARC side switch NV - | | | out Power cycle during | | | Prime requests request Prime requests Prime request re | | | AV-2.1.4.D Incorrect output Local ARC side switch swi | | | Power cycle during Power cycle during | | | AV-2.1.4.c Incorrect timing Local Prime requests ARC side switch Prime requests ARC side switchover switc | | | Out Out Out | | | Power cycle during Prime requests Prime requests your and State of the | | | inputs perform REM check perform REM check | | | out Out Power cycle during | | | Prime requests HW APC Side suits bours | | | Post Voltage ARC side switch | | | | | | Incorrect input 7 7 7 7 X | | | | | | AV-2.1.5 SCIF A | | | | | | | | | | | | | Effect | | | | | | | Detection | Method | | | |--|---|----------|--------------------------------------|--|-------|---|--|---------|-------------------------------|---|------------|------------|------------------------------|-------------------|------------------------|---------------------------------|----------------------------| | FMEA ID | Name | Function | Failure Mode / Limit
/ Constraint | Possible Causes | Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Tlm for Diagnosis | Tlm Path for Diagnosis | Time to Detect (Local) | Time to Detect
(System) | | ************************************** | | | | | | | | | | | | | | , | | | | | AV-2.1.5.a | | | Local failure | Bad IC or other component
(failure isolated to a single | | | Prime tells ARC to initiate side
switch, ARC switches sides of | None | Depends on side
switch and | 2R | Active | Yes | Prime via SpW | | | | | | | | | | interface) | | instrument | avionics | | reconfig time | | | | | | | | | | AV-2.1.5.b | | | Hard failure | Cracked board; failed FPGA | | Loss of interface with all S/C | Prime tells ARC to initiate side
switch, ARC switches sides of | None | Depends on side
switch and | 2R | Active | Yes | Prime via SpW | | | | | | | | | | | | components and instruments | avionics | | reconfig time | | | | | | | | | | | | | Incorrect timing with | | | | Prime tells ARC to initiate side | | Depends on side | | | | | | | | | | AV-2.1.5.c | | | transponder clock
interface | Failed FPGA | | Bad data | switch, ARC switches sides of
avionics | None | switch and
reconfig time | 2R | Active | Yes | Prime via SpW | | | | | | | | | | | | | Prime tells ARC to initiate side | | Depends on side | | | | | | | | | | AV-2.1.5.d | | | Incorrect output | Failed FPGA | | Bad data | switch, ARC switches sides of avionics | None | switch and reconfig time | 2R | Active | Yes | Prime via SpW | | | | | | | | | | | | | Prime tells ARC to initiate side | | Depends on side | | | | | | | | | | Inputs | | | SpaceWire | | | Loss of interface with all S/C components and instruments | switch, ARC switches sides of | None | switch and | 2R | Active | Yes | Prime via SpW | | | İ | | | | | | | | | | avionics | | reconfig time | | | | | | | | | | | | | Secondary Power | | | Loss of interface with all S/C components and instruments | Prime tells ARC to initiate side
switch, ARC switches sides of | None | Depends on side
switch and | 2R | Active | Yes | Prime via SpW | | | | | | | | | | | | components and instruments | avionics | | reconfig time | 2 - if FIELDS is lost | | | | | | | | | | | | Component/ | | | Lose telemetry from | Depends on | | Depends on side
 2R - if a critical component is lost | | | | | | | | | | | | Instrument
telemetry | | | component or instrument | component/instrument lost - worst
case would cause a side switch | | switch and
reconfig time | 3 - if another instrument is lost | Active | Yes | Prime via SpW | | | | | | | | | , | | | | | | Ĭ | 4 - for other (non-
critical) components | | | | | | | | | | | | | | | | | | | cinically components | | | | | | | | | | | | EMXO - EMXO lives | | | | May attempt to reconfigure first, | | | | | | | | | | | | | | | in XCVR now; Rich | 1) Harness break | | | but may also try side switch of
REM (won't work unless | | Depends on side | | | | | | | | | | | | | | Failure at source (see transponder) | | Won't receive PPS or 50 Hz | transponders are switched too).
Path taken would depend on first | None | switch and
reconfig time | | Active | | | | | İ | | | | | | plan. | | | | symptom seen. | | | | | | | | | | | | AV 2.1.5.1 | CCD (TBD - probably going | | | | | | | | | | | | | | | | | | AV-2.1.5.1 | away) | | | | | | | | | | | | Ground | | | | | | AV-2.1.5.1.a | | | Hard failure | Failed FPGA | | Loss of config commands | None | None | None | 4 | | Yes | verification of CCD commands | | | | | | AV-2.2
AV-2.2.1 | REM B
TAC B | | | | | | | | | | | | | | | | | | AV-2.2.2 | SSR B | | | | | | | | | | | | | | | | | | AV-2.2.2.1
AV-2.2.3 | Memory
SpW Router B | | | | | | | | | | | | | | | | | | AV-2.2.4
AV-2.2.4.1 | SCIF B
CCD | | | | | | | | | | | | | | | | | | AV-2.2.4.2
AV-4 | EXMO
RIUs | | | | | | | | | | | | | , | | | | | | RIUs
RIU-A
RIU-A 1 | For non-critical loads, no effect. | | | | | | | | | | | | | RIUs are cross-strapped - two | | | 1) Broken wire | | | For critical loads, autonomy would detect missing or bad value and | | | | | | | | | | | | AV-3.1.01.a | eight-RIU strips which can be
powered by REM A or REM B. | | | 2) IC failure
3) Hard short on card | | No temperature data from RIU. | | None | None | 4 | Active | yes | FSW detects bad
data | | | 2-3 seconds (for critical data) | | | | 16 RIUs total | | | s, riara silor on cara | | | power causing the loss of the | | | | | | | | | İ | | | | | | | | | | string. | | | | | | | | | | | | | | | | | | | For non-critical loads, no effect. | | | | | | FOLIA I : | | | 22 | | | AV-3.1.01.b | | | Incorrect output | Loose wire or noise | | Bad temp data from sensor | For critical loads, autonomy would detect missing or bad value and | None | None | 4 | Active | yes | FSW detects bad
data | | | 2-3 seconds (for critical data) | | | | | | | | | | switch to B string. | For non-critical loads, no effect.
For critical loads, autonomy would | | | | | | FSW detects bad | | | 2-3 seconds (for | | | AV-3.1.01.c | | | Incorrect timing | Loose wire or noise | | Bad temp data from sensor | detect missing or bad value and | None | None | 4 | Active | yes | data | | | critical data) | | | | | | | | | | switch to B string. | Inputs | | | Secondary Power | | | No temperature data from | For non-critical loads, no effect.
For critical loads, autonomy would | None | None | 4 | Active | ves | FSW detects bad | | | 2-3 seconds (for | | | put3 | | | - somany i owei | | | RIU. | detect missing or bad value and
switch to B string. | | | 7 | | , | data | | | critical data) | h | Face | .a | | 6 | 6 | | | | ·fr | | | | | | | | | | | | | | | | | snonso | | | | | | Quick Look | | ı | | | | | |---|--|----------|--------------------------------|------------------|--------------------------------------|--------------------|-----------------|--------|----------------------------|--------------------|-------------|------------------|-------------------|--------------------|------------|-----------|--|-----------------------|------------|----------|----------------| | FMEA ID | Name | Function | Failure Mode / Limit | t Response Level | Desired Local | Allocation of Loca | al Time to fix | | sponse
t Desired System | Allocation of | Time to fix | Time to Transmit | Ground Response / | System Side Switch | | Safe Mode | Remediation | Helpful Autonomy Rule | Flag | Revisit | Comments - KAF | | | | | / Constraint | | Response | Response | locally | Signal | Response | System
Response | system | Signal | Contingency | Kesponse | | | | | | | Power cycle during | | · | | | | AV-2.1.5.a | | | Local failure | Local | Prime requests | HW - ARC | Side switchover | | | | | | | X | | | ground contact & | | | | | | AV 2.1.5.0 | | | Local failure | Local | ARC side switch | TW ARC | Side Switchover | | | | | | | ^ | | | perform REM check
out | | | | | | | | | | <u> </u> | | <u> </u> | | | | | - | | | | | | Power cycle during | | <u> </u> | | | | AV/ 2.4.5.b | | | Hard failure | Local | Prime requests | LINK ARC | Side switchover | | | | | | | X | | | ground contact & | | | | | | AV-2.1.5.b | | | naru ialiure | Local | ARC side switch | HW - ARC | Side Switchover | | | | | | | ^ | | | perform REM check | | | | | | | | | | ļ | - | | | | - | · | | | | | | | out
Power cycle during | | . . | | | | | | | Incorrect timing with | | Prime requests | | | | | | | | | | | | ground contact & | | | | | | AV-2.1.5.c | | | transponder clock
interface | Local | ARC side switch | HW - ARC | Side switchover | | | | | | | X | | | perform REM check | | | | | | | | | interrace | | | ļ | | | | | | | | | | | out | | ļ | | | | | | | | | Prime requests | | | | | | | | | | | | Power cycle during
ground contact & | | | | | | AV-2.1.5.d | | | Incorrect output | Local | ARC side switch | HW - ARC | Side switchover | | | | | | | X | | | perform REM check | out | | ļ | | | | | | | | | Drimo roquests | | | | | | | | | | | | Power cycle during
ground contact & | | | | | | Inputs | | | SpaceWire | Local | Prime requests
ARC side switch | HW - ARC | Side switchover | | | | | | | X | | | perform REM check | out | |] | Power cycle during | | | | | | | | | Secondary Power | Local | Prime requests
ARC side switch | HW - ARC | Side switchover | | | | | | | X | | | ground contact &
perform REM check | | | | | | | | | | | Side Switten | | | | | | | | | | | | out | | | | | | | | | | | Depends on | component | Component/ | | affected: 1)Prime | 1) HW - ARC | | | | | | | | | | | Power cycle during | | | | | | | | | Instrument | Local | requests ARC side
switch | | Side switchover | | | | | | | X | | | ground contact &
perform REM check | | | X | | | | | | telemetry | | 2)Switch to | 2) Autonomy | | | | | | | | | | | out | | | | | | | | | | | redundant | component | | | | | | | | | | | | | | | | | | *************************************** | EMXO - EMXO lives | | Prime requests | in XCVR now; Rich | | ARC side switch | Conde is working on | Local | | HW - ARC | | | | | | | | X | | | | | | Х | | | | | | a fault mitigation | | May reconfigure | plan. | | EMXO first???? | CCD (TBD - probably going | away) | | | | | | | | | | | | | | | | | | .l | | | | AV-2.1.5.1.a | | | Hard failure | | | | Side switchover | ļ | | | | | | | | | | | | | . | | | | AV-2.2
AV-2.2.1 | REM B
TAC B | | | | | ļ | | | | | | | | | | | | | .ļ | | | | AV-2.2.1 | | | | | | | | | | | | | | | | | | | · | | | | AV-2.2.2.1 | Memory | | | | | | | | | | | | | | | | | | <u></u> | | | | AV-2.2.3 | | | | | | | | | | | | | | | | | | | ļ | | | | AV-2.2.4
AV-2.2.4.1 | SCIF B | | | - | | <u></u> | | | | | | | | | | | | | ļ | | | | AV-2.2.4.2 | | | | † | <u> </u> | <u> </u> | | | <u> </u> | † | | - | | | | | | | <u>.</u> | | | | AV-4 | RIUs | | | | | | | | | | | | | | | | | | · | , | | | | RIU-A
RIU-A 1 | | | - | - | | | | | | | | | | | | | | ļ | _ | | | AV-3.1.U1 | MO-A 1 | | | † | <u> </u> | † | | ļ | · | | - | | | | | | | | · | - | | | | | | | | For critical loads, | | | | | | | | | | | | | | | | | | | RIUs are cross-strapped - two | | | | switch to | | | | | | | | | | | | | | | | | | AV-3.1.01.a | eight-RIU strips which can be powered by REM A or REM B. | | No output | Local | redundant unit if
temp data above | Autonomy | | | | | | | | | | | Power cycle during
ground contact. | | | | | | | 16 RIUs total | | | | threshold or | | | | | | | | | | | | o. III. I contact. | | | | | | | | | | | missing/stale? | ļ | | ļ | | | | ļ | | | | | | | | | <u> </u> | - | | | | | | | | For critical loads, | switch to
redundant unit if | | | | | | | | | | | | Power cycle during | | | | | | AV-3.1.01.b | | | Incorrect output | Local | temp data above | Autonomy | | | | | | | | | | | ground contact. | | | | | | | | | | | threshold or | missing/stale? | For critical loads, | switch to | | | | | | | | | | | | | | • | | | | AV-3.1.01.c | | | Incorrect timing | Local | redundant unit if | Autonomy | | | | | | | | |
 | Power cycle during | | | | | | 5.1.01.0 | | | cocot tilling | | temp data above | | | | | | | | | | | | ground contact. | | | | | | | | | | | threshold or missing/stale? | ļ | | | | | | | | | | | | | ļ | | | | | | | | | For critical loads, | switch to
redundant unit if | | | | | | | | | | | | Power cycle during | | | | | | Inputs | | | Secondary Power | Local | temp data above | Autonomy | | | | | | | | | | | Power cycle during
ground contact. | | • | | | | | | | | | threshold or | missing/stale? | | | | | | | | | | | | | | | | | | | i. | Effect | | | | | | | Detection | Method | | 1 | |------------------------|-------------------------|---|--|--|-------|--|--|-----------|--|----------|------------|------------|--|-------------------|------------|---------------------------------|----------------| | FMEA ID | Name | Function | Failure Mode / Limit | Possible Causes | Phase | Local | Next Higher | Mission | Umbra Violation | | Type of FM | Observable | How Observed? | Tlm for Diagnosis | | Time to Detect | Time to Detect | | | | | / Constraint | | | | | | | Severity | | | | | Diagnosis | (Local) | (System) | | | | | I2C bus | | | No temperature data from
RIU. | For non-critical loads, no effect.
For critical loads, autonomy would
detect missing or bad value and
switch to B string. | None | None | 4 | Active | yes | FSW detects bad
data | | | 2-3 seconds (for critical data) | | | | | | Telemetry input
(temp sensor, tell
tales) | | | No data from specific
component | For non-critical loads, no effect.
For critical loads, autonomy would
detect missing or bad value and
switch to B string. | None | None | 4 | Active | yes | FSW detects bad
data | | | 2-3 seconds (for critical data) | | | | RIU-A 2 | | | | | | | | | | | | | ļ | | | | | AV-3.1.03
AV-3.1.04 | RIU-A 3
RIU-A 4 | | | | | | | | | | | | | | | | | | AV-3.1.05 | RIU-A 5 | | | | | | | | | | | | | | | | | | AV-3.1.06 | RIU-A 6 | | | | | | | | | | | | | ļ | | | | | AV-3.1.07
AV-3.1.08 | RIU-A 7
RIU-A 8 | | | | | i
 | | | | | i
 | | | i
 | | | | | AV-3.1.08 | RIU-B | | | | | | | | | | | | | | | | | | AV-3.2.01 | RIU-B 1 | | | | | | | | | | | | | | | | | | AV-3.2.02
AV-3.2.03 | RIU-B 2
RIU-B 3 | | | | | | | | | | ļ | | | | | | | | AV-3.2.04 | RIU-B 4 | | | | | | | | | | | | | <u> </u> | | | | | AV-3.2.05 | RIU-B 5 |) | | | | | | | | | | | | | | | | | AV-3.2.06 | RIU-B 6 | | | | | | | | | | | | | ļ | | | | | AV-3.2.07
AV-3.2.08 | RIU-B 7
RIU-B 8 | | | | | | | | | | | | | <u>.</u> | | | | | | Power Distribution Unit | | | | | <u> </u> | | | | | l | | | <u> </u> | I | | | | AV-4.1 | Side A | Provides C&DH command interface to PDU | | | | | | | | | | | | | | | | | | | 2) Provides PDU telemetry interface | | | | | | | | | | | | | | | | | AV-4.1.1 | CMD TLM A | to C&DH | | | | | | | | | | | | | | | | | ,,, | | 3) Provides +5V to Relay/Cap and | | | | | | | | | | | | | | | [| | | | FET Switching slices 4) Provides internal bus signals | | | | | | | | | | | | | | | | | | | 5) Provides separation interface | | | | | | | | | ĺ | | | ļ | | | | | AV-4.1.1.a | | | | 1) SEU
2) SW failure | All | Unable to interface with REM
and provide
command/telemetry interface | Loads stay on. Switch sides of
Avionics. | No effect | Should be within timeframe of loss of control loop. | 4 | Active | yes | No PRIO telemetry | PDU heartbeat | PDU to REM | n/a | | | AV-4.1.1.b | | | Unexpected reset | 1) SEU
2) SW failure | | and provide | Loads all get switched off. Switch
sides of Avionics. Reset sequence
in PDU switches loads back on. | | Should be within timeframe of loss of control loop. | 4 | Active | yes | Lots of
components get
switched off
unexpectedly. | PDU heartbeat | PDU to REM | | | | AV-4.1.1.c | | | PDU Power and reset
sequence doesn't
run when expected | | | A whole list of things which should occur (HW getting switched on/off, etc.) doesn't. | Avionics side switch. | No effect | Should be within
timeframe of loss
of control loop. | 4 | Active | yes | Things which
should occur
during PDU reset
don't. | PDU heartbeat | PDU to REM | | | | AV-4.1.1.d | | | Hard failure | 1) Electronics failure
2) Connector/cable failure | All | Card unusable. No ability to interface with REM. Critical board function(s) are not working. No secondary power to other slices. | Switch to B side of avionics | No effect | Unless something needs to be commanded during switchover time period to PDU B, umbra violation shouldn't be possible | 2R | Active | yes | Stale/anomalous
telemetry | PDU heartbeat | PDU to REM | | | | Inputs | | | Command/
telemetry interfaces | | | Components would stop getting telemetry | Switch to B side of avionics | No effect | | 2R | Active | yes | Stale telemetry | PDU heartbeat | PDU to REM | | | | | | | | | | | | Res | sponse | | | | | 1 | Quick Look | | • | | | | |------------------------|-------------------------|--|---------------------------------------|----------------|------------------------------------|---------------------|-------------|----------------|----------------|---------------|-------------|------------------|-------------------|--------------------|------------|-----------|---|-----------------------|--------------|--| | FMEA ID | Name | Function | Failure Mode / Limit | Response Level | Desired Local | Allocation of Local | Time to fix | | Desired System | Allocation of | Time to fix | Time to Transmit | Ground Response / | System Side Switch | | Safe Mode | Remediation | Helpful Autonomy Rule | Flag Revisit | Comments - KAF | | | | | / Constraint | · | Response | Response | locally | Signal | Response | System | system | Signal | Contingency | | | | | | | | | | | | | | | | | | | Response | | | | | | | | | | | | | | | | • | For critical loads, | switch to
redundant unit if | | | | | | | | | | | | Power cycle during | | | | | | | | I2C bus | Local | temp data above | Autonomy | | | | | | | | | | | ground contact. | | | | | | | | | | threshold or | missing/stale? | For critical loads, | | | | | !····· | | | | • | · | | | | | | | | | | | | switch to | Telemetry input
(temp sensor, tell | Local | redundant unit if | Autonomy | | | | | | | | | | | Power cycle during | | | | | | | | tales) | Local | temp data above | Autonomy | | | | | | | | | | | ground contact. | | | | | | | | , | | threshold or | missing/stale? | ļ | | | | | | | | | | | | | | | | AV-3.1.02
AV-3.1.03 | RIU-A 2
RIU-A 3 | | | | | ļ | | | | | | | | | | | | | | | | AV-3.1.03
AV-3.1.04 | RIU-A 4 | | | | | } | | ļ | | | · | | | | | | | | | | | | RIU-A 5 | | | | | 1 | | | | | | | | | | | | | | | | AV-3.1.06 | RIU-A 6 | | | | | ļ | | | | | | | | | | | | | | | | | RIU-A 7 | | | | | ļ | | ļ | ļ | | ļ | | | | | <u> </u> |
| | | | | | RIU-A 8
RIU-B | | | | | ļ | | | ļ | | · | | | | | | | | | <u> </u> | | | RIU-B 1 | | | | | | | | | ļ | | | | | | | | | | | | AV-3.2.02 | RIU-B 2 | RIU-B 3 | | | | | ļ | | | ļ | | | | | | | | | | | | | AV-3.2.04
AV-3.2.05 | RIU-B 4
RIU-B 5 | | | | | ļ | | | ļ | | | | | | | | | | | | | | RIU-B 6 | RIU-B 7 | | · | | | ļ | | | | ļ | · | | | · | · | | | | | | | | RIU-B 8 | Power Distribution Unit | | | | | ļ | | | | | ļ | | | | ļ | | | | | | | AV-4.1 | Side A | 1) Provides C&DH command | | | | ļ | | | | | | | | | | | | | | | | | | interface to PDU | 2) Provides PDU telemetry interface | • | | | | | | | | | | | | | | | | | | | AV-4.1.1 | CMD TLM A | to C&DH | Provides +5V to Relay/Cap and FET Switching slices | Provides internal bus signals | 5) Provides separation interface | System side | | | | | | | | | | | | Autonomy would see
stale data or would | | | | | | | | t and an | t and | switch; return to | | - 1- | TBD - based on | | | | | | , | | | set a flag indicating | | | | | AV-4.1.1.a | | | Lock up | Local | previous load | Autonomy | n/a | autonomy rule | | | | | | X | | | stale/non-responsive | | | | | | | | | | configuration | | | | | | | | | | | | PDU and switch to B | side. | System side
switch; return to | | | | | | | | | | | | | | | | | AV-4.1.1.b | | | Unexpected reset | Local | previous load | Autonomy | configuration | C | | | | ! | | <u> </u> | | | • | | ā | | | | | | | | | PDU Power and reset | t | System side | | | | | | | | | | | | | | | | | AV-4.1.1.c | | | sequence doesn't | Local | switch; return to previous load | Autonomy | | | | | | | | | | | | | | | | | | | run when expected | | configuration | System side | | | | | | | | | | | | | | | | | AV-4.1.1.d | | | Hard failure | Local | switch; return to
previous load | Autonomy | | | | | | | | | | | Switch to side B | | | No PDU switch, this should be system side switch | | | | | | | configuration | _ | System side | ļ | <u> </u> | | ļ | | ļ | | | | | | | | | | | | | | Command/ | l a sal | switch; return to | | | | | | | | | | | | | | | No applies the late of lat | | Inputs | | | telemetry interfaces | rocai | previous load | Autonomy | | | | | | | | | | | | | Х | No PDU switch, this should be system side switch | | | | | | <u> </u> | configuration | <u> </u> | <u> </u> | <u> </u> | <u> </u> | <u> </u> | <u> </u> | | | <u> </u> | <u> </u> | | <u> </u> | <u> </u> | <u> </u> | <u> </u> | _ | | | | <u>.</u> | | Effect | | | | _ | | | Detection | | | | |------------|-------------|--|--|--|--|---------------------------------------|--|--|---|-------------------------|------------|------------------------------|-------------------|---------------------------|---------------------------|----------------------------| | FMEA ID | Name | Function | Failure Mode / Limit
/ Constraint | Possible Causes Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Tlm for Diagnosis | Tlm Path for
Diagnosis | Time to Detect
(Local) | Time to Detect
(System) | | | | | 2 Breakwires | Until
separation
from 3rd
stage | If both breakwires on the active PDU broke prior to separation, would get a false indication of separation. | Switch to B side of avionics | No effect | N/A | 4 | Active | | | PDU heartbeat | PDU to REM | | | | | | | Power (switched in
ARC) | All | Card unusable. No ability to interface with REM. Critical board function(s) are not working. No secondary power to other slices. | Switch to B side of avionics | No effect | Unless something needs to be commanded during switchover time period to PDU B, umbra violation shouldn't be possible | 2R | Active | | Stale/anomalous
telemetry | PDU heartbeat | PDU to REM | | | | AV-4.1.2 | Relay Cap A | 1) Provides main bus voltage for critical and non-critical loads 2) Provides load current telemetry (total and individual loads and non-critical loads) 3) Provides safety bus voltages 4) Provides capacitance for main bus 5) Provides connection to single point ground 6) Provides power to unswitched services 7) Includes "common relays" (used for autonomy) 8) Connection to umbilical power 9) Misc. functions: 9a) Fuse monitoring 9b) Arming plug monitoring 9c) Temperature monitoring (for informational purposes only) | | | | | | | | | | | | | | | | AV-4.1.2.a | | | Fails to provide
function #1 (main
bus voltage for
critical and non-
critical loads) | 1) Incoming power wire
breaks/bad connection
2) Short to ground (double-
insulated wires) | 1) Multiple pairs (6) of incoming power wires (power & return) per RC slice. The loss of a single wire/pair would be within margin for s/c. The loss of more than one (multiple failures) would cause there to be too little power available to the s/c. 2) An unconstrained short would melt the wires and discharge the battery. | 1) No effect (assuming a single | 1) No effect (assuming a
single failure)
2) LOM | N/A | 1) 4
2) 2 | Active | | | State of charge | | | | | AV-4.1.2.b | | | Fails to provide
function #2 (load
current telemetry) | | PSE also supplies total current
telemetry. Non-critical
failure. | Worst case, switch off a single load. | Worst case would switch off one of the instruments, degrading (but not failing) science. | N/A | 2 - if FIELDS is lost
2R - if a critical
component is lost
3 - if another
instrument is lost
4 - for other (non- | Active | | | | | | | | AV-4.1.2.c | | | Fails to provide
function #3 (safety
bus voltages) | | Redundant relay for each bus.
Two safety buses. Would
need four failures to fail to
power a component on a
safety bus from this PDU. | No effect. | No effect. | N/A | 4 | Passive -
Redundancy | | | | | | | | AV-4.1.2.d | | | Fails to provide
function #4
(capacitance for
main bus) | Capacitor shorts | Fused to prevent power spike. | More noise to loads. | No effect. | N/A | 4 | None | | | | | | | | AV-4.1.2.e | | | Fails to provide
function #5
(connection to single. | | Should have redundant wires (Rich checking) | No effect. | No effect. | N/A | 4 (with redundant
wires) | Passive -
Redundancy | | | | | | | | | | | | | | | | Res | sponse | | | | | | Quick Look | | • | | | | |------------|-------------|--|--|----------------|---|---------------------------------|---------------------|-----|-------------------------|-------------------------|--------------------|----------------------------|----------------------------------|--------------------|------------|-----------|---|-----------------------|--
--| | FMEA ID | Name | Function | Failure Mode / Limit
/ Constraint | Response Level | Desired Local
Response | Allocation of Local
Response | Time to fix locally | | Desired System Response | Allocation of
System | Time to fix system | Time to Transmit
Signal | Ground Response /
Contingency | System Side Switch | | Safe Mode | Remediation | Helpful Autonomy Rule | Flag Revisit | Comments - KAF | | | | | 2 Breakwires | Local | System side
switch; return to
previous load
configuration | Autonomy | | | | Response | | | | | | | Each PDU requires 2 of 2 to be broken to indicate separation. Veracity of false separation indication could be determined by switching on redundant PDU. Would need four separate failures for both PDUs to falsely indicate separation prior to it actually occurring. | | | No PDU switch, this should be system side switch | | | | | Power (switched in
ARC) | Local | System side
switch; return to
previous load
configuration | Autonomy | | | | | | | | | | | | | | No PDU switch, this should be system side switch | | AV-4.1.2 | Relay Cap A | 1) Provides main bus voltage for critical and non-critical loads 2) Provides load current telemetry (total and individual loads and non-critical loads) 3) Provides safety bus voltages 4) Provides capacitance for main bus 5) Provides connection to single point ground 6) Provides power to unswitched services 7) Includes "common relays" (used for autonomy) 8) Connection to umbilical power 9) Misc. functions: 9a) Fuse monitoring 9b) Arming plug monitoring 9c) Temperature monitoring (for informational purposes only) | | | | | | | | | | | | | | | | | X - When we
know what
loads are
where | | | AV-4.1.2.a | | | Fails to provide
function #1 (main
bus voltage for
critical and non-
critical loads) | System | LBSOC Safing | Autonomy | | | | | | | | | | | None | | | Relay Cap A & B on same card? So nothing we can do? Would look like unexpected battery discharge fault, but not fixable?? | | AV-4.1.2.b | | | Fails to provide
function #2 (load
current telemetry) | Local | For some loads,
may want to re-
enforce that one is
always on? | Autonomy | | | | | | | | | | | | | x | | | AV-4.1.2.c | | | Fails to provide
function #3 (safety
bus voltages) | | | | | | | | | | | | | | | | | | | AV-4.1.2.d | | | Fails to provide
function #4
(capacitance for
main bus)
Fails to provide | | | | | | | | | | | | | | | | | | | AV-4.1.2.e | | | function #5 | | | | | | | | | | | <u></u> | | | | | Х | | | | | | | | | | Effect | | | | | | Detection | Method | | | |----------------------------|-------------|---------------------------------|---|--|-------------|--|---|------------|-----------------|--|---------------------------|------------|---|---------------------------|---------------------------|----------------------------| | FMEA ID | Name | Function | Failure Mode / Limit
/ Constraint | Possible Causes | Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? Tlm for Diagnosis | Tlm Path for
Diagnosis | Time to Detect
(Local) | Time to Detect
(System) | | AV-4.1.2.f | | | Fails to provide
function #6 (power
to unswitched
services) | | | theaters have series redundant
thermostats to prevent "stuck
on" load (need double-
insulated wires). All
unswitched loads allocated
redundantly, so loss of a
single one is ok. | | No effect. | N/A | 4 | Passive -
Redundancy | | | | | | | AV-4.1.2.g | | | Fails to provide
function #7
("common relays") | | | Not currently planning to use this funcitonallity, although that may change later. In either case, this functionality would be useful for ground, but probably not used autonomously, and would not affect mission success if it failed. | | No effect. | N/A | 4 | None | | | | | | | AV-4.1.2.h | | | Fails to provide
function #8
(connection to
umbilical power) | | Ground only | For ground-use only. Blocking
diodes prevent current back-
flow. | | No effect. | N/A | 4 | None | | | | | | | AV-4.1.2.i | | | Fails to provide
function #9a (fuse
monitoring) | | | For ground use primarily. Not fusing loads, fusing bus. Filter capacitors. Could lose at least one and be ok. | No offort | No effect. | N/A | 4 | None | | | | | | | AV-4.1.2.j | | | Fails to provide
function #9b (arming
plug monitoring) | | | I&T ground function to see if arming plugs are in. | No effect. | No effect. | N/A | 4 | None | | | | | | | AV-4.1.2.k | | | Fails to provide
function #9c
(temperature
monitoring) | | | For informational purposes only. | No effect. | No effect. | N/A | 4 | None | | | | | | | Inputs | | | EPS Power | | | no power to downstream
components | Loss of power to multiple components. Switch sides of Avionics. | No effect. | N/A | 4 | Active | yes | Loads not
powered | | | | | | | | Umbilical power Separation (from upper stage) indicators | | | Redundant separation indicators on each PDU. | No effect. Verification of a false separation indication could be performed by switching on the redundant PDU. Four failures would be required before BOTH PDUs indicated separation prematurely. | No effect. | N/A | 4 | None Passive - Redundancy | | | | | | | AV-4.1.2.1
AV-4.1.2.1.a | Fuse Module | 1) Provides fusing to all loads | Failure to blow (assumes a failure in the load, causing it to draw a high current - six services to unswitched loads (no circuit breaker) which are switched in the ARC.) | | E, M, C | Load draws extra current. | ARC limited to a certain number of mA to prevent fuse from blowing. If autonomy can detect load drawing extra current (possible except in the case of a short to chassis), it could switch off the affected load. | No effect. | NA | 25 - if load is FIELDS 2R - if load is critical component 3 - if load is another instrument 4 - if load is non-critical component | Active | yes | high current draw Load current | PDU to REM | | | | AV-4.1.2.1.b | | | Blows too soon | 1) Design
2) Transient voltage
3) "Smart" short (high current
setting that is not detected) | E, M, C | Lose power to a load. | Switch to side B | No effect. | N/A | 2 - if load is FIELDS 2R - if load is critical component 3 - if load is another instrument 4 - if load is non-critical component | Active | yes | current telemetry would be zero. Would be indistinguishable from an ARC switch failure. Would probably have ground recommand, but wouldn't fix problem. | PDU to REM | | | | | | | | | | Des | | | | | | | Quick Look | | I | | | | |---|---|------------------|--|---------------------|---------|------------------|----------|--------------------|-------------|--------|-------------------|--------------------|------------|-----------|--|-----------------------|----------|------------------------| | FMEA ID Name Function | Failure Mode / Limi | t Response Level | | Allocation of Local | | Time to Transmit | | | Time to fix | | Ground Response / | System Side Switch | | Safe Mode | Remediation | Helpful Autonomy Rule | Flag | Revisit Comments - KAF | | | / Constraint | | Response | Response | locally | Signal | Response | System
Response | system | Signal | Contingency | Fails to provide | | | | | | | | | | | | | | | | | | | AV-4.1.2.f | function #6 (power | | | | | | | | | | | | | | | | | X (check for double- | | AV TALE! | to unswitched
services) | | | | | | | | | | | | | | | | | insulated wires) | | | services) | Fails to provide | | | | | | | | | | | | | | | | | | | AV-4.1.2.g | function #7
("common relays") | Fails to provide | | | | | | | | | | | | <u> </u> | | | | | | | AV-4.1.2.h | function #8 | (connection to
umbilical power) | 1 | | | Ì | | | AV-4.1.2.i | Fails to provide
function #9a (fuse | monitoring) | <u> </u> | | | | | | | | | | | | | | <u> </u> | | | AV-4.1.2.j | Fails to provide
function #9b (arming | g | | | | | | | | | | | | | | | | | | | plug monitoring) | ь | | | | | | | | | | | | | | | | | | | Fails to provide | | | | | | | | | | | | | <u> </u> | | | | | | AV-4.1.2.k | function #9c |
(temperature
monitoring) | System side | | | | | | | | | | | | | | | | | Inputs | EPS Power | Local | switch; return to
previous load | Autonomy | | | | | | | | X | | | | | | | | | | | configuration | | | | | | | | | | <u> </u> | | | | | | | | Umbilical power | Separation (from | upper stage)
indicators | indicators | | | | | | | | | | | | | | | | | | | AV-4.1.2.1 Fuse Module 1) Provides fusing to all loads | | | | | | | | | ļ | | | | | | | | | | | AV-4.1.2.1 It disentionale 1) Frovides rusing to an loads | Consider having an
over-current rule | | | | | | | | | | | | | | | | | | Failure to blow | | for each switched | | | | | | | | | | | | | | | | | | (assumes a failure in
the load, causing it | 1 | load with out a CB | | | | | | | | | | | | Critical loads are | | | | | | to draw a high | | in order to protect the fuse? In some | | | | | | | | | | | | redundant, so a single | | | | | AV-4.1.2.1.a | current - six services
to unswitched loads | | cases this might be
a complete system | Autonomy | | | | | | | | | | | fuse blowing would
not cause a critical | | | х | | | (no circuit breaker) | | side switch or just | | | | | | | | | | | | not cause a critical
load to fail | | | | | | which are switched | | component switch | | | | | | | | | | | | | | | | | | in the ARC.) | | for those loads
that are cross | strapped | :
 | | | | | | | | | | Consider having an | over-current rule | for each switched
load with out a CB | in order to protect | | | | | | | | | | | | Critical loads are | | | | | AV-4.1.2.1.b | Blows too soon | Local | the fuse? In some
cases this might be | Autonomy | | | | | | | | | | | redundant, so a single
fuse blowing would | | | х | | | | | a complete system | | | | | | | | | | | | not cause a critical | | | | | | | | side switch or just component switch | | | | | | | | | | | | load to fail | | | | | | | | for those loads | that are cross
strapped | этарреи | | | | | | | | | | | | | | | | | ii | | | | | ! | <u></u> | | .1 | | | | | 1 | | • | | | | | | _ | | _ | | | | Effect | | | | _ | | | Detection | Method | | | |--------------|---|--|--|--|---------|---|---|---|---|--|---------------------------|------------|--|-------------------|---------------------------|---------------------------|----------------------------| | FMEA ID | Name | Function | Failure Mode / Limit
/ Constraint | Possible Causes | Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Tlm for Diagnosis | Tlm Path for
Diagnosis | Time to Detect
(Local) | Time to Detect
(System) | | AV-4.1.2.2 | PRIO (2 PRIOs per RC slice, not
redundant) | 1) Provides main bus voltage telemetry for critical and non-critical loads 2) Provides load current telemetry (total and individual loads and non-critical loads) 3) Provides safety bus voltage monitor 4) Turns on safety bus relays (separate output for each safety bus) 5) controls autonomy relays | | | | | | | | | | | | | | | | | AV-4.1.2.2.a | | | Hard failure (could
take out one or both
PRIOs - need both on
a side) | | L | If hard failure occurs prior to
safety bus relay on, couldn't
turn on safety bus. | Not able to power safety-inhibited loads. | гом | N/A | 1 | Passive -
Redundancy?? | yes | Safety buses
wouldn't turn on | | | | | | AV-4.1.2.2.b | | | Hard failure (could
take out one or both
PRIOs - need both on
a side) | | E, M, C | Once safety bus is powered,
these PRIOs are no longer
mission critical. Loss of
telemetry. | No telemetry for services affected. | No effect, unless lost
telemetry is critical
(revisit once telemetry is
known) | N/A | 4 | None | yes | no telemetry from
PRIO | | | | | | AV-4.1.2.2.c | | | configuration | 1) Radiation
2) Bad command sent to prio and
corrupted
3) SW failure | E, M, C | No telemetry, wouldn't respond to commands. | No telemetry for services affected. | No effect, unless lost
telemetry is critical
(revisit once telemetry is
known) | Yes if prop loads
(thrusters, cat bed
heaters, latch
valves) are
affected?? | 4 | Active | yes | no telemetry from
PRIO | TBD | | | | | AV-4.1.2.2.d | | | Lock-up/reset | Radiation | Е, М, С | No telemetry, wouldn't respond to commands. | No telemetry for services affected.
Could switch to side B. | No effect, unless lost telemetry is critical (revisit once telemetry is known) | Yes if prop loads
(thrusters, cat bed
heaters, latch
valves) are
affected?? | 4 | Active | yes | Stale telemetry | TBD | | | | | AV-4.1.3 | FET Slice 1 | Provides power fusing and switching for all switched and pulsed loads Provides switched status for switched loads Provides current monitoring and circuit breaker function for overcurrent protection. | | | | | | | | | | | | | | | | | AV-4.1.3.a | | | FET stuck on (normal
service) | FET failure | | Load stuck powered on. | Power budget hit. | No effect, depending on amount of current draw. | N/A | 4 | None | yes | load continues to
be powered on
after power off
commanded | | | | | | AV-4.1.3.b | | | FET stuck on (high
and low-side FETs) | FET failure | | | Switch off low-side FET to turn off
power to pulsed load. | No effect. | N/A | 4 | Active | | temperature
increases
coincident to
pulsed load.
Continued power
drain after typical
pulse duration. | Load current | PDU to REM | | | | AV-4.1.3.c | | | FET stuck off | FET failure | | Load stuck powered off. | Switching sides of avionics would
not fix problem (FET itself is
common to both PDUs). | Loss of load. | N/A | 2 - if load is FIELDS 2R - if load is critical component 3 - if load is another instrument 4 - if load is non-critical component | Active | | Load continues to
be powered off
after power on
command. | Load current | PDU to REM | | | | AV-4.1.3.d | | | | 1) Electronics failure 2) Connector/cable failure 3) Common electronics (redundant within FET slice) | Е, М, С | Some or all slice functions fail | Possible loss of power to any or all
loads powered through FET slice 1.
With redundancy of components
and effective placement of loads
on FET cards, the loss of a single
FET card should not fail the
mission. | Possibly degraded
mission. | N/A | 2 - if load is FIELDS
2R - if load is critical
component
3 - if load is another
instrument
4 - if load is non-critical
component | Active | yes | Loss of power to
load(s) | Load current | PDU to REM | | | | Inputs | | | Signals on interslice connectors | | | Redundant wires in interslice connectors, so loss of one would have no effect. | No effect. | No effect. | N/A | 4 | Passive -
redundancy | no? | | | | | | | | | 1) Provides over current and at | Primary power from
RC Slice | | | Redundant power wires from
RC Slice, so loss of one would
have no effect. | No effect. | No effect. | N/A | 4 | Passive -
redundancy | no? | | | | | | | AV-4.1.3.1 | Circuit Breaker | Provides over-current protection
to fuse (set to short time period,
high current) | Re | sponse | | | | | | Quick Look | | İ | | | | |--------------|--|--|--|----------------|--|---------------------------------|---------------------|---------|-------------------------------|-------------------------|--------------------|----------------------------|----------------------------------|--------------------|------------|-----------
---|-----------------------|--------------|----------------| | FMEA ID | Name | Function | Failure Mode / Limit
/ Constraint | Response Level | Desired Local
Response | Allocation of Local
Response | Time to fix locally | | t. Desired System
Response | Allocation of
System | Time to fix system | Time to Transmit
Signal | Ground Response /
Contingency | System Side Switch | | Safe Mode | Remediation | Helpful Autonomy Rule | Flag Revisit | Comments - KAF | | | · | | / Constraint | | Response | Response | locally | Sigilal | Response | Response | system | Signal | Contingency | | | | | | | | | AV-4.1.2.2 | PRIO (2 PRIOs per RC slice, no
redundant) | telemetry for critical and non-critical loads 2) Provides load current telemetry (total and individual loads and non-critical loads) 3) Provides Safety bus voltage monitor 4) Turns on safety bus relays (separate output for each safety bus 5) controls autonomy relays | AV-4.1.2.2.a | | | Hard failure (could
take out one or both
PRIOs - need both on
a side) | | | | | | | | | | | | | | | | | | | AV-4.1.2.2.b | | | Hard failure (could
take out one or both
PRIOs - need both on
a side) | | | | | | | | | | | | | | | | × | | | AV-4.1.2.2.c | | | Incorrect PRIO configuration | Local | TBD | Autonomy | | | | | | | | | | | 1) MOPs sends
commands with PRIO
reconfiguration
scripts
2) MOPs sends
command to RF CCD
to off-pulse PDU | | х | | | AV-4.1.2.2.d | | | Lock-up/reset | Local | TBD | Autonomy | | | | | | | | | | | Switch to side B,
and/or off-pulse | | х | | | AV-4.1.3 | FET Slice 1 | 1) Provides power fusing and switching for all switched and pulsed loads 2) Provides switched status for switched loads 3) Provides current monitoring and circuit breaker function for overcurrent protection | AV-4.1.3.a | | | FET stuck on (normal
service) | | | | | | | | | | | | | | | | | | | AV-4.1.3.b | | | FET stuck on (high
and low-side FETs) | Local | TBD which loads,
but monitor for
continuous curren
for TBD seconds
and switch off low
side FET; LVs are
one known load | Autonomy | | | | | | | | | | | | | х | | | AV-4.1.3.c | | | FET stuck off | Local | TBD which loads,
but monitor for
one of two always
on? | Autonomy | | | | | | | | | | | | | х | | | AV-4.1.3.d | | | Hard failure | Local | TBD which loads,
but monitor for
one of two always
on? | Autonomy | | | | | | | | | | | 1) MOPs tries to
command load(s)
on/off
2) Cycle power | | x | | | Inputs | | | Signals on interslice connectors | Primary power from
RC Slice | | | | | | | | | | | | | | | | | | | AV-4.1.3.1 | Circuit Breaker | Provides over-current protection to fuse (set to short time period, high current) | Effect | | | | | | | Detection | Method | | | |--------------|---|--|--|---|---------|--|---|--|-----------------|--|------------|------------|--|--|--------------|----------------|----------------| | FMEA ID | Name | Function | Failure Mode / Limit
/ Constraint | Possible Causes | Phase | Local | Next Higher | Mission | Umbra Violation | Carradian | Type of FM | Observable | How Observed? | Tlm for Diagnosis | Tlm Path for | Time to Detect | Time to Detect | | | | | / Constraint | | | | | | | Severity | | | | | Diagnosis | (Local) | (System) | | AV-4.1.3.1.a | | | Unable to reset | 1) Part Failure | | Assuming load has tripped circuit breaker, loss of switched load If load has not tripped circuit breaker, then no effect | Potential loss of a single instrument suite. Cycling power to load may reset circuit breaker. Ground would probably investigate problem at next ground contact. | depending on which | | 2 - if load is FIELDS
2R - if load is critical
component
3 - if load is another
instrument
1 - if load is non-critical
component | Active | yes | Load continues to
be powered off
after power on
command. | Load current | PDU to REM | | | | | | | | | | | | | | 2 '61- 1'- 5151 00 | | | | | | | | | AV-4.1.3.1.b | | | Opens without
stimuli | 1) Part Failure | E, M, C | 1) Loss of switched load | | Degraded science or
loss of redundancy if
breaker continually trips
for critical switched loads | | 2 - if load is FIELDS 2R - if load is critical component 3 - if load is another instrument 1 - if load is non-critical component | Active | yes | Load switches off
unexpectedly | Load current | PDU to REM | | | | AV-4.1.3.1.c | | | Trips too soon | 1) Trip Value Set Too Low | Е, М, С | 1) Load constantly trips circuit
breaker | 1) Ground command to disable or override the CB | 1) None | | 2 - if load is FIELDS 2R - if load is critical component 3 - if load is another instrument 1- if load is non-critical component | None | yes | Load switches off
unexpectedly | | | | | | AV-4.1.3.1.d | | | Failure to trip
(assumes load is
drawing too high of
a current) | 1) Sense value incorrect (should
be caught in testing) | | Fuse would blow if current
high enough. | Loss of load. Autonomy would
turn off load permanently. | Degraded science or loss
of redundancy,
depending on load. | | 2 - if load is FIELDS 2R - if load is critical component 3 - if load is another instrument 1 - if load is non-critical component | Active | yes | Power drain higher
than expected.
Load switches off
when fuse blows. | Load current | PDU to REM | | | | Inputs | | The Branches for income and House | Power from Fuse
Module | | | Loss of load | Potential loss of entire instrument suite. | Degraded science or loss
of redundancy,
depending on load. | | 2 - if load is FIELDS
2R - if load is critical
component
3 - if load is another
instrument
1 - if load is non-critical
component | Active | yes | Load not powered. | Load current | PDU to REM | | | | AV-4.1.3.2 | Fuse Module | 1) Provides fusing to all loads | | | | | | | | | | | | | | | | | AV-4.1.3.2.a | | | current | 1) Design
2) Transient voltage
3) "Smart" short (high current
setting that is not detected -
multiple failures) | Е, М, С | Loss of load | Potential loss of entire instrument suite. | Degraded science or loss of redundancy, depending on load. | | 2 - if load is FIELDS
2R - if load is critical
component
3 - if load is another
instrument
1 - if load is non-critical
component | Active | yes | Load not powered. | Load current | PDU to REM | | | | AV-4.1.3.2.b | | | Failure to blow
(assumes a failure in
the load, causing it
to draw a high
current) | 1) Design | | Loss of load | Anything other than a short to chassis, autonomy would see and turn off load. Also will have circuit breakers for non-redundant loads like instruments and some other critical loads. | Degraded science or loss
of redundancy,
depending on load. | | 2 - if load is FIELDS
2R - if load is critical
component
3 - if load is another
instrument
1 - if load is non-critical
component | Active | yes | Not short to chassis: excess current draw by load. Short to chassis: difficult to diagnose. Eventually would load shed and side switch. Would probably see problem when switching loads back on one-byone. | Load current | PDU to REM | | | | AV-4.1.3.3 | PRIO
(8 loads per PRIO, but each FET
has an A-side and a B-side, so
two PRIOs control each load) | Provides load current telemetry
for individual loads Provides switched status for
switched loads Provides current monitoring and
circuit breaker function for over-
current protection | | | | | | | | | | | | | | | | | AV-4.1.3.3.a | | carent potection | | 1) Electronics failure
2) Connector/cable failure
3) SW failure | Е, М, С | Unable to control switched
loads controlled by failed
PRIO | No side switch required in most cases due to cross-strapping of loads. For PSE or IMU, would need to switch sides of avionics either autonomously or through ground command. | No effect. | | 4 | Active ? | yes | Load not
responding to
commands. | Load current;
power state vs
commanded state | PDU to REM | | | | | | | | | | | Dog | | | | | | 1 | Quick Look | | | | | | |----------------------------
---|--|------------------|--|---------------------|---------|------------------|----------------|--------------------|-------------|------------------|-------------------|--------------------|------------|-----------|---|-----------------------|--------------|----------------| | FMEA ID | Name Function | Failure Mode / Limit | t Response Level | Desired Local | Allocation of Local | | Time to Transmit | Desired System | | Time to fix | Time to Transmit | Ground Response / | System Side Switch | | Safe Mode | Remediation | Helpful Autonomy Rule | Flag Revisit | Comments - KAF | | | | / Constraint | | Response | Response | locally | Signal | Response | System
Response | system | Signal | Contingency | | | | | | | | | AV-4.1.3.1.a | | Unable to reset | Local | TBD which loads,
but monitor for
one of two always
on?
Would not help
with instruments | Autonomy | | | | r copora | | | | | | | 1) Send commands to
turn load on
2) Send commands to
turn load on and
override CB
3) Cycle power | | x | | | AV-4.1.3.1.b | | Opens without
stimuli | Local | TBD which loads,
but monitor for
one of two always
on?
Would not help
with instruments | Autonomy | | | | | | | | | | | 1) If CB continually
trips, can override CB
and rely solely on
autonomy rule for
over-current
protection | | x | | | AV-4.1.3.1.c | | Trips too soon | | | | | | | | | | | | | | 1) Turn load on
2) If CB continually
trips, can override CB
and rely solely on
autonomy rule | | х | | | AV-4.1.3.1.d | | Failure to trip
(assumes load is
drawing too high of
a current) | Local | Consider having an over-current rule for each switched load with CB in order to protect the fuse? | Autonomy | | | | | | | | | | | 1) Autonomy rules
also protect against
over-current
2) LVS protection if
both CB and
autonomy rule fail | | x | | | Inputs | | Power from Fuse
Module | Local | TBD which loads,
but monitor for
one of two always
on?
Would not help
with instruments | Autonomy | | | | | | | | | | | | | x | | | AV-4.1.3.2
AV-4.1.3.2.a | Fuse Module 1) Provides fusing to all loads | Blows below rated
current | Local | TBD which loads,
but monitor for
one of two always
on?
Would not help
with instruments | Autonomy | | | | | | | | | | | 1) Circuit breakers are
used to prevent fuses
from blowing
2) Critical loads have
redundant power
paths, so a single fuse
blowing would not
cause a critical load to
fail | | x | | | AV-4.1.3.2.b | | Failure to blow
(assumes a failure in
the load, causing it
to draw a high
current) | | Consider having an
over-current rule
for each switched
load with CB in
order to protect
the fuse? | Autonomy | | | | | | | | | | | 1) Circuit breakers are used to prevent fuses from blowing 2) Critical loads have redundant power paths, so a single fuse blowing would not cause a critical load to fail | | x | | | AV-4.1.3.3 | PRIO (8 loads per PRIO, but each FET has an A-side and a B-side, so two PRIOs control each load) 1) Provides load current telemetry for individual loads 2) Provides switched status for switched loads 3) Provides current monitoring and circuit breaker function for overcurrent protection | AV-4.1.3.3.a | | Hard failure | Local | TBD - if load stuck
on when
commanded off,
consider rule for
system side
switch? | Autonomy | | | | | | | | | | | MOPs sends
commands with PRIO
reconfiguration
scripts | | х | | | | | | | | | Effect | | | , | _ | | • | Detection | | | | |--------------|-------------|----------|--------------------------------------|---|---|--|------------|--|----------|------------|------------|--|--|---------------------------|---------------------------|----------------------------| | FMEA ID | Name | Function | Failure Mode / Limit
/ Constraint | Possible Causes Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Tlm for Diagnosis | Tlm Path for
Diagnosis | Time to Detect
(Local) | Time to Detect
(System) | | AV-4.1.3.3.b | | | | 1) Radiation
2) Bad command sent to prio and
corrupted
3) SW failure | Any number of registers incorrectly configured | No side switch required in most cases due to cross-strapping of loads. For PSE or IMU, would need to switch sides of avionics either autonomously or through ground command. | No effect. | | 4 | Active ? | yes | Load not responding to commands as expected. Autonomy should have a check in place to ensure that a pulse command isn't turned into a switch (prop LVs, etc.). | Load current;
power state vs
commanded state | PDU to REM | | | | AV-4.1.3.3.c | | | Lock-up/reset | Radiation E, M, C | No telemetry, wouldn't
respond to commands.
Connected loads turned off. | No telemetry for services affected. No side switch required in most cases due to cross-strapping of loads. For PSE or IMU, would need to switch sides of avionics either autonomously or through ground command. | No effect. | es if prop loads
(thrusters, latch
alves) are
affected. | 4 | Active ? | yes | Stale telemetry. (Cat bed heater telemetry should be visible still - ensure current drawn is consistent with expected number of heaters in operation) | Load current;
power state vs
commanded state | PDU to REM | | | | Inputs | | | i2c bus - clock | | No telemetry. Can't
command loads. | No telemetry for services affected. No side switch required in most cases due to cross-strapping of loads. For PSE or IMU, would need to switch sides of avionics either autonomously or through ground command. | No effect. | ses if prop loads
uthrusters, latch
alves) are
affected. | 4 | Active ? | yes | Stale telemetry. (Cat bed heater telemetry should be visible still ensure current drawn is consistent with expected number of heaters in operation) | Load current;
power state vs
commanded state | PDU to REM | | | | | | | i2c bus - serial data | | No telemetry. Can't
command loads. | No telemetry for services affected. No side switch required in most cases due to cross-strapping of loads. For PSE or IMU, would need to switch sides of avionics either autonomously or through ground command. | No effect. | es if prop loads
(thrusters, latch
salves) are
affected. | 4 | Active ? | yes | Stale telemetry. (Cat bed heater telemetry should be visible still - ensure current drawn is consistent with expected number of heaters in operation) | Load current;
power state vs
commanded state | PDU to REM | | | | | | | 12c bus - reset line | | No telemetry, wouldn't
respond to commands.
Connected loads turned off. | No telemetry for services affected. No side switch required in most cases due to cross-strapping of loads. For PSE or IMU, would need to switch sides of avionics either autonomously or through ground command. | No effect. | es if prop loads
thrusters, latch
salves) are
affected. | 4 | Active ? | yes | Stale telemetry. (Cat bed heater telemetry should be visible still - ensure current drawn is consistent with expected number of heaters in operation) | Load current;
power state vs
commanded state | PDU to REM | | | | | | | i2c bus - +5V | | Unable to control switched
loads controlled by failed
PRIO | No side switch required in most cases due to cross-strapping of loads. For PSE or IMU, would need to switch sides of avionics either autonomously or through ground command. | No effect. | | 4 | Active ? | yes | Load not
responding to
commands. | Load current;
power state vs
commanded state | PDU to REM | | | | | | | i2c bus - ground | | Unable to control switched
loads controlled by failed
PRIO | No side switch required in most cases due to cross-strapping of loads. For PSE or IMU, would need to switch sides of avionics either autonomously or through ground command. | No effect. | | 4 | Active ? | yes | Load not
responding to
commands. | Load current;
power state vs
commanded state | PDU to REM | | | | AV-4.14 | FET Slice 2 | | 12c bus - PRIO clock | | No telemetry, wouldn't
respond to commands.
Connected loads turned off. | No telemetry for services affected. No side switch required in most cases due to cross-strapping of loads. For PSE or IMU, would need to switch sides of avionics either autonomously or through ground command. | No effect. | ces if prop loads
(thrusters, latch
salves) are
affected. | 4 | Active ? | yes | Stale telemetry. (Cat bed heater telemetry should be visible still - ensure current drawn is consistent
with expected number of heaters in operation) | Load current;
power state vs
commanded state | PDU to REM | | | | AV-4.1.3.3c Lock-up/reset Lock | utonomy Rule Flag | ag Revisit | Comments - KAF | |--|-------------------|------------|----------------| | AV-4.1.3.3.c Local incorrect PBO to disjust on when configuration local incorrect PBO to disjust on when commanded off, consider talk for when commanded off, consider talk for when commanded off, consider talk for when commanded off, consider talk for when commanded off, consider talk for when con | | x | | | AV-4.1.3.3.c lock-up/reset lock-up/reset lock lock-up/reset lock lock-up/reset lock lock-up/reset lock lock-up/reset lock-up/res | | x | | | AV-4.1.3.3.c Lock-up/reset Local comanded off, consider rule for system side switch? TBD - if load stuck on when com wh | | | | | on when | | х | | | Inputs 12c bus - clock Local commanded off, consider rule for system side switch? Autonomy Commanded off, consider rule for system side switch? Autonomy Commanded off, consider rule for system side switch? Autonomy Commanded off, consider rule for system side switch? | | х | | | TBD - If load stuck on when commanded off, consider rule for system side switch? Autonomy Consider rule for system side switch? | | х | | | TBD - if load stuck on when commanded off, consider rule for system side switch? Autonomy | | x | | | I2c bus - +5V Local TBD - if load stuck on when commanded off, consider rule for system side switch? Autonomy System side switch? | | х | | | IZC bus - ground Local TBD - if load stuck on when commanded off, consider rule for system side switch? Autonomy | | х | | | IZC bus - PRIO clock Local TBD - if load stuck on when commanded off, consider rule for system side switch? AV-4.1.4 FET Slice 2 | | x | | | - | _ | | _ | | | | Effect | | | | _ | | | Detection | vietnoa | | | |----------|-------------|----------|----------------------|-----------------|-------|-------|-------------|---------|-----------------|----------|------------|---|---------------|-------------------|--------------|----------------|----------------| | FMEA ID | Name | Function | Failure Mode / Limit | Possible Causes | Phase | Local | Next Higher | Mission | Umbra Violation | | Type of FM | Observable | How Observed? | Tlm for Diagnosis | Tlm Path for | Time to Detect | Time to Detect | | | | | / Constraint | | | | | | | Severity | | | | | Diagnosis | (Local) | (System) | AV-4.1.5 | FET Slice 3 | | | | | | | | | | | | | | | | | | AV-4.2 | Side B | | | | | | | | | | | | | | | | | | AV-4.2.1 | CMD TLM B | | | | | | | | | | | | | | | | | | AV-4.2.2 | Relay Cap B | | | | | | | | | | | | | | | | | | AV-4.2.3 | FET Slice 4 | | | | | | | | | | | | | | | | | | AV-4.2.4 | FET Slice 5 | | | | | | | | | | | | | | | | | | AV-4.2.5 | FET Slice 6 | • | | | | | | | | | | | | | | | Res | ponse | | | | | | Quick Look | | | 4. | | | | |----------|-------------|----------|----------------------|----------------|---------------|---------------------|-------------|------------------|----------------|---------------|-------------|------------------|-------------------|--------------------|------------------|-----------|-------------|-----------------------|------|---------|----------------| | FMEA ID | Name | Function | Failure Mode / Limit | Response Level | Desired Local | Allocation of Local | Time to fix | Time to Transmit | Desired System | Allocation of | Time to fix | Time to Transmit | Ground Response / | System Side Switch | Processor Switch | Safe Mode | Remediation | Helpful Autonomy Rule | Flag | Revisit | Comments - KAF | | | | | / Constraint | | Response | Response | locally | Signal | Response | System | system | Signal | Contingency | | | | | | | | <u> </u> | | | | | | | | | | | | Response | | | | | | | | | | | : | | AV-4.1.5 | FET Slice 3 | : | | AV-4.2 | Side B | AV-4.2.1 | CMD TLM B | AV-4.2.2 | Relay Cap B | AV-4.2.3 | FET Slice 4 | AV-4.2.4 | FET Slice 5 | | | | į | | | | | | | | | - | | | | | | į | ; | | AV-4.2.5 | FET Slice 6 | Subject Matter Expert(s): Lew Roufberg Notes: Yellow highlighted blocks are redundant components. Components are listed for completeness, but failure mode and | Expert(s): | | listed for comp | eleteness, but failure mode and | | | r#a- | • | | İ | | | | Detection M | a dha d | | | |------------|---|-----------------|---|--|---|---|--|-----------------|----------|------------|---|--|--|---------------------------|---------------------------|----------------------------| | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Possible Causes Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Detection M TIm for Diagnosis | Tlm Path for
Diagnosis | Time to Detect
(Local) | Time to Detect
(System) | | EP-1.1 | Power System Electronics
PSE-1
Bus Junction Slice | | | | | | | | | | | | | | | | | EP-1.1.1.a | oos succion sice | | Loss of telemetry (load current) | open circuit resistor short circuit | 1) Scale of telemetry would
change
2) Telemetry would read 0
Amps. | Would probably attempt an avionics side switch, but would not correct problem since resistors are used by both sides. | 1) Long-term trending might reveal a way to adjust for change in scale No other effect. 2) Could verify that load current equals expected value by summing buck converter current, load current, and battery current (should equal 0). No other effect. | | 4 | None | yes | Either 0 or out-of-
scale reading in
telemetry | ? | PSE to CDH | n/a | N/A | | EP-1.1.1.b | | | Loss of telemetry (battery
current) | | 1) Scale of telemetry would
change
2) Telemetry would read 0
Amps. | Would probably attempt an avionics side switch, but would not correct problem since resistors are used by both sides. | 1) Long-term trending might reveal a way to adjust for change in scale No other effect. 2) Could verify that battery current equals expected value by summing buck converter current, load current, and battery current (should equal 0). No other effect. | N/a | 4 | None | yes | Either 0 or out-of-
scale reading in
telemetry | ? | PSE to CDH | n/a | N/A | | EP-1.1.1.c | | | Loss of telemetry (battery
voltage) | 1) open circuit resistor
2) short circuit | Lost bus voltage telemetry to controller | Controller would incorrectly cause Buck converters to limit current to bring voltage down. Autonomy would detect mismatch between battery and bus voltages and PDU would switch sides of PSE. | discharge if no side | N/a | 4 | Active | yes | See difference
between
battery
voltage and bus
voltage. | Battery and Bus
Voltages | PSE to CDH to
Autonomy | ? | None | | Inputs | | | Buck converter power | | No effect to card. | S/c would receive 1/4 of the expected power, but system should have sufficient margin. | No effect | | 4 | None | Yes | Reduced power to
bus | Buck Converter
Current | PSE to CDH | ? | None | | | | | Relay command (only changes
when a fault occurs and it
needs to change state) | Relay command when not
necessary (no other fault) | Slice would tell one Buck
Converter to go offline | S/C can handle loss of a single
buck converter. No effect. | No effect | N/a | 4 | None | Yes | Could see Buck
converter is offline. | Buck Converter
Current | PSE to CDH | ? | None | | | | | | No command when necessary
(2nd failure) | No effect to card. | Buck converter would draw too
much power. Battery would
discharge. | Loss of mission | | 2 | None | Yes. | With current sensors
on buck converter
slice | Buck Converter
Current | PSE to CDH | ? | None | | EP-1.1.2 | Solar Array Junction Board 1 | | | | | | | | | | | | | | | | | EP-1.1.2.a | | | Short (isolation diodes) | 1) diode fails short | No effect without another short | No effect | No effect | N/a | 4 | None | No | | None | None | None | None | | EP-1.1.2.b | | | Open (isolation diodes) | 1) diode fails open | lose power from a single solar
array string | No effect (designed to work
with loss of single string).
Might need to extend wing
further | No effect | N/a | 4 | None | Depends on the string
(outboard 2 strings
have current sensors) | Telemetry | SA current | SAJB to PSE to CDH | None | None | | EP-1.1.2.c | | | Loss of telemetry (current) | 1) open circuit resistor
2) short circuit | 1) Scale of telemetry would
change
2) Telemetry would read 0
Amps. | Would probably attempt an avionics side switch, but would not correct problem since resistors are used by both sides. | 1) Long-term trending might reveal a way to adjust for change in scale No other effect. 2) Could verify that current equals expected value by summing buck converter current, load current, and battery current (should equal 0). No other effect. | | 4 | None | yes | Either 0 or out-of-
scale reading in
telemetry | | | n/a | N/A | | EP-1.1.2.d | | | Loss of telemetry (voltage) | 1) open circuit resistor
2) short circuit | Stop sensing solar array voltag | Could cause buck converter to either over or under-current. Autonomy would see solar array current mis-match and would direct PDU to switch to other side of PSE. | No effect with side
switch. | N/a | 4 | Active | Yes | Solar array current
would not match
expected | SA current, Buck
converter current? | PSE to CDH | ? | ? | Subject Matter Lew Roufberg Expert(s): Notes: Yellow highlighted blocks are redundant components. Components are listed for completeness, but failure mode and | expert(s): | | listed for comp | oleteness, but failure mode and | | | | | | | - | | | | | | | | | |--------------------|---------------------------------------|-----------------|---------------------------------|---|-----------------|----------------|-------------|--|-------------------------|-----------------------------------|----------------------|--------------------|-------------------------|---|--------------------|-----------------------------|-----------|--| | FMEA ID | Name | Function | Failure Mode / Limit / | Response Level | Desired Local | Allocation of | Time to fix | Time to Transmit Signal | Time to Transmit Signal | Response Desired System Response | Allocation of System | Time to fix system | Time to Transmit Signal | Ground Response / | System Side Switch | Quick Look Processor Switch | Safe Mode | Remediation | | | · · · · · · · · · · · · · · · · · · · | | Constraint | nesponse zere. | Response | Local Response | locally | Time to Transmit orginal | Time to Transmit oignar | Desired System Response | Response | Time to the system | | Contingency | System side surren | . rocessor ourieum | oute mode | nemealation | EP-1 | Power System Electronics | <u> </u> | | | | | | | | | | | | | | | | | | EP-1.1
EP-1.1.1 | PSE-1
Bus Junction Slice | | | | | | <u> </u> | | | | | | | | | | | | | EP-1.1.1 | Bus Junction Since | | | | - | | | Long to my tronding to | | | | | | | | | | | | | | ~1 sec (action depends on | | | | | | Long-term trending to
identify way to adjust for | | | | | | EP-1.1.1.a | | | Loss of telemetry (load current |) Local | Contingnecy | Ground | ? | persistence decided on by | ? | None | None | None | None | change in scale; work- | | | | Possibility of reprogramming something | | | | | | | Procedure | | | fault protection) | | | | | | around for verifying load | current | Long-term trending to | | | | | | | | | Loss of telemetry (battery | | Contingnecy | | | ~1 sec (action depends on | | | | | | identify way to adjust for | | | | | | EP-1.1.1.b | | | current) | Local | Procedure | Ground | ? | persistence decided on by | ? | None | None | None | None | change in scale; work- | | | | Possibility of reprogramming something | | | | | | | | | | fault protection) | | | | | | around for verifying load
current | Content | ļ | | ļ | EP-1.1.1.c | | | Loss of telemetry (battery | Local | PSE side switch | Autonomy | ? | ? | ? | None | None | None | None | None | | | | Side switch | | | | | voltage) | | | , , | If margin isn't sufficient, | | | | | | la se de | | | D. d | None | Name | Constant | _ | | | Ness | Ness | Name | Mana | power cycle non-critical | | | | | | Inputs | | | Buck converter power | None | None | Ground | ľ | f | ľ | None | None | None | None | loads to reduce power | needed by system | | | | | | | | | Relay command (only changes | | | | | | | | | | | Ground contingency to | | | | | | | | | when a fault occurs and it | None | None | Ground | ? | ? | ? | None | None | None | None | bring buck converters back | | | | Wait until next ground contact, send | | | | | needs to change state) | | | | | | | | | | | online (power cycle all?) | | | | command to reset relay. | | | | | | | - | | | | | | | | | | | | | | | | | | | None | None | Ground | ? | ? | ? | None | None | None | None | None - loss of mission, but double fault | | | | | | | | Ļ | | Ļ | | | ļ | | | | | | | uouble lault | | | | | | EP-1.1.2 | Solar Array Junction Board 1 | - | | | | | EP-1.1.2.a | | | Short (isolation diodes) | None | - | | i | EP-1.1.2.b | | | Open (isolation diodes) | None | V1 con /ontion depends on | | | | | | Long-term trending to
identify way to adjust for | | | | | | EP-1.1.2.c | | | Loss of telemetry (current) | Local | Contingnecy | Ground | ? | ~1 sec (action depends on
persistence decided on by | 2 | None | None | None | None | change in scale; work- | | | | Possibility of reprogramming something | | 2. 1.1.2.0 | | | 2000 or telemetry (current) | 2000 | Procedure | Cround | ľ | fault protection) | | | | | Tone | around for verifying load | | | | . ossibility of reprogramming sometiming | | | | | | | | | | | | | | | | current | *************************************** | 1 | | <u> </u> | | | ED 1 4 2 - | | | loss of tolomote: (:-lt) | Local | DCE aldott-1 | Autonor | 2 | 2 | 2 | None | None | None | None | | | | | | | EP-1.1.2.d | | | Loss of telemetry (voltage) | Local | PSE side switch | Autonomy | ' | • | ľ | None | None | None | None | · | <u> </u> | | | | | <u> </u> | | . | Subject Matter Expert(s): Lew Roufberg Notes: Yellow highlighted blocks are redundant components. Components are listed for completeness, but failure mode and | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Revisit | |------------|------------------------------|----------|---|---| | EP-1 | Power System Electronics | | | | | EP-1.1 | PSE-1 | (| | · · · · · · · · · · · · · · · · · · · | | EP-1.1.1 | Bus Junction Slice | | Loss of telemetry (load current) | X (only one
slice,
can't
"switch
sides") | | EP-1.1.1.b | | | Loss of telemetry (battery
current) | X (only one
slice, can't
"switch
sides") | | EP-1.1.1.c | | | Loss of telemetry (battery
voltage) | X (only one
slice, can't
"switch
sides") | | Inputs | | | Buck converter power | х | | | | : | Relay command (only changes
when a fault occurs and it
needs to change state) | | | | | | | х | | EP-1.1.2 | Solar Array Junction Board 1 | | | | | EP-1.1.2.a | | | Short (isolation diodes) | X (only one
slice, can't
"switch
sides") | | EP-1.1.2.b | | | Open (isolation diodes) | X (only one
slice, can't
"switch
sides") | | EP-1.1.2.c | | | Loss of telemetry (current) | X (only one
slice, can't
"switch
sides") | | EP-1.1.2.d | | | Loss of telemetry (voltage) | X (only one
slice, can't
"switch
sides") | | | | | | | | Solar Probe Plus (SPP) Failure Modes and Effects Analysis (FMEA) | | | |--|--|--| | | | | EPS - 30 of 317 | March Marc | _ | | | _ | | | Effe | ot | | | | | | Detection M | ethod | | | |--|------------|-----------------------------|---|-------------------------------|--------------------------------|---------------------------------|---|--|-----------------|----------|---------------|--------------|----------------------|--------------------|---------------|---------|----------| | Part | FMEA ID | Name | Function | | Possible Causes Phase | Local | Next Higher | Mission | Umbra Violation | Severity | | Observable | How Observed? | Tlm for Diagnosis | | | | | Second S | | | | 00.13.11.11 | | | | | | | | | | | 2.05.100.0 | (2000.) | (Oyotem) | | Management Man | | | *************************************** | | | | | | | | | | | | | | | | Part | Inputs | | | Solar array power | | Slice is ok. | S/c not receiving power. | Loss of mission. | N/a | 2 | None | Yes | | Battery voltage | PSE to CDH | ? | ? | | Concess Conc | | | | | | | | | | | | | | | | | | | Column C | | | | | | | | | | | | | | | | | | | Part | LF-1.1.4 | Duck Converter Since 1 of 4 | | | | Converter slice will be off | No effect. Can lose a single | | | | · | | | Ruck converter | | | | | In the content of | EP-1.1.4.a | | | No output | 1) Open circuit output fuse | | | No effect. | N/a | 4 | None | Yes | Telemetry | 1 | PSE to CDH | ? | ? | | Fig. 1. The control of o | | | | | | Current will be too high or too | Controller will compensate for | | | | | | | Dueli servicator | | | <u></u> | | Pill 1.4. See a second to reduce the control of | EP-1.1.4.b | | | Incorrect current | 1) reference voltage drift | | | No effect. | N/a | 4 | Passive | Yes | Telemetry | | PSE to CDH | ? | ? | | Partial de la caracte law lating from out propries de caracter production de la product | | | | | <u> </u> | limited internally. | converter. | | | | - | | | | | | | | PALLS IN PRODUCT CARRIED STREETING PRODUCT CARRIED STREETING STREE | | | | | | | Potential EMC/EMI issue for | | | | | | | | | | | | State of the protection of the control contr | EP-1.1.4.c | | | Incorrect switching frequency | | | instruments; switch sides to | Worst case, lose data for
one encounter | N/a | 3 | None | Not directly | wouldn't necessarily | | ? | ? | ? | | Could clause book converter to great with the part of the count | | | | | | | clear problem | | | | | | | | | | | | and there could not control and from carbon or an under-carbon. The course again from carbon or any | | | | | | | | | | | | | . 52 | | | | | | Implicit and a control agreed from controller government of the control and process | | | | | | | | | | | | | | | | | | | Service of contents of the con | Innuts | | | | | | Autonomy would see solar | | N/a | 4 | Active | Ves | | SA current, Buck | PSE to CDH | 2 | 2 | | In the second power state of PEL Pol 1 | inputs | | | card | | power or not enough | | switch. | 1470 | - | Active | 163 | | converter current? | TSE to CDIT | ľ | [| | Solar array gover from ADD 1/100 year for a power of powe | | | | | | | | | | | | | | | | | | | Solar array power from SUN [1] Fitsy mode but converted and place of expression special will be a single but converted and power special place of converted and power from SUN [2] NUN failure and power special place of the p | | | | | | | | No effect Is Is has | | | | | | | | | | | Part | | | | Calan announce from CAID | 1) relay inside buck converter | No office the soul | Buck converter stops relaying | | N/- | | | v | Battery discharging | Buck Converter | DSE to CDII | | | | P12.13 DOUT/MA IP 12.14 P12.15 DOUT/MA IP 12.15 DOUT/MA Hard failure Hard failure Adonomy would see his of telemetry or growth mixth to which to whole in constant policy or growth mixth to whole the original way to problem but it would be impossible to tell mental or problem but it would be impossible to tell mental or problem but it would be impossible to tell mental or problem but it would be impossible to tell mental or problem but it would be impossible to tell mental or problem but it would be impossible to tell mental or problem but it would be impossible to tell mental or problem but it would be impossible to tell mental or problem but mixture and the rot tell mental o | | | | Solar array power from SAJB | 2) SAJB failure | No effect to card | power | | N/a | 4 | None | res | unexpectedly | Current | PSE TO CDH | f | None | | P-1.2.1.a VolVilla A. Level failure Level grath Political fa | | | | | | | | single buck converter) | | | | | | | | | | | EP-1.2.1.a Part failure II power supply input opens in feed path 2 Fee | | | | | | | | | | | | | | | | | | | EP-1.2.1.a Hard failure | | | | | | | | | | | | | | | | | | | EP-1.2.1.a language l | | | | | | | | | | | | | | | | | | | EP-1.2.1.a land land land land land land land lan | | | | | | | telemetry and would comman | t | | | | | | | | | | | EP-1.2.1.a Hard failure feed path output. Task, in telemetry output. PSE to LOH to a feed path output. The problem, problem, problem, put it would be impossible to tell the difference between this failure mode and the "no telemetry output "failure mode." Post output the problem, | | | | | 1) power supply input opens in | | | | | | | | | | | | | | EP-1.2.1.b No telemetry output Discourage Discourag | EP-1.2.1.a | | | Hard failure | | | | No effect. | N/A | 2R | Active | Yes | Loss of telemetry | | | ? | None | | EP-1.2.1.b No telemetry output anomaliter not powered 2) open circuit September 1.5 September 2. September 2. September 3. | | | | | 2) FPGA fails | output. | | | | | | | | neartbeat | Autonomy | | | | EP-1.2.1.b No telemetry output 1) output
transmitter not powered 2) open circuit Card would continue operating but no telemetry output. Voide B. EP-1.2.1.c Locks up/resets 1) SEU Card would continue operating Reset card. If necessary, switch to side B. N/a 4 Active yes Loss of telemetry PSE CMD/TLM heartheat Autonomy 7 None necessary. Switch no effect. N/A 4 Active yes Loss of telemetry Description PSE CMD/TLM PSE to CDH to neartheat PSE CMD/TLM PSE to CDH to reset, no telemetry output or reset. | | | | | | | | | | | | | | | | | | | EP-1.2.1.b No telemetry output in No telemetry output in No telemetry output in No telemetry output in No effect. No telemetry output in No telemetry output in No effect. N | | | | | | | mode and the "no telemetry | | | | | | | | | | | | EP-1.2.1.b No telemetry output powered 2) open circuit powered 2) open circuit powered 2) open circuit powered 2) open circuit powered but no telemetry output. To side B. Card requires a commanded reset, no telemetry output or reset. | | | | | | | output" failure mode. | | | | | | | | | | | | EP-1.2.1.b No telemetry output powered 2) open circuit powered 2) open circuit powered 2) open circuit powered 2) open circuit powered but no telemetry output. To side B. Card requires a commanded reset, no telemetry output or reset. | | | | | | | | | | | | | | | | | | | EP-1.2.1.b No telemetry output powered 2) open circuit powered 2) open circuit powered 2) open circuit powered 2) open circuit powered but no telemetry output. To side B. Card requires a commanded reset, no telemetry output or reset. | | | | | | | | | | | | | | | | | | | EP-1.2.1.b No telemetry output powered 2) open circuit powered 2) open circuit powered 2) open circuit powered 2) open circuit powered but no telemetry output. It is side B. Card requires a commanded reset, no telemetry output or reset. | | | | | 1) output transmitter not | | | | | | | | | | | | | | EP-1.2.1.c Locks up/resets 1) SEU Card requires a commanded reset card. If necessary, switch no effect. N/A 4 Active yes Loss of telemetry PSE CMD/TLM PSE to CDH to Parther Autonomy 7 None | EP-1.2.1.b | | | No telemetry output | powered | Card would continue operating | Reset card. If necessary, switc | n
No effect. | N/a | 4 | Active | yes | Loss of telemetry | | | ? | None | | EP-1.2.1.c Locks up/resets 1) SEU reset, no telemetry output or Reset and If necessary, switch No effect. N/A 4 Active yes Loss of telemetry PSE to Company | | | | | 2) open circuit | but no telemetry output. | to side b. | | | | | | | neartbeat | Autonomy | | | | EP-1.2.1.c Locks up/resets 1) SEU reset, no telemetry output or Reset Card. If necessary, switch No effect. N/A 4 Active yes Loss of telemetry PSE to Company Compan | | | | | | | | | | | | | | | | | | | EP-1.2.1.c Locks up/resets 1) SEU reset, no telemetry output or Reset Card. If necessary, switch No effect. N/A 4 Active yes Loss of telemetry PSE to Company Compan | | | | | | | | | | | <u> </u> | | | | | | | | EP-1.2.1.c Locks up/resets 1) SEU reset, no telemetry output or Reset and If necessary, switch No effect. N/A 4 Active yes Loss of telemetry PSE to Company | | | | | | | | | | | | | | | | | | | EP-1.2.1.c Locks up/resets 1) SEU reset, no telemetry output or Reset Card. If necessary, switch No effect. N/A 4 Active yes Loss of telemetry PSE to Company Compan | | | | | | | | | | | | | | | | | | | EP-1.2.1.c Locks up/resets 1) SEU reset, no telemetry output or Reset Card. If necessary, switch No effect. N/A 4 Active yes Loss of telemetry PSE to Company Compan | | | | | | Card requires a commanded | December of 16 | | | | | | | DCE CMD /7:11 | DOE to CDIII | | | | nung telemetry. | EP-1.2.1.c | | | Locks up/resets | 1) SEU | reset, no telemetry output or | keset card. If necessary, switc
to side B. | No effect. | N/A | 4 | Active | yes | Loss of telemetry | | | ? | None | | | | | | | | nung telemetry. | | | | | | | | | • | <u> </u> | | | | | | ļ | EP-1.2.1.d Loss of ability to command (or open circuit in path) Loss of telemetry Loss of telemetry Loss of telemetry Cocide R. N/A 4 Active yes Loss of telemetry tel | | | | | | | Reset card. If necessary switc | n | | | | | | PSF CMD/TLM | PSE to CDH to | | | | EP-1.2.1.d Loss of ability to command (or open circuit in path) Loss of telemetry Lo | EP-1.2.1.d | | | Loss of ability to command | | Loss of telemetry | to side B. | No effect. | N/A | 4 | Active | yes | Loss of telemetry | | : | ? | None | | 14) IT ON Talls | | | | | L) II GA Idiis | ;
;
; | | | | | į | | | | | <u> </u> | | | | | | | | | | | Response | | | | | | Quick Look | | | |---------------------------------------|----------|--------------------------------------|----------------|------------------|---------------------------------|-------------|-------------------------|-------------------------|-------------------------|----------------------|--------------------|-------------------------|---|--------------------|------------------|-----------|--| | FMEA ID Name | Function | Failure Mode / Limit /
Constraint | Response Level | Desired Local | Allocation of
Local Response | Time to fix | Time to Transmit Signal | Time to Transmit Signal | Desired System Response | Allocation of System | Time to fix system | Time to Transmit Signal | | System Side Switch | Processor Switch | Safe Mode | Remediation | | | | Constraint | | Response | Local Response | locally | | | | Response | | | Contingency | | | | | | | | | | | | i | | Ö | | | | | | | | | Solar arrays would extend to increase | | Inputs | | Solar array power | None | | | voltage | | EP-1.1.3 Solar Array Junction Slice 2 | | | | | | | | | | | | | | | | | | | EP-1.1.4 Buck Converter Slice 1 of 4 | | | | | | | | | | | | | | | | | Can lose any 1 buck converter | | EP-1.1.4.a | | No output | None | None | None | None | ~1 sec | None | None | None | None | None | None | | | | | | | | | | Limit current on | | | | | | | | | | | | | | | EP-1.1.4.b | | Incorrect current | Local | buck converter | HW | ? | ~1 sec | None | None | None | None | None | None | | | | | | | | | | | | | | | | | | | Trending of EMC/EMI in | | | | Diamondo de Maria de Carlos Carlo | | EP-1.1.4.c | | Incorrect switching frequency | Local | PSE side switch | Ground | ? | ? | ? | None | None | None | None | instruments; ground would
need to isolate where issue | | | | Diagnose by turning each converter off
individually to see if it fixes problem. | | | | | | | | | | | | | | | is coming from, PSE side switch to clear problem | | | | Leave off the bad one. | | | | | | | | <u> </u> | | | | | | | Smerred cical production | Inputs | | Control signal from controller card | Local | PSE side switch | Autonomy | ? | ? | ? | None | None | None | None | ? | | | | Cycle power to controller card | | | | caru | If margin isn't sufficient, power cycle non-critical | | | | | | | | Solar array power from SAJB | None | None | Ground | ? | ? | ? | None | None | None | None | loads to reduce power | | | | | | 50.4.0 | | | | | | | | | | | | | needed by system | | | | | | EP-1.2 PSE-2
EP-1.2.1 CMD/TLM A | Do we want tiered | | | | | | | | | | | | | | | | | | | autonomy response where
we power cycle first and | | | | | | EP-1.2.1.a | | Hard failure | Local | PSE reset | Autonomy | ? | ~1 sec | ? | None | None | None | None | the PSE side switch? | | | | | | | | | | PSE side switch | , | | | | | | | | Or we can just side switch | | | | | | | | | | | | | | | | | | | and allow the ground
to try
to power cycle to "fix" | | | | | | | | | | | | | | | | | | | problem | Do we want tiered autonomy response where | | | | | | | | | | 205 | | | | | | | | | we power cycle first and | | | | | | EP-1.2.1.b | | No telemetry output | Local | PSE reset | Autonomy | ? | ~1 sec | ? | None | None | None | None | the PSE side switch? | | | | Reset card | | | | | | PSE side switch | | | | | | | | | Or we can just side switch
and allow the ground to try | , | | | | | | | | | | | | | | | | | | to power cycle to "fix" | | | | | | | | | | | | | | | | | | | problem | | | | | | | | | | | | | | | | | | | Do we want tiered autonomy response where | | | | | | | | | | DCE wood+ | | | | | | | | | we power cycle first and | | | | | | EP-1.2.1.c | | Locks up/resets | Local | PSE reset | Autonomy | ? | ~1 sec | ? | None | None | None | None | the PSE side switch? | | | | Reset card | | | | | | PSE side switch | | | | | | | | | Or we can just side switch
and allow the ground to try | , | | | | | | | | | | | | | | | | | | to power cycle to "fix" | | | | | | | | | | | | | | | | | | | problem | | | | | | | | | | | | | | | | | | | Do we want tiered autonomy response where | | | | | | | | | | DCE roast | | | | | | | | | we power cycle first and | | | | | | EP-1.2.1.d | | Loss of ability to command | Local | PSE reset | Autonomy | ? | ~1 sec | ? | None | None | None | None | the PSE side switch? | | | | Reset card | | | | | | PSE side switch | | | | | | | | | Or we can just side switch and allow the ground to try | , | | | | | | | | | | | | | | | | | | to power cycle to "fix" | | | | | | |] | | | <u> </u> | | <u>.</u> | <u>.</u> | <u> </u> | | | | | problem | | | | | | Inputs Solar array power EP-1.1.3 Solar Array Junction Slice 2 EP-1.1.4. EP-1.1.4.a Buck Converter Slice 1 of 4 EP-1.1.4.b Incorrect current Control signal from controller card Solar array power from SAJB EP-1.2 EP-1.2.1 CMD/TLM A EP-1.2.1.a Hard failure EP-1.2.1.b No telemetry output | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Revisit | |--|------------|------------------------------|----------|--------------------------------------|----------| | EP-1.1.3 Solar Array Junction Slice 2 EP-1.1.4 Bruck Converter Slice 1 of 4 EP-1.1.4.a No output EP-1.1.4.b Incorrect current EP-1.1.4.c Incorrect switching frequency Control signal from controller card Solar array power from SAJB EP-1.2 PSE-2 EP-1.2.1 CMD/TLM A EP-1.2.1.a Hard failure EP-1.2.1.b No telemetry output | | | | Solar array power | | | EP-1.14.a Buck Converter Slice 1 of 4 EP-1.14.b No output EP-1.14.c Incorrect current Inputs Control signal from controller card Solar array power from SAJB EP-1.2 PSE-2 EP-1.2.1 CMD/TLM A EP-1.2.1.a Hard failure EP-1.2.1.b No telemetry output | EP-1.1.3 | Solar Array Junction Slice 2 | | | <u> </u> | | EP-1.1.4.b Incorrect current EP-1.1.4.c Incorrect switching frequency Inputs Control signal from controller card Solar array power from SAIB EP-1.2.1 CMD/TLM A EP-1.2.1.a Hard failure EP-1.2.1.b No telemetry output | EP-1.1.4 | Buck Converter Slice 1 of 4 | <u></u> | | | | EP-1.1.4.c Incorrect current EP-1.1.4.c Incorrect switching frequency Inputs Control signal from controller card Solar array power from SAJB EP-1.2.1 CMD/TLM A EP-1.2.1.a Hard failure EP-1.2.1.b No telemetry output | | | | | | | Inputs Control signal from controller card Solar array power from SAJB EP-1.2 PSE-2 EP-1.2.1. CMD/TLM A EP-1.2.1.a Hard failure EP-1.2.1.b No telemetry output | EP-1.1.4.b | | | Incorrect current | | | EP-1.2 PSE-2 EP-1.2.1 CMD/TIM A EP-1.2.1.a Hard failure EP-1.2.1.b No telemetry output | EP-1.1.4.c | | | Incorrect switching frequency | | | EP-1.2.1 CMD/TLM A EP-1.2.1.a Hard failure EP-1.2.1.b No telemetry output | Inputs | | | | | | EP-1.2.1.a PSE-2 EP-1.2.1.a Hard failure EP-1.2.1.b No telemetry output | | | | | | | EP-1.2.1.a Hard failure EP-1.2.1.b No telemetry output | EP-1.2 | PSE-2 | | | | | | EP-1.2.1.a | | | Hard failure | | | EP-1.2.1.c Locks up/resets | EP-1.2.1.b | | | No telemetry output | | | | EP-1.2.1.c | | | Locks up/resets | | | EP-1.2.1.d Loss of ability to command | EP-1.2.1.d | | | Loss of ability to command | | Solar Probe Plus (SPP) Failure Modes and Effects Analysis (FMEA) EPS - 33 of 317 | Page | Detect Time to (Syste | |--|-----------------------| | Hands Interest to the property of the control th | | | AND CONTIAN AS IN SECURIOUS PROPERTY OF PROPERTY AND PROPERTY OF PROPERTY AND PROPERTY OF PROPERTY AND PROPER | None | | And the service of the control th | None | | AND COMPAND AND AND COMPAND AND AND COMPAND AND AND COMPAND AND AND COMPAND AND AND COMPAND COMPAN | None | | AND CONTRACT MATERIAL PROCESSION AND SHORT | None | | Part of the property pr | None | | Figure 1 of the control contr | | | FALS Controller A. Page Fatherer will be former under voltage offit property and states of the court | | | P-1.2.1 Controller A. P-1.2.2.a Controller A. P-1.2.2.a In an in a failure 1] Power input could be conserved in the provided personal failure of | | | Service A Committed A Committed A Committed A Committed Invest. Active Total Failure I | | | P-1.2.1 Controller A. P-1.2.2.a Controller A. P-1.2.2.a In an in a failure 1] Power input could be conserved in the provided personal failure of | | | P-1.2.1 Controller A. P-1.2.2.a Controller A. P-1.2.2.a In an in a failure 1] Power input could be conserved in the provided personal failure of | | | EP.1.2.2 Controller A Flare finiture I Power input could be perfect elementary from hos junction graph from SAU board Fig. 1.2.2 board in correct output I Segretary from hos junction graph from SAU board I Temestry from hos junction graph from SAU board I | | | FP.1.2.2 Controller A Pland failure 1] Power input could be experiment will change but the signal output to block converters
will stay at last commanded level. Attempt to registerments will change but the signal output to block converters will stay at last converters. Pl.1.2.2.b Incorrect output 1] Reference voltage drift 2] Still affects a register value 1] Reference voltage drift 2] Still affects a register value | 1 | | P-1.2.1 Controller A P-1.2.2 Controller A P-1.2.3 Controller A P-1.2.3 Controller A P-1.2.3 In a failure In a failure In Power input could be operated in large from the provided converters. In a failure In power input could be operated in large from the provided converters. In a failure In power input could be operated in large from the provided converters. In a failure In power input could be operated in large from the provided converters. In a failure In power input could be operated in large from the provided converters. In a failure In power input could be operated in large from the provided converter to under-obligate and would fail the power or under shapeing the battery of the provided converter to under-obligate and would fail the power or | None | | P-1.2.2.a land failure land land land land land land land land | | | P-1.2.2.a large failure large failure large from the period of the period of the period power will not mark to period for power will change, but have the period power will not mark to period power will not mark to provide of power will not mark to provide to power will not mark to provide power to power to power will not mark to provide power to t | | | P-1.2.2.a large failure large failure large from the period of the period of the period power will not mark to period for power will change, but have the period power will not mark to period power will not mark to provide of power will not mark to provide to power will not mark to provide power to power to power will not mark to provide power to t | | | P-1.2.2.a large failure large failure large failure large for each under each failure large for | | | 2-1.2.2.a land failure 1) Power input could be open/short power will not mark to depending on exact failure. Prest statics. Eventually load requirements. Will change, but provided pr | | | P-1.2.2.a lard failure oper/short 2) FGA fails register value 3) FGA fails register value 3) FGA fails register value 4. Active 4 FGA fails register value 4. Active 5 FGA telemetry recover under-thanging the battery over-turned residence from the span of the control | | | Hard failure open/short 2) FPGA fails open/sho | | | P-1.2.2.b Incorrect output 1) Reference voltage drift 2) SEU affects a register value See over/under charge in charging the battery of with sides of Avionics. No effect. N/A 4 Active Ves See battery over-current or under-current Sacurrent, Buck converter output 1) Reference voltage drift 2) SEU affects a register value Signal from card would be incorrect. Signal from card would be incorrect. N/A 4 Active Ves See battery See battery See to EDH 7 7 7 7 7 7 7 7 7 | ? | | FP.1.2.2.b Incorrect output 1) Reference voltage dirft 2) SEU affects a register value 2 Signal from card would be incorrect. Signal from card would be incorrect. Signal from card would be incorrect. Lose FPGA telemetry (depending on exact failure). No effect. ef | | | P-1.2.2.b Incorrect output 1) Reference voltage drift 2) SEU affects a register value 2) SEU affects a register value 2) SEU affects a register value 3) Reference voltage drift 2) SEU affects a register value 3) See over/under charge in telemetry and reset slice. Autonomy will direct PDU to switch to side B 3. See battery over/under charge in telemetry and reset slice. Autonomy will direct PDU to switch to side B 3. See battery over/under charge in telemetry. Set to CDH 4. Active 3) See battery over/under charge in telemetry. Set to CDH 4. Active 3) See battery over/under charge in telemetry. Set to CDH 4. Active 3) See battery over/under charge in telemetry. Set to CDH 4. Active 3) See battery over/under charge in telemetry. Set to CDH 4. Active 3) See battery over/under charge in telemetry. Set to CDH 4. Active 3) See battery over/under charge in telemetry. Set to CDH 4. Active 3) See battery over/under charge in telemetry. Set to CDH 4. Active 3) See battery over/under charge in telemetry. Set to CDH 4. Active 3) See battery over/under charge in telemetry. Set to CDH 4. Active 3) See battery over/under charge in telemetry. Set to CDH 4. Active 3) See battery over/under charge in telemetry. Set to CDH 4. Active 3) See battery over/under charge in telemetry. Set to CDH 4. Active 3) See battery over/under charge in telemetry and sever the switch is side. Set to CDH 5. Active 3) See battery over/under charge in telemetry and switch 3) See battery over/under charge in telemetry and switch 3) See battery over/under charge in telemetry and switch 3) See battery over/under charge in telemetry and switch 3) See battery over/under charge in telemetry and switch 3) See battery over/under charge in telemetry and switch 3) See battery over/under charge in telemetry and switch 3) See battery over/under charge in telemetry and switch 3) See battery over/under charge in telemetry and switch 3) See battery over/under charge in telemetry and switch 3) See battery over/under charge in telemetry and switch 3) See battery over/u | | | P-1.2.2.b Incorrect output 1) Reference voltage drift 2) SEU affects a register value 1. Will either be over- or under-charging the battery charging bat | | | P-1.2.1.b Incorrect output 2) SEU affects a register value Charging the battery Autonomy will direct PDU to switch to side B Could cause buck converter to switch to side B Could cause buck converter to either over or under-current. Autonomy would see battery board Felemetry from bus junction slice and/or Cmd/Tlm interface, or signal from SAJ board Felemetry from bus junction slice and/or Cmd/Tlm interface, or signal from SAJ board Felemetry from bus junction slice and/or Cmd/Tlm interface, or signal from SAJ board Felemetry from bus junction slice and/or Cmd/Tlm interface, or signal from SAJ board Felemetry from bus junction slice and/or Cmd/Tlm interface, or signal from SAJ board Felemetry from bus for over-current interface, or signal from SAJ board Felemetry from bus for over-current interface, or signal from SAJ board Felemetry from bus for over-current interface, or signal from SAJ board Felemetry from bus for over-current interface, or signal from SAJ board Felemetry from bus for over-current interface, or signal from SAJ board Felemetry from bus for over-current interface, or signal from SAJ board Felemetry from bus for over-current interface, or signal from SAJ board Felemetry from bus for over-current interface, or signal from SAJ board Felemetry from bus for over-current interface, or signal from SAJ board Felemetry from bus for over-current interface, or signal from SAJ board Felemetry from bus for over-current interface, or signal from SAJ board Felemetry from bus for over-current interface, or signal from SAJ board Felemetry from bus for over-current interface, or signal from SAJ board Felemetry from bus for over-current interface, or signal from SAJ board Felemetry from bus for over-current interface, or signal from SAJ board Felemetry from bus for over-current interface, or signal from SAJ board Felemetry from bus for over-current interface, or signal from SAJ board Felemetry from bus for over-current interface, or signal from SAJ boar | | | switch to side B Telemetry from bus junction slice and/or Cmd/Tim interface, or signal from SAI board LVPS LVPS Telemetry from bus junction slice and/or Cmd/Tim interface, or signal from SAI board LVPS Telemetry from bus junction slice and/or Cmd/Tim interface, or signal from SAI board LVPS LVPS Telemetry from bus junction slice and/or Cmd/Tim interface, or signal from SAI board LVPS LVPS Telemetry from bus junction slice and/or Cmd/Tim interface, or signal from SAI board LVPS LVPS LVPS Telemetry indicates 0 buck converter will go to 0 output. Attempt to reset slice. Autonomy will see 0 output from buck converters and direct PDU to switch to side B. addieved | ? | | Felemetry from bus junction slice and/or Cmd/Tlm interface, or signal from SAJ board LVPS Felemetry from bus junction slice and/or Cmd/Tlm interface, or signal from SAJ board Signal from card would be incorrect. Signal from card would be incorrect. Signal from card would be incorrect. Autonomy would see battery over-current or under-voltage and would direct PDU to switch to other side of PSE. Buck converters will go to 0 output. Attempt to reset slice. No signal output to buck from buck converters and direct PDU to switch to side B. Na Active ves battery over-current back or under-voltage or under-voltage or under-voltage and would direct PDU to switch. SA current, Buck converter current? Autonomy will see of PSE to CDH to output. Attempt to reset slice. No effect. No signal from card would be interface, or signal from SAJ board or under-voltage and would direct PDU to switch to side B. No effect with side switch. e | | | Telemetry from bus junction slice and/or Cmd/Tlm interface, or signal from SAJ board Lose FPGA telemetry (depending on exact failure). No signal output to busk converters and direct PDU to switch to side B. Lose FPGA telemetry (depending on exact failure). No signal output to busk converters and direct PDU to switch to side B. Lose FPGA telemetry (depending on exact failure). No signal output to busk converters and direct PDU to switch to side B. | | | interface, or signal from SAJ board interface, or signal from SAJ board interface, or signal from SAJ board incorrect. over-current or under-voltage and would direct PDU to switch to other side of PSE. LVPS LVPS LVPS LVPS LVPS LVPS interface, or signal from SAJ board incorrect. over-current or under-voltage and would direct PDU to switch. to other side of PSE. Buck converters will go to 0 output. Attempt to reset slice. Autonomy will see 0 output from buck converters and direct PDU to switch to side B. No
effect. No effect. N/A 4 Active ves or under-voltage converter or under-voltage and would great pour pour pour pour pour pour pour pour | | | incorrect. over-current or under-voltage and would direct PDU to switch to other side of PSE. LVPS L | 2 | | LVPS LOSE FPGA telemetry (depending on exact failure). No signal output to buck from buck converters and converters. Autonomy will see 0 output from buck converters and direct PDU to switch to side B. No effect. | | | LVPS Buck converters will go to 0 output. Attempt to reset slice. (depending on exact failure). No signal output to buck converters and converters. No effect. | | | LVPS LVPS LVPS LOSE FPGA telemetry (depending on exact failure). No signal output to buck from buck converters and converters. LOSE FPGA telemetry output. Attempt to reset slice. Autonomy will see 0 output from buck converters and converters and converters. No effect. effe | | | LVPS (depending on exact failure). No signal output to buck from buck converters and converters. direct PDU to switch to side B. | | | No signal output to buck from buck converters and converters. No signal output to buck from buck converters and converters. direct PDU to switch to side B. | | | converters. direct PDU to switch to side B. | ? | | Battery will discharge. | | | | | | P-123 IUFSA | | | No telemetry; Autonomy | | | would see no power to LVPS or | | | P-1.2.3.a No output Open circuit FET Loss of power to controller and no telemetry or incorrect No effect. N/A 2R Active Yes Loss of telemetry VPS current or PSE to CDH to ? | ? | | command/telemetry voltage someplace and would direct PDU to switch to command/telemetry co | | | redundant side | | | | | | Telemetry indicates Reference voltage circuit Drift in voltage, erratic Drift in voltage, erratic Drift in voltage, erratic Drift in voltage, erratic | | | P-1.2.3.b Incorrect output fereince voltage circuit point in voltage, erratic profit errat | ? | | telemetry voltage? | | | | | | No telemetry; Autonomy | | | would see no power to LVPS or Loss of power to controller and no telemetry or incorrect LVPS current or c | | | Puputs Bus voltage from PDU command/telemetry voltage someplace and would some place and would command/telemetry voltage someplace and would some place | 2 | | direct PDU to switch to | ľ | | redundant side redundant side | , | | P-1.24 CMD/TLM B | ŕ | | P-1.2.5 Controller B P-1.2.6 LVPS B | | | P-1.Z.b iLVPS B P-2 Li-lon Battery | | | | | | 20 parallel strings of 8 cells | | | P-2.1 Cell 1 of n each, could lose any 1 string of a cells cells. | | | | | | | | | | | | | | | | | | Quick Look | | · | |--|----------|---|----------------|-------------------|----------------|-------------|-------------------------|-------------------------|-----------------------------------|----------------------|--------------------|-------------------------|---|--------------------|------------------|-----------|-----------------------------------| | FMEA ID Name | Function | Failure Mode / Limit / | Response Level | Desired Local | Allocation of | Time to fix | Time to Transmit Signal | Time to Transmit Signal | Response Desired System Response | Allocation of System | Time to fix system | Time to Transmit Signal | Ground Response / | System Side Switch | Processor Switch | Safe Mode | Remediation | | | | Constraint | | Response | Local Response | locally | | | | Response | | | Contingency | | | | | | | | | | ļ | | | · | | | | | · | · | | | | | | | | | | | | | | | | | | | Do we want tiered | | | | | | | | | | | | | | | | | | | autonomy response where
we power cycle first and | | | | | | | | | | PSE reset | | | | | | | | | the PSE side switch? | | | | | | Inputs | | LVPS | Local | | Autonomy | ? | ~1 sec | ? | None | None | None | None | | | | | | | | | | | PSE side switch | | | | | | | | | Or we can just side switch
and allow the ground to try | , | | | | | | | | | | | | | | | | | | to power cycle to "fix" | | | | | | | | | | | | | | | | | | | problem | | | | | | | | | | | | | | | | | | | Do we want tiered | | | | | | | | | | | | | | | | | | | autonomy response where | | | | | | | | | | DCE rocot | | | | | | | | | we power cycle first and
the PSE side switch? | | | | | | | | REM commands | Local | PSE reset | Autonomy | ? | ~1 sec | ? | None | None | None | None | the PSE side Switch? | | | | Reset card | | | | | | PSE side switch | | | | | | | | | Or we can just side switch | | | | | | | | | | | | | | | | | | | and allow the ground to try
to power cycle to "fix" | 1 | | | | | | | | | | | | | | | | | | problem | | | | | | EP-1.2.2 Controller A | · | | | | | | | | | | | | | | | | Reset Controller | \ | | | | | | | | | | | | | | | | | | slice? | | | | | Load shed / system side | | | | | | | | Might combine some functions with | | EP-1.2.2.a | | Hard failure | Local / System | (Not sure how to | Autonomy | ? | ? | ? | switch | Autonomy / HW? | ? | ? | ? | X | | x | CMD/TLM slice | | | | | | compare power v | S
v | | | | | | | | | | | | | | | | | | load requirement |) | EP-1.2.2.b | | Incorrect output | Local | PSE side switch | Autonomy | ? | ? | ? | None | None | None | None | ? | Telemetry from bus junction | | | | | | | | | | | | | | | | | Inputs | | slice and/or Cmd/Tlm | Local | PSE side switch | Autonomy | ? | ? | ? | None | None | None | None | ? | | | | CMD/TLM slice reset | | pacs | | interface, or signal from SAJ | 2000. | i de side switeri | raconomy | • | | | | | | | | | | | on b, rem since resec | | | | board | | | | | | | | | | | | | | | | | | - | <u> </u> | | | | | | | | | | | | | | | Might combine some functions with | | | | LVPS | Local | PSE side switch | Autonomy | ? | , | <i>?</i> | None | None | None | None | ? | | | | CMD/TLM slice | 50 4 2 2 UVDC 4 | | | | | | | | | | | | | | | | | | | EP-1.2.3 LVPS A | FD 1330 | | No outout | Local | DCF aidait-d | Autonom | 2 | 2 | | None | None | None | None | 2 | | | | | | EP-1.2.3.a | | No output | Local | PSE side switch | Autonomy | r | r | r | None | None | None | None | f | EP-1.2.3.b | | Incorrect output | Local | PSE side switch | Autonomy | ? | ? | ? | None | None | None | None | ? | - | | - | Inputs | | Rus voltage from DDII | Local | PSE side switch | Autonomy | 2 | 7 | 2 | None | None | None | None | 2 | | | | | | Inputs | | Bus voltage from PDU | LUCAI | r at Side SWILLI | Autonomy | • | • | • | Notice | Note | None | None | <u>'</u> | ED 1.2.4 CAAD/TIM D | | | ļ | | ļ | | | | | | | | | | | | | | EP-1.2.4 CMD/TLM B EP-1.2.5 Controller B | | | | | | | | | | | | | | | | | | | EP-1.2.6 LVPS B | | | | | | | | | | | | | | | | | | | EP-2 Li-Ion Battery | | 30 | | | | | | | | | | | | | | | | | EP-2.1 Cell 1 of n | | 20 parallel strings of 8 cells each, could lose any 1 string of | F | | | | | | | | | | | | | | | | 2. 2.1 | | cells. | | | | | | | | | | | | | | | | | | | <u> </u> | | | | i | .i | ł | | | | | .t | | il | | | | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Revisit | |------------|-------------------------------|--------------|---|---------| | Inputs | | | LVPS | | | | | | REM commands | | | EP-1.2.2 | Controller A | | | | | EP-1.2.2.a | | | Hard failure | | | EP-1.2.2.b | | | Incorrect output | | | Inputs | | | Telemetry from bus junction
slice and/or Cmd/Tlm
interface, or signal from SAJ
board | | | | | | LVPS | | | EP-1.2.3 | LVPS A | ¢ | | | | EP-1.2.3.a | | | No output | | | EP-1.2.3.b | | | Incorrect output | | | Inputs | | | Bus voltage from PDU | | | EP-1.2.4 | CMD/TLM B | | | | | EP-1.2.5 | CMD/TLM B Controller B LVPS B | | | | | EP-1.2.6 | LVPS B | | | | | EP-2 | Li-Ion Battery | <u> </u>
 | 20 parallal strings of 9 colls | | | EP-2.1 | Cell 1 of n | | 20 parallel strings of 8 cells
each, could lose any 1 string of
cells. | | Solar Probe Plus (SPP) Failure Modes and Effects Analysis (FMEA) EPS - 36 of 317 | | · | = | : | | | Effec | | | | | | | Detection Me | | | | |----------------------------|-------------------------------|--------------------------------------|--------------------------------------|----------|--|--|------------|-----------------|----------|------------|--|--|---------------------|---------------------------|---------------------------|----------------------------| | FMEA ID | Name Function | Failure Mode / Limit /
Constraint | Possible Causes | Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Tlm for Diagnosis | Tlm Path for
Diagnosis | Time to Detect
(Local) | Time to Detect
(System) | | | | | | | | | | | | | | | | _ | | | | EP-2.1.a | | Short | Separator short
circuit | | Slight reduction in battery capacity, temporary hot spot | Slight reduction in battery
storage capacity | No effect. | N/A | 4 | None | | Long-term battery
trending | Battery voltage | PSE to CDH | ? | ? | | EP-2.1.b | | Open | Open interconnect | | | Slight reduction in battery
storage capacity | No effect. | N/A | 4 | None | | Long-term battery
trending | Battery voltage | PSE to CDH | ? | ? | | EP-2.1.c | | High Impedance | Excessive degradation | | | Slight reduction in battery
storage capacity | No effect. | N/A | 4 | None | | Long-term battery
trending | Battery voltage | PSE to CDH | ? | ? | | Inputs | | Current from bus junction slice | | | Battery would discharge and | Bus voltage would decrease | No effect | N/A | 4 | None | | Battery current | Battery current and | PSE to CDH | ? | ? | | EP-3 | Color Associa | | | | voltage would decrease | | | | | ļ | | telemetry | voltage? | | | | | | Solar Arrays
Solar Array 1 | | | | | | | | | ļ | <u>. </u> | | | | | | | EP-3.1.1 | Primary Array | | | ļ | | | | | | ļ | | | | | | | | EP-3.1.1.1
EP-3.1.1.1.a | Strings | Short to ground | Insulator breakdown | | | Reduction in power margin;
system is designed to
accommodate this | No effect. | N/A | 4 | None | Yes | Telemetry will
indicate lower output
current | SA current | PSE to CDH | ? | ? | | EP-3.1.1.1.b | | Open | Cracked cell or open
interconnect | | Reduction in S/A output
current | Reduction in power margin;
system is designed to
accommodate this | No effect. | N/A | 4 | None | Yes | Telemetry will
indicate lower output
current | SA current | PSE to CDH | ? | ? | | : | Cells (with bypass diodes) | | | <u> </u> | | | | | | | Not likely; loss of | | | | | | | EP-3.1.1.1.1.a | | Short | Shorted diode | ļ | Small loss in power | Negliglble effect | No effect. | N/A | 4 | None | power is too small | N/A | None | None | None | None | | EP-3.1.1.1.1.b | | Open | Cracked cell | | Bypass diode will conduct,
leading to small loss in power | Negliglble effect | No effect. | N/A | 4 | None | Not likely; loss of power is too small | N/A | None | None | None | None | | | Secondary Array | | | ļ | | | | | | ļ | | | | | | | | EP-3.1.2.1 EP-3.1.2.1.a | Strings | Short to ground | Insulator breakdown | | Reduction in S/A output
current | First, reduction in power margin; then, extend wings farther to compensate if close to sun; system is designed to accommodate this. Could cause EMI effects by connecting current loop (no remediation). | No effect. | N/A | 4 | None | Yes | First, telemetry will
indicate lower output
current; then, lower
S/A flap angle to
compensate if close
to sun | SA current | PSE to CDH | ? | ? | | EP-3.1.2.1.b | | Open | Cracked cell or open
Interconnect | | Reduction in S/A output
current | First, reduction in power
margin; then, extend wings
farther to compensate if close
to sun; system is designed to
accommodate this | No effect. | N/A | 4 | None | Yes | First, telemetry will
indicate lower output
current; then, lower
S/A flap angle to
compensate if close
to sun | SA current | PSE to CDH | ? | ? | | | Cells (with bypass diodes) | | | ļ | | | | | | ļ | Not likoly, less of | | | | | | | EP-3.1.2.1.1.a | | Short | Shorted diode | <u> </u> | Small loss in power | Negliglble effect | No effect. | N/A | 4 | None | Not likely; loss of
power is too small | N/A | None | None | None | None | | | | | | | | | | | Response | | | | | | Quick Look | | | |--|----------|---------------------------------|----------------|----------|----------------|-------------|---|-------------------------|-------------------------|----------|--------------------|-------------------------|--|--------------------|------------------|-----------|--| | FMEA ID Name | Function | Failure Mode / Limit / | Response Level | | | Time to fix | Time to Transmit Signal | Time to Transmit Signal | Desired System Response | | Time to fix system | Time to Transmit Signal | | System Side Switch | Processor Switch | Safe Mode | Remediation | | | | Constraint | | Response | Local Response | locally | | | | Response | | | Contingency | EP-2.1.a | | Short | None | None | None | ? | Noticible with long-term
(weeks) of battery trending | ? | None | None | Nne | None | Ground performs long-
term trending on battery;
no response since this is
not fixable Would any power cycling
need to be done to
conserve powering during | | | | | | | | | | | | | | | | | | | certain parts of orbit? Ground performs long- | | | | | | EP-2.1.b | | Open | None | None | None | ? | Noticible with long-term
(weeks) of battery trending | ? | None | None | Nne | None | term trending on battery;
no response since this is
not fixable
Would any power cycling
need to be done to
conserve powering during
certain parts of orbit? | | | | | | EP-2.1.c | | High Impedance | None | None | None | } | Noticible with long-term
(weeks) of battery trending | ? | None | None | Nne | None | Ground performs long-
term trending on battery;
no response since this is
not fixable Would any power cycling
need to be done to
conserve powering during
certain parts of orbit? | Depends on root cause; switching PSE | | Inputs | | Current from bus junction slice | e None | None | None | ? | | ? | None | None | Nne | None | | | | | sides should resolve an issue internal to
the EPS | | EP-3 Solar Arrays | | | | | | | | | | | | | | | | | | | EP-3.1 Solar Array 1 EP-3.1.1 Primary Array | <u> </u> | | | | i | <u> </u> | | | | | | | | | | | | | EP-3.1.1.1 Strings | | | | | | | | | | | | | | | | | | | EP-3.1.1.1.a | | Short to ground | None | None | None | ? | If far from sun, could see
reduction in current as fast
as 1 sec; if close to sun,
may have to wait until
primary S/A receives
sufficient illumination | ? | None | None | Nne | None | Ground performs trending
on SA power generation;
no response since this is
not fixable? | 3 | | | | | EP-3.1.1.1.b EP-3.1.1.1.1 Cells (with bypass diodes) | | Open | None | None | None | ? | If far from sun, could see
reduction in current as fast
as 1 sec; if close to sun,
may have to wait until
primary S/A receives
sufficient illumination | ? | None | None | Nne | None | Ground performs trending on SA power generation; no response since this is not fixable? | 3 | | | | | EP-3.1.1.1.1 (Cens (With Dypass Glodes) | | Short | None | EP-3.1.1.1.1.b EP-3.1.2 Secondary Array | | Open | None | | | | | EP-3.1.2.1 Strings | | | | | | <u> </u> | | | | | | | | | | | | | EP-3.1.2.1.a | | Short to ground | None | None | None | ? | 1 sec to see reduction in
S/A current; then, several
minutes to see S/A flap
angle decrease to
compensate if close to sun. | ? | None | None | Nne | None | Ground performs trending
on SA power generation;
no response since this is
not fixable? | | | | Type of insulation means this is very unlikely. | | | | 0 | Nana | | None | ? | 2 sec to see reduction in
S/A current; then, several
minutes to see S/A flap | ? | None | None | Nne | None | Ground performs trending on SA power generation; no response since this is | 3 | | | | | EP-3.1.2.1.b | | Open | None | None | None | | angle decrease to compensate if close to sun. | | | | | | not fixable? | | | | | | EP-3.1.2.1.1 Cells (with bypass diodes) EP-3.1.2.1.1 a | | Short | None | None | None | None | | None | None | None | None | None | | | | | | | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Revisit | |------------------------------|----------------------------|----------|--------------------------------------|---------| | EP-2:1.a | | | Short | | | EP-2.1.b | | | Open | | | EP-2.1.c | | | High Impedance | | | nputs | | | Current from bus junction slice | | | P-3 | Solar Arrays | | | | | P-3.1 | Solar Array 1 | | | | | EP-3.1.1
EP-3.1.1.1 | Primary Array
Strings | | | | | EP-3.1.1.1.a | Strings | | Short to ground | | | EP-3.1.1.1.b | | | Open | | | r-3.1.1.1.1 | Cells (with bypass diodes) | | | | | EP-3.1.1.1.1.a | | | Short | | | EP-3.1.1.1.b | Secondary Array | | Open | | | P-3.1.2.1 | Strings | | | | | EP-3.1.2.1.a | | | Short to ground | | | EP-3.1.2.1.b
EP-3.1.2.1.1 | | | Open | | | | di | | | | | EP-3.1.2.1.1.a | | | Short | | Solar Probe Plus (SPP) Failure Modes and Effects Analysis (FMEA) EPS - 39 of 317 | | | | | | | | Effec | t | | | | | | Detection N | ethod | | | |------------------------|--------------------|----------|---------------------------|--|-------|--|---|---|-----------------|----------|---------|--|-----------------------|-------------------|---------------------------|----------------|----------| | FMEA ID | Name | Function | Failure Mode / Limit / | Possible Causes | Phase | Local | Next Higher | Mission | Umbra Violation | Severity |
Type of | Observable | How Observed? | Tlm for Diagnosis | Tlm Path for | Time to Detect | | | | | | Constraint | | | | | | | | FM | | | | Diagnosis | (Local) | (System) | | EP-3.1.2.1.1.b | | | Open | Cracked cell | | Bypass diode will conduct,
leading to small loss in power;
may be local hot spot | Negliglble effect | No effect. | N/A | 4 | None | Not likely; loss of power is too small | N/A | None | None | None | None | | EP-3.1.2.2 | Sensor Cell (8) | | | | | | | | | | | | | | | | | | EP-3.1.2.2.a | | | No output | Cracked cell or broken wire | | | Use redundant sensor cell (no side switching is required) | No effect. | N/A | 4 | Active | Yes | Telemetry | Sensor Cell Tlm | PSE to CDH to
Autonomy | ? | None | | EP-3.1.2.2.b | | | Incorrect output | Cracked cell Excessive darkening (should affect all cells equally) | | telemetry for one sensor cell
(used for fault protection and
calibration). Would likely only
decrease output, not trip safing | autonomy parameters based | No effect. | N/A | 4 | Active | Yes | Telemetry | Sensor Cell Tlm | PSE to CDH to
Autonomy | 3 | None | | EP-3.1.2.2.c | | | Debond failure | | | Solar array temperature would increase | | Question concerning
number of sensors
required, talking to
Danielle. | N/A | 4 | | | | | | | | | Inputs | Solar illumination | | Reduction in illumination | | | Reduction in S/A output
current | Battery will discharge. May
need to change parameters
(caught on ground by trending
analysis). Could mean arrays
are out further (impacts to
time required to safe arrays) | No effect | N/A | 4 | Active | Yes | S/A current telemetry | SA current | PSE to CDH to
Autonomy | ? | ? | | EP-3.2 | Solar Array 2 | | | · | | | | | | | | | | | | | | | EP-3.2.1
EP-3.2.1.1 | Primary Array | | | | | | | | | | ļ | | | | | | | | | Strings
Cells | | | ļ | | | | | | | ļ | | | | | | | | EP-3.2.2 | Secondary Array | | | | | | | | | | 1 | | | | | | | | EP-3.2.2.1 | Strings | | | | | | | | | | | | | | | | | | EP-3.2.2.1.1 | Cells | | | | | | lovalid stale or mission | | | | ļ | | | | | | | | EP-4 | Connect Relays | | | | | | Invalid, stale, or missing
battery telemetry would
require controller switch. | None | N/A | 4 | | | | | | | | | EP-5 | Heaters | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | - | | | | | | | | - | |------------------------|--|----------|--------------------------------------|----------------|---------------------------------------|---------------------------------|------------------------|-------------------------|-------------------------|--|----------------------------------|--------------------|-------------------------|----------------------------------|--------------------|--------------------------------|-----------|---| | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Response Level | Desired Local
Response | Allocation of
Local Response | Time to fix
locally | Time to Transmit Signal | Time to Transmit Signal | Response Desired System Response | Allocation of System
Response | Time to fix system | Time to Transmit Signal | Ground Response /
Contingency | System Side Switch | Quick Look
Processor Switch | Safe Mode | Remediation | | EP-3.1.2.1.1.b | | | Open |
None | None | | | | | EP-3.1.2.2 | Sensor Cell (8) | | | | | | | | | | | | | | | | | | | EP-3.1.2.2.a | | | No output | Local | Use redundant
measurements
only | Autonomy | ? | ~1 sec | ? | None | None | Nne | None | None | | | | | | EP-3.1.2.2.b | | | Incorrect output | Local | Use redundant
measurements
only | Autonomy | ? | ~1 sec | ? | None | None | Nne | None | None | | | | | | EP-3.1.2.2.c | | | Debond failure | | | | | | | | | | | | | | | | | Inputs | Solar illumination | | Reduction in illumination | System | None | None | None | ? | ? | Load shed, system side
switch (LBSOC) | Autonomy / HW? | ? | ? | ? | x | x | v | Depends on root cause; likely requires action to hardware beyond EPS (e.g., avionics processor to correct S/A pointing error) | | EP-3.2.1
EP-3.2.1.1 | Solar Array 2
Primary Array
Strings | | | | | | | | | | | | | | | | | | | EP-3.2.2
EP-3.2.2.1 | Cells
Secondary Array
Strings
Cells | | | | | | | | | | | | | | | | | | | EP-4 | Connect Relays | | | | | | | | | | | | | | | | | | | EP-5 | Heaters | | | Ì | | | <u> </u> | | | | | | | | | | | | | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Revisit | |--------------------|--------------------|--|--------------------------------------|---------| | | | | | | | EP-3.1.2.1.1.b | | | Open | | | EP-3.1.2.2 | Sensor Cell (8) | | | | | EP-3.1.2.2.a | | | No output | | | EP-3.1.2.2.b | | | Incorrect output | | | EP-3.1.2.2.c | | | Debond failure | | | Inputs | Solar illumination | | Reduction in illumination | | | EP-3.2 | Solar Array 2 | | | | | EP-3.2
EP-3.2.1 | Primary Array | | | | | FP-3.2.1.1 | Strings | | | | | | Cells | | | | | EP-3.2.1.1.1 | | | | | | EP-3.2.2 | Secondary Array | | | | | EP-3.2.2.1 | Strings | | | | | EP-3.2.2.1.1 | Cells | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | EP-4 | Connect Relays | | | х | | EP-5 | Heaters | | | Х | Solar Probe Plus (SPP) Failure Modes and Effects Analysis (FMEA) EPS - 42 of 317 Subject Matter Kenny Newsome Expert(s): Notes: Yellow highlighted blocks are redundant components. Components are listed for completeness, but failure mode and FMEA information is only displayed in the first copy of the component. | ECU-1 ECU ECU-1.1 ECU Side A ECU-1.1.1 Control and S | | Failure Mode / Limit / Constraint | Possible Causes Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Tlm for Diagnosis | Tlm Path for
Diagnosis | Time to Detect (Local) | Time to Detect
(System) | |--|---------------|---------------------------------------|--|---|---|--|--|--|------------|------------|---|--|---------------------------|------------------------|----------------------------| | ECU-1.1 ECU Side A | | | | | | | | | | | : | | Diagnosis | | | | | | | i | į | | | | | | | | | | | (System) | | ECO-1.1.1 Control and 3 | Status Sido A | | | | | | | | | | | | | | | | ECU-1.1.1.a | 30033000 | | Circuitry Failure - FPGA, ASIC,
etc | Complete Loss of Control and
Status ability on ECU Side | switch to redundant ECU side | Switch to Redundant Side ECU Impact to Fault: Management: If Side A fails, we will no longer be able to handle position mis-match faults in same manner - where redundant side potentiometers are used as "third vote" | no effect | 2R | Active | yes | Loss of Status
Telemetry | ECU Aliveness | ECU to REM | ? | ? | | ECU-1.1.1.b | | Inability to execute control commands | 1) Command UART Failure
(receiver)
2) Command UART Fault
(receiver)
3) Harness Fault | Unable to execute any ECU Control Commands: 1) Fails to step motor actuator when commanded (Flap, Feather, HGA) 2) Fails to return status telemetry 3) Fails to cancel step in progress when commanded 4) Fails to set cumulative step count (re-initialize) when | Autonomy should command
switch to redundant ECU side
and should set flag indicating
ECU Fault/Failure. | | Cause temporary loss of ECU side functionality for TBD seconds | 2R | Active | yes | 1) Observe commands
not executed
2) Loss of Status
Telemetry (Send
Telemetry command
not executed) | telemetry ; ECU step
count telemetry;
redundant ECU | ECU to REM | ? | ? | | ECU-1.1.1.c | | Inability to send status telemetry | 1) Telemetry UART Failure
(driver)
2) Telemetry UART Fault
(driver)
3) Harness Fault | Unable to transmit any ECU
status telemetry | Autonomy should command switch to redundant ECU side and should set flag indicating ECU Fault/Failure. | no effect | no effect | 2R - if ECU is non
recoverable
4 - if ECU can
recover | Active | yes | Loss of Status
Telemetry | ECU Aliveness | ECU to REM | ? | ? | | ECU-1.1.1.d | | Hung (repeating a command) | | actuation. | Autonomy recognizes that actuator continues beyond expected value and switches sides of ECU. | | If not caught quickly enough
during encounter. | 2R - if ECU is non
recoverable
4 - if ECU can
recover | Active | yes | Motion of actuator
continues beyond
expected value | Potentiometer
telemetry; ECU step
count telemetry;
redundant ECU
telemetry | ECU to REM | ? | ? | | ECU-1.1.1.e | | Hung/Locked up state (not commanding) | SEU | Command/Telemetry hung and
unresponsive | Autonomy should command switch to redundant ECU side and should set flag indicating ECU Fault. | no effect | Cause temporary loss of
ECU
side functionality for TBD
seconds | 2R - if ECU is non
recoverable
4 - if ECU can
recover | Active | yes | 2) Loss of Status | telemetry ; ECU step
count telemetry;
redundant ECU | ECU to REM | 2 | ? | Subject Matter Expert(s): Kenny Newsome Notes: Yellow highlighted blocks are redundant components. Components are listed for completeness, but failure mode and FMEA information is only displayed in the first copy of the component. | Marcin M | | | information is only displayed | in the first copy of the component. | | | | | | Response | | | | | | Quick Look | | | | |--|--------------|-----------------------------|-------------------------------|---------------------------------------|----------------|-----------------------|---------------------|-------------|--------------|----------|----------------------|--------------------|------------------|-------------------|--------------------|------------|-----------|---|----------| | No. | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Response Level | Desired Local | Allocation of Local | Time to fix | | | Allocation of System | Time to fix system | Time to Transmit | Ground Response / | System Side Switch | | Safe Mode | Remediation | Revisit | (| ¢ | | | | | | ļ | | | | ç | | ,
,, | | | | | | | | | | | | | ļ | · • | | | | ļ | | | ļ | | | | | | 2014.1 | ECU-1.1.1 | CONTROL BIRD STREETS SIDE A | | · | <u> </u> | | ļ | · • | | | | · | | | ļ | | ļ | · | · | | Column C | State Stat | Registration of the control c | Part | Part | Harmonic Registration of the control | | | | | | otherwise system side | | | | | | | | | | | | | | | Residual | FCII 4 4 4 - | | | Used Salves | Laral | | | 2 | 2 | Mana | Name | Name | Nama | Ness | | | | Control to an douglant ECU std. | | | Californ | ECU-1.1.1.a | | | Hard Fallure | Local | | Autonomy | ľ | f | None | None | None | None | None | | | | Switch to redundant ECO side | | | Californ | | | | | | Mould this same | | | | | | | | | | | | | | | Result R | Record R | Maria | Part | | | | | | | | · | | | | ļ | | | ļ | | | | | | Harding and the second | Hall have been been been been been been been be | Hard I all the second of s | Col. | | | | | | | | | | | | | | | | | | Switch to redundant ECLI side (nower cycle will | | | Author A | ECU-1.1.1.b | | | Inability to execute control commands | Local | | Autonomy | ? | ? | None | None | None | None | None | | | | | | | INCULLE CONTROL TO THE PROPERTY OF PROPERY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY | | | | | | is correct power off | , | | | | | | | | | | | | | | CU-11.2 | Figure from the control of contr | FOLILIE FOLILIE FOR COLUMN TO SERVICE STAND ST | FOLILIE FOLILIE FOR COLUMN TO SERVICE STAND ST | | | | | | | | <u> </u> | <u> </u> | | | <u> </u> | <u></u> | | ļ | | | | <u> </u> | | EQUILITE Intelligence of the content conten | | | | | | If potentiometer and | | | | | | | | | | | | | | | ECULILE RECULLILE Recording Country and database believed by the recording a columns with the recording and t | FEU 1.1.1.2 Parallel | | | | | | mismatched, turn on | | | | | | | | | | | | | | | Figure 1.1.1. Figure 1.1. Figu | SCUILLE FULL LIVE FU | Activities and the properties at the state televiery and a | Autocomy 2 would be a work or several status telemetry and teleme | | | | | | | | | | | | | | | | | | Switch to redundant ECU side (power cycle will | | | Hunglicked up state (not commanding) Model this area by sould this area by sould this area by sould this not be sould this not be sould this not be sould this not be sould this not be sould this not be sould be involved to state (not command) | ECU-1.1.1.c | | | Inability to send status telemetry | Local | SWITCHTTT | Autonomy | ? | ? | None | None | None | None | None | | | | clear fault). Next step would be avionics side | Х | | resultant of the control cont | | | | | | | | | | | | | | | | | | switch. | | | FCU-1.1.d In the properties of the control c | ECU-1.1.d Hung/Locked up state (not commanding) Full Plancy (repeating a command) Fu | Identify was alked an alwerses rule an alwerses rule an alwerses rule and r | Multiple freeding a command) ECU-1.1.1.d Hung (repeating a command) Local Hung (repeating a command) Local Hung (repeating a command) Local Hung (repeating a command) Hung (repeating a command) Local Hung (repeating a command) | Hung (repeating a command) Local If potentiometer and step count are minimatched, furn on redundant ECU for primary ECU otherwise system side or minimatched, furn on minimatch | | | | | | Might need an | | | | | | | | | | | | | | | ECU-1.1.1.d Hung (repeating a command) Local step count are insmatched, turn on redundant ECU for 3rd vote; if third vote is correct power off primary ECU otherwise system side sets (FU-1.1.1.e) FU-1.1.1.e Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Local step count are insmatched, turn on redundant ECU side or switch sides of a vote; if third vote is correct power off primary ECU otherwise system side sets (FU-1.1.1.e) FU-1.1.1.e Hung/Locked up state (not commanding) Local step count are insmatched, turn on redundant ECU side (power cycle will a vote is correct power off primary ECU otherwise system side is correct power off | | | | | | aliveness rule | | <u>.</u> | <u> </u> | | | <u> </u> | <u></u> | | | | | | <u> </u> | | ECU-1.1.1.d land land land land land land land lan | | | | | | If potentiometer and | | | | | | | | | | | |
 | | ECU-1.1.d Hung (repeating a command) Local striction of strict to the redundant ECU of strict your of primary ECU otherwise system side security (Part otherwi | Hung (repeating a command) Local and vote; if third vote is correct power off primary ECU otherwise system side is corre | | | | | | mismatched, turn on | | | | | | | | | | | | | | | FOUR LILE IN THE PRINCE CONTROL IN THE PRINCE CONTROL IN THE PRINCE T | FCIL1 1 1 d | | | Hung (repeating a command) | Local | | Autonomy | 2 | 2 | None | None | None | None | None | | | | Switch to redundant ECU side or switch sides of | v | | ECU-1.1.e EU-1.1.e Fundable Local Primary EU otherwise system side is correct power off primary ECU otherwise system side | LCU-1.1.1.U | | | nang (repeating a collilliditu) | Local | | Autonomy | ľ | ľ | IVOITE | IVOITE | IVOITE | HOHE | IVOITE | | | | | ^ | | ECU-1.1.1e FEU-1.1.1e FEU-1.1.1e FEU-1.1.1e FEU-1.1.1e FINAL ART AND | | | | | | primary ECU | | | | | | | | | | | | | | | ECU-1.1.1.e Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Local Hung/Locked up state (not commanding) Local Hung/Locked up state (not commanding) Local Hung/Locked up state (not commanding) Local Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Local Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Local Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Local Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Local Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Local Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Local Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Local Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Local Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Local Hung/Locked up state (not commanding) Local Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Local Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Local Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Local Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Local Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Local Hung/Locked up state (not commanding) co | ECU-1.1.e Hung/Locked up state (not commanding) Local Hung/Locked up state (not commanding) Local Switch to redundant ECU side (power cycle will redundant ECU side (power cycle will sic correct power off primary ECU otherwise system side) Local Autonomy 7 7 None None None None None None None Non | | | | | | switch??? | | | ļ | | | <u> </u> | | | | | | | <u> </u> | | ECU-1.1.e Hung/Locked up state (not commanding) Local Hung/Locked up state (not commanding) Local Switch to redundant ECU side (power cycle will redundant ECU side (power cycle will sic correct power off primary ECU otherwise system side) Local Autonomy 7 7 None None None None None None None Non | | | | | | If potentiometer and | | | | | | | | | | | | | | | Hung/Locked up state (not commanding) Hung/Locked up state (not commanding) Local redundant ECU for 3rd vote; if third vote is correct power off primary ECU otherwise system side redundant ECU for 3rd vote; if third vote is correct power off primary ECU otherwise system side Redundant ECU for 3rd vote; if third vote is correct power off primary ECU otherwise system side | | | | | | step count are | | | | | | | | | | | | | | | ECU-1.1.e Hung/Locked up state (not commanding) Local 3rd vote; If third vote is correct power off primary ECU otherwise system side 4utonomy 7 7 None No | is correct power off primary ECU otherwise system side | FCII-1 1 1 a | | | Hung/Locked up state (not commanding) | Local | | Autonomy | 2 | ? | None | None | None | None | None | | | | | y | | primary ECU otherwise system side | LCO 1.1.1.C | | | | Local | | . atonomy | | | | one | one | | | | | | clear fault) | ^ | | | | | | | | primary ECU | | | | | | | | | | | | | | | SWICD (**) | switch??? | <u> </u> | | <u> </u> | | <u> </u> | <u> </u> | <u></u> | FMEA ID | Name | Function Failure Mode / Limit / Constraint | Possible Causes Phase | Local | Next Higher | Effect Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Detection
Tlm for Diagnosis | Tlm Path for | Time to Detect (Local) | | |--------------------------|--------------|--|----------------------------|--|---|---|-----------------|----------|------------|------------|---|--|--------------------------|------------------------|----------| | Inputs | | REM generated commands for control and status - cross-strapped (REM A and REM B) | | Complete Loss of Control and
Status ability on ECU Side | switch to redundant ECU side | Switch to Redundant Side ECU
Impact to Fault Management: If
Side A
fails, we will no longer be able to
handle position mis-match faults in
same manner - where redundant side
potentiometers are used as "third
vote" | no effect | 4 | Active | yes | Loss of Status
Telemetry | Potentiometer
telemetry ; ECU step
count telemetry;
redundant ECU
telemetry
ECU Aliveness | Diagnosis ECU to REM | 77 | (System) | | | | Bus Voltage - ECU Side A Power | | Complete Loss of Control and
Status ability on ECU Side | switch to redundant ECU side | Switch to Redundant Side ECU impact to Fault Management: If Side A fails, we will no longer be able to handle position mis-match faults in same manner - where redundant side potentiometers are used as "third vote" | no effect | 4 | Active | yes | Loss of Status
Telemetry | Potentiometer
telemetry; ECU step
count telemetry;
redundant ECU
telemetry
ECU Aliveness | ECU to REM | | , | | ECU-1.1.2
ECU-1.1.2.a | Power Side A | No Power | Open Circuit | Complete Loss of power to ECI
Side | Autonomy should notice no
Jopwer to ECU side, as well as
lack of status telemetry and
command switch to redundant
ECU side. | Switch to Redundant Side ECU
Impact to Fault Management: If Side A
fails, we will no longer be able to
handle position mis-match faults in
same manner - where redundant side
potentiometers are used as "third
vote" | no effect | 2R | Active | yes | Loss of Status
Telemetry | ECU Aliveness; EC U
Power State | ECU to REM
PDU to REM | 77 | , | | ECU-1.1.2.b | | Incorrect Power Regulation | Voltage Regulation Failure | Unstable/Unpredictable operation. | Autonomy should notice incorrect power to ECU side and command switch to redundant ECU side. | Switch to Redundant Side ECU Impact to Fault Management: If Side A fails, we will no longer be able to handle position mis-match faults in same manner - where redundant side potentiometers are used as "third vote" | no effect | 2R | Active | yes | 1) Telemetry should
indicate incorrect
voltage
2) Loss of Status
Telemetry? | ECU current / voltage | PDU to REM | ? | | | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Response Level | Desired Local | Allocation of Local | Time to fix | Time to Transmit | esponse | | | | | | Quick Look | | _ | | |---------------|------------|----------|--|----------------|--|---------------------|-------------|------------------|----------|----------|--------------------|----------------------------|-------------|--------------------|----------------|-----------|--|---------| | | | | • | | | | locally | Signal | | | Time to fix system | Time to Transmit
Signal | | System Side Switch | Processor Side | Safe Mode | Remediation | Revisit | | | | | | | Response | Response | locally | Signai | Response | Response | | Signai | Contingency | | | | | | | | | | | | If potentiometer and
step count are | mismatched, turn on
redundant ECU for | 3rd vote; If third vote | is correct power off
primary ECU | otherwise system side | | | | | | | | | | | | | | | Inputs | | | REM generated commands for control and status - cross-strapped (REM A and REM B) | Local | switch??? | Autonomy | ? | ? | None | None | None | None | None | | | | Switch to redundant ECU side | | | | | | status - cross-strappeu (Keivi A anu Keivi B) | Would this same
premise work or | would this not be | evaluated if ECU
telemetry was stale? | Might need an | aliveness rule | If potentiometer and | step count are
mismatched, turn on | redundant ECU for | 3rd vote; If third vote is correct power off | primary ECU | | | | | | | | | | | | Switch to redundant ECU side. PDU switch could allow a single FET to power ECU, but that ECU would | ld | | | | | | | otherwise system side
switch??? | | | | | | | | | | | | only work from then on with that PDU. | J. | | | | | Bus Voltage - ECU Side A Power | Local | SWITCHTTT | Autonomy | ? | ? | None | None | None | None | None | | | | Potentiometers would match each other (and actual location value), but step count would match what | | | | | | | | Would this same | | | | | | | | | | | | had been commanded (with commands that didn't | | | | | | | | premise work or | | | | | | | | | | | | get through). | | | | | | | | would this not be | evaluated if ECU telemetry was stale? | Might need an
aliveness rule | | | | | | | | | | | | | | | ECU-1.1.2 Pow | wor Sido A | | | | anveness rule | | | | | | | | | | | | | | | | | | 6 | | If potentiometer and | i | | | | | | 6
! | | | 6 | | | | | | | | | | step count are | mismatched, turn on
redundant ECU for | 3rd vote; If third vote | is correct power off
primary ECU | otherwise system side | | | | | | | | | | | | | | | ECU-1.1.2.a | | | No Power | Local | switch??? | Autonomy | ? | ? | None | None | None | None | None | | | | Switch to redundant ECU side | Would this same
premise work or | would this not be | evaluated if ECU telemetry was stale? | Might need an | aliveness rule | If potentiometer and | step count are
mismatched, turn on | redundant ECU for | 3rd vote; If third vote is correct power off | primary ECU | otherwise system side
switch??? | | | | | | | | | | | | | | | ECU-1.1.2.b | | | Incorrect Power Regulation | Local | | Autonomy | ? | ? | None | None | None | None | None | | | | Switch to redundant ECU side | | | | | | | | Would this same | premise work or | would this not be
evaluated if ECU | telemetry was stale? | | | | | | | | | | | | | | | | į | | | | Might need an aliveness rule | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | | FMIA ID Name Function Failure Mode / Limit / Constraint Possible Causes Phase Local Next Higher Mission Umbra Violation Severity Type of FM Observable Now Observable (System) **Switch to Redundant 55de ECU Imputs** **Description of Failure Mode / Limit / Constraint Possible Causes Phase Local Next Higher Mission Umbra Violation Severity Type of FM Observable Now Obs | | | | | | | | | Effect | | | | | | Detection | Method | | | |--|---------|-------|----------|-----------------------------------|--------------------|------|--|--
--|-----------------|----------|------------|------------|----------------|----------------------|--------|------------------------|---| | Inputs Bus Voltage - ECU Side A Power Bus Voltage - ECU Side A Power Bus Voltage - ECU Side A Power Bus Voltage - ECU Side A Power Bus Voltage - ECU Side A Power Complete Loss of Control and Status ability on ECU Side status telemetry) and command switch to redundant ECU side switch). Autonomy should notice problem (ex. lack of status telemetry) and command switch to redundant ECU side switch). Bus Voltage - ECU Side A Power Bus Voltage - ECU Side A Power Bus Voltage - ECU Side A Power Complete Loss of Control and Status ability on ECU Side status telemetry and command switch to redundant ECU side switch). Bus Voltage - ECU Side A Power Complete Loss of Control and Status ability on ECU Side status telemetry and command switch to redundant ECU side switch). Bus Voltage - ECU Side A Power Complete Loss of Control and Status ability on ECU Side status telemetry and command switch to redundant ECU side switch). Bus Voltage - ECU Side A Power Complete Loss of Control and Status ability on ECU Side status telemetry and command switch to redundant ECU side switch). Bus Voltage - ECU Side A Power Complete Loss of Control and Status ability on ECU Side switch or serious telemetry and command switch to redundant ECU side switch). Complete Loss of Status and selection mismatch faults in came manner—where redundant ECU side switch). Complete Loss of Status and selection mismatch faults in came manner—where redundant ECU side switch). Complete Loss of Status and selection mismatch faults in came manner—where redundant ECU side switch). Complete Loss of Status and selection mismatch faults in came manner—where redundant ECU side switch). Complete Loss of Status and selection mismatch faults in came manner—where redundant ECU side switch). Complete Loss of Status and selection mismatch faults in came manner—where redundant Side of the complete Loss of Status and selection mismatch faults in came manner—where redundant Side of the complete Loss of Status and selection mismatch faults in came manner—wh | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Possible Causes Ph | hase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Tlm for Diagnosis | | Time to Detect (Local) | | | | | CLEAR | | Bus Voltage - ECU Side A Power | | | Complete Loss of Control and
Status ability on ECU Side | Autonomy should notice
problem (ex. lack of status
telemetry) and command
switch to redundant ECU side
(does not require avionics side | Impact to Fault Management: If Side A
fails, we will no longer be able to
handle position mis-match faults in
same manner - where redundant side
potentiometers are used as "third | | 4 | Active | yes | Loss of Status | ?
ECU Power State | | ? | ? | | £CU-1.2.1 ;CONTOLAND STATUS SIDE B | | | <u> </u> | | | | | | | | ļ | - | | | | | | | | ECU-1.2.2 Power Side B | | | | | | | ļ | | - | ķ | ļ | | | | | | | | | | | | | | | | | F | Response | | | | | | Quick Look | | | | |-----------------|----------------------|-----------|-----------------------------------|----------------|--|---------------------|-------------|------------------|----------------|------------------------|--------------------|------------------|-------------------|--------------------|----------------|-----------|---|---------| | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Response Level | Desired Local | Allocation of Local | Time to fix | Time to Transmit | Desired System | - Allocation of System | Time to fix system | Time to Transmit | Ground Response / | System Side Switch | Processor Side | Safe Mode | Remediation | Revisit | | | | | | | Response | Response | locally | Signal | Response | Response | | Signal | Contingency | | | | | | | Inputs | | | Bus Voltage - ECU Side A Power | Local | If potentiometer and step count are mismatched, turn on redundant ECU for 3rd vote; If third vote is correct power off primary ECU otherwise system side switch??? Would this same premise work or would this not be evaluated if ECU telemetry was stale? Might need an aliveness rule | Autonomy | ? | , | None | None | None | None | None | | | | Switch to redundant ECU side. PDU switch could allow a single FET to power ECU, but that ECU would only work from then on with that PDU. Potentiometers would match each other (and actual location value), but step count would match what had been commanded (with commands that didn't get through). | | | ECU-1.2 ECU Si | | | | ļ | ļ | i
 | | | i
\$ | | ļ | | | | | | | i
\$ | | | ol and Status Side B | | | | | | | | | | ļ | | | | | | | į | | ECU-1.2.2 Power | r Side B | . <u></u> | | | <u>i</u> | İ | | . | <u>;</u> | | <u> </u> | | | | | | <u>i</u> | İ | bject Matter Robin Vaughan Robin Vaughan Robin Vaughan Robin Vaughan | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Possible Causes | Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | TIm for Diagnosis | TIm Path for Diagnosis | Time to Detec | t Time to De
(System | |---------|---------------------------------|----------|--|--|-------|--|--|--
--|----------|------------|------------|--|-------------------|------------------------|--|-------------------------| | 4 | Star Trackers
Star Tracker A | | | | | | | | | | | | | | <u> </u> | - | ļ | | 111a | | | correctly process these commands, it can fail to reach the pormal | 1) Faulty connector or harness/wiring inside unit 2) localized electronics fault that affects command processing logic; localized electronics fault that prevents configuration change inside unit 3) Error in tracker processor internal software/firmware | as | Tracker does not reach normal operating mode, either degraded attitude solutions are generated or no attitude solutions are generated. | attitude solution saved from
previous processor on shut
down if processor reset or | could be deemed unusable for
the rest of the mission. May
not meet WISPR attitude
knowledge accuracy
requirements around perihelia
with only one tracker.
Still meet full mission science
requirements. | Unlikely that a localized change in attitude large enough to cause are enough to cause are enough to cause are enough to the enough to cause the tracker. A slowly drifting attitude solution might be harder to detect and could sentually result in an unbraviolation if undetected. Smilarly, propagation using entity and enough | 3 | | Probably | If tracker is able to output telementy, it should indicate the control of con | | | Probably 10-20
seconds to
decide that a
problem is
awarants taking
action | | | C-1.1.b | | | Injust message not received or processed. (The trackers typically
insed some information from the avioricat/FSW to generate correct
stitude solutions. Examples are 62 velocity wit 5 un for absertation
corrections, timing public to get the equivalent of 107 for star
position calculation. A fault on the 9/c side or inside the tracker that
facinate this information to not be available will cause problems for
the tracker in that the attitude solutions coming out will be
regnaded.) | Cocalead electronics faul that affects message processing logic Tirror in tracker processor internal software/firmware | All | Tracker uses old or incorrect
information to generate attitude
solution; solution accuracy is degraded | solutions. G&C software may | the rest of the mission. May | violation would be accepted
by the G&C software even if it
were generated by the
tracker. A slowly drifting
attitude solution might be | 3 | | Maybe | Some trackers have status
telemetry that will indicate if it
is receiving the timing putse or
other input data. G&C
software will be monitoring
some of these health & status
flags. Telemetry will also be
downlinked occasionally as
part of ground monitoring of
G&C component
performance. | | | Probably 10-20
seconds to
decide that a
problem is
persistent and
warrants taking
action | | | 5114 | | | Failure to output requested telemetry; output messages not
generated. (Tracker does not output any attitude solutions.) | 11 Aemous/venezur van aber to roden in measurements 12 Permanent famige to detector elements (ballen, optics, APS detector, etc.): - Permanent radiation damage to detector elements (ballen, optics, APS detector, etc.): - Permanent radiation damage to detector - Surface damage to bolffer or design error allows too much stray light into tracker optical path - Cracks, p.ost, or material deposits (contamination) on tenses make images unusuable - Adultion expouse detainen glass so than one enough light gets to detector to detect - Permanent of the enough of the end of the enough of the end of the enough of the end of the enough en | | Tracker may transition to a mode where it doesn't try to generate attituc sloutions. If it doesn't succeed in gettin a solution for some predefined time period (reaction depends on which tracker we choose to fly) | GEC software will either continue to use tracker continues to the tracker conductions for the other tracker artitude using give rate data from last valid star tracker attitude solution | If not corrected, the tracker
could be deemed unusable for
the rest of the mission. May
not meet WISPR attitude
knowledge accuracy
requirements around perihelia
with only one tracker. | Propagated attitude will slowly
drift from true attitude and
could eventually result in an | 3 | | Maybe | Some trackers have status
telementy that will indicate
that they can no longer
generate attitude solutions.
GRG coffurer will be
monitoring some of these
health & status Rigs. GRG
artitude estimation software
will fing a problem for
from the same tracker are
missing. Telementy will also be
downlinked occasionally as
part of ground monitoring of
GRG. Component
performance. Most \$73 provide telementy on
background level. Long-term
trending could reveal a
problem. | | | Probably 10-20
seconds to decide that a problem is
persistent and
warrants taking
action | | | :-1.1.d | | | Output telemetry contains insufficient measurements, [Tracker alone not output the expected number/quantity of attitude solutions or does not generate telemetry messages at expected rate for read out of rail complement of measurements not generated for single data message.) | 1) Seman's detector sponsitionally vasible to collect star fined images a) Enamps do detector elements (Dalling outs), APS, detector, etc.) Temporary radiation damage to detector Collectification from other parts of the 's', temporarily gets into tracker optical path as stray light (could be dependent on attitude relative to Saul). Discovering the relative to Saul's could be dependent on attitude relative to Saul's Date of the catalistic
own temporarily causing too much noise in star images. Pume particles from thruster firing passing through tracker FOV "light or low temporarily catalistic processor starting and conference of the starting | | Tracker may transition to a mode where it doesn't try to generate attituc solutions if if doesn't success in getting a solution for some predefined time period (reaction depends on which tracker we choose to fly) | G&C software will either continue to use tracker solutions for the other tracker or attempt to propagets y/c stitude using gyro rate data tracker attitude solutions | knowledge accuracy | Propagated attitude will slowly distiff from true attitude and could eventually result in an unbera violation of time between measurements is very long; less likely in this case since we are assuming we are getting some attitude solutions - just not the total amount we should be getting | 3 | | Maybe | Some trackers have status
telementy. G&C software will
be monitoring some of these
health & status flags. G&C
statude estimation software
will flag a problem if soo many
consecutive attitude solutions
from the same tracker are
consecutive attitude solutions
from the same tracker are
downlinked occasionally as
part of ground monitoring of
G&C component
performance. | | | Probably 10-20
seconds to
decide that a
problem is
persistent and
warrants taking
action | | | :-1.1.e | | | Output telemetry contains degraded measurements. (Tracker
outputs attribute solutions whose quality is less than expected (not
meeting spect) | In Journal of the control con | | Fraders usually output some quality, flags along with the attitude solution. When the solution where they no longe generate attitude solutions if low-quality solutions persis for some predefined time period. | continue using solutions from
the other tracker if available | the rest of the mission. May
not meet WISPR attitude
knowledge accuracy | between measurements is
very long; less likely in this | 3 | | Maybe | Some trackers have status
telemetry, G&C coftware will
be monitoring onne of these
health & status flags. G&C
stitude estimation software
will flag a problem if too many
consecutive attribute solutions
from the same tracker are
respected. Telemetry will also
be downished occasionally as
to downished occasionally as
for the companies of
performance. | | | Probably 10-20
seconds to
decide that a
problem is
persistent and
warrants taking
action | | | Mil | | | Output telemetry contains incorrect measurements which are
flagged valid. (Tracker outputs attitude solutions whose time or
sittlitude is wrong but without indicating any problems with the
solutions in its own quality flags.) | 1) Temporary environmental/viewing conditions degrading star images (not enough bright stars found in images): 10 lott for other radiation event temporarily causing too much noise in star images of other radiation event temporarily causing too much noise in star images of other radiation event temporarily causing too much noise in star images of other particular content of the compensated by internal cooler (thermal rotate) and extended of the content of the compensated by internal cooler (thermal rotate) of the content th | | None - tracker thinks everything is ok | associated with these checks
and some bad measurements
may be used in the attitude
estimation if they are just
"slightly off" instead of
obviously out of family. | tracker could be deemed | Possible, but not likely. The attitude solutions could be off just enough to cause the spacecraft to "till" relative to the Sun or slowly drift off from the desired TPS to Sun pointing. | 3 | | Maybe | G&C attitude estimation software will flag a problem if too many consecutive attitude solutions from the same tracker are rejected. Telemetry will also be downlinked occasionally as part of ground monitoring of G&C component performance. | | | Probably 10-20
seconds to
decide that a
problem is
persistent and
warrants taking
action | : | | puts | | | Power | | | ST not powered | Can't meet WISPR pointing
requirements during
encounter. Switch to other ST | No effect. | N/A | 3 | | | | | | | | | | | | Time code | | | ST will keep working | If not already active. Accuracy of ST output will drift and might send flags to autonomy. Ground will notice drift in long-term trending an will command s/t o resetST and/or switch to other ST, if it's not already active. With loss of a ST, can't meet WISPR aointing requirements. | No effect. | Drift may cause s/c to get into
undesired position, but SLSes
should alert autonomy to any
potential umbra violations. | 3 | | | | | | | | | | | | 5/c velocity from FSW | | | ST will keep working, but will report th
it's not getting this information. | Accuracy of ST output will drift
and might send flags to
autonomy. Ground will notice
drift in long-term trending and
will command s/c to reset ST
and/or switch to other ST, if
it's not already active. With
loss of a ST, can't meet WISPR
pointing requirements. | No effect. | Drift may cause s/c to get into
undesired position, but SLSes
should alert autonomy to any
potential umbra violations. | 3 | | | | | | | | | | | | Multiplexer | | | If set to wrong side of avionics, looks
like ST is off. | Switch sides of avionics and/o
command muliplexer to
correct setting. Can't meet
WISPR pointing requirements
during encounter with a single
ST. | No effect. | N/A | 3 | | | | | | | | | Subject Matter
Expert(s): | Robin Vaughan | occur until 2014. Yellow hig | dent on the exact sensors selected. Selection will probably not
hlighted blocks are redundant components. Components are listed | | | | | Personre | | | | Quick Response | | • | | |------------------------------|---------------------------------|------------------------------|---|---------------|---|---------------------------------|-------------------------------------|---|--|-------------------------------|--|----------------|-----------|--|---| | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Response Leve | Desired Local Response | Allocation of
Local Response | Time to fix Transr
locally Signs | | Allocation of Time to fix
System system | Time to
Transmit
Signal | Ground Response / Contingency | essor
itch | Safe Mode | Remediation | R | | GC-1
GC-1.1 | Star Trackers
Star Tracker A | | | | | | | | | | |
 | | | | | GC-1.1.a | | | nput command not received or acted on. (When turned on,
rrackers typically need to be sent a series of commands that bring
them up to full operational mode. If the tracker is unable to
correctly process bese commands, it on fail to reach the normal
tracking mode where it would start generating attitude solutions.) | | GEC attitude estimation softwar
will flag a problem if too many
consecutive attitude solutions
from the same tracter are mission
are rejected fight to pass the saint
properties of the solution of the solution of the
consecutive of the solution of the solution of the
solutions). | | | If G&C software flags a problem either
from the health & status telemetry or with
the attitude solutions, it will request action
errorn fault protection. Usually this is by
susputting flag that are used in the
premise of various autonomy rules. | | | | | | Software roboot, tracker reset, or tracker power cycle may fix some problems with electronic or software. Switching to redundant unit may not alleviate problems if the error lies in common software. | | | GC-1.1.b | | | Input message not received or processed. (The trackers typically
inced some information from the avionicx/SSW to generate correct
attitude solutions. Examples are six evelocity wit Son for deservation
position calculation. A fault on the xX dies or inside the tracker that
causes this information to not be available will cause problems for
the tracker in that the attitude solutions coming out will be
fegraded.) | | G&C attitude estimation softwar
will flag a problem if too many
consecutive attitude solutions
from the same tracker are
rejected (fall to pass the sanity
checks - mostly consistency
checks on the time sequence of
solutions) | e | | of G&C software flags a problem either
from the health & status telemetry or with
from flag protection. Usually this is by
corporating flags that are used in the
premise of various autonomy rules. | | | | | | inernal reset (no ground or autonomy action
required), software reboot, tracker reset, or
such electronic or software. Switching
such electronic or software. Switching
redundant unit may not alleviate problems it
the error lies in common software. | | | GC-1.1.c | | | Failure to output requested telemetry, output messages not generated. (Tracker does not output any attitude solutions.) | | | | | If G&C software flags a problem either from the health & status telemetry or with the attitude solutions, it will request action from fault protection. Usually this is by coupturiting flags that are used in the premise of various autonomy rules. | | | Might be able to boil off
constannation material (parti-om \$T
from \$\cdot\) constant in the constant in the constant
coders that could be turned of it to
all of this process, low-of-a round
parts of the image field that have
paged in the process, the constant in the
paged in the constant in the
paged in the constant in the
paged in the constant in the
paged in the constant in the loop to
diagnose the problem and decide on
what fix to try. | | | Software reboot, tracker reset, or tracker power cycle may fix some problems with electronic or software. Switching to redundant unit may not alleviate problems it the error lies in common software. | | | GC-1.1.d | | | Output telemetry contains insufficient measurements, [Tracker dose not output the expected number/guantity of attitude solutions or dose not generate telementy messages at expected pate for read out or full complement of measurements not generated for single data message.) | | | | | F G&C software flags a problem either
ron the health. B. statu telemetry or with
the attitude solution, it will request action
from fault protection. Usually this by
soutputting flags that are used in the
premise of various autonomy rules. | | | Might be able to boil off
contamination material (anti-ram ST
only-some ST have interested in
coders that could be turned off to
did in this process), what around
an other process of the state of
suspect image content, change
statuder estable to class of
suspect image content, change
statuder estable to class of
suspect image content, change
statuder estable to
diddressed with a fault protection
response on the spacecraft. We'd
when to get the ground in the loop to
classification of
such that the
subsection of
such that
such as
such as | | | Software reboot, tracker reset, or tracker power cycle may fix some problems with electronic or software. Switching to redundant unit may not alleviate problems if the error less in common software. | ÷ | | GC-1.1.e | | | Output telemetry contains degraded measurements. (Tracker
outputs attitude solutions whose quality is less than expected (not
eneeding spect.) | | | | | of GAC software flags a problem either from the health & status telementy or with the attitude solutions, it will request action from fault protection. Usually this is by soutputting flags that are used in the premise of various autonomy rules. | | | | | | Software reboot, tracker reset, or tracker
power cycle may fix some problems with
electronic or software. Switching to
redundant unit may not alleviate problems if
the error less in comman software. | ************************************** | | GC-1.1.f | | | Output telemetry contains incorrect measurements which are flagged valid. (Tracker outputs attitude solutions whose time or attitude is wrong but without indicating any problems with the solutions in its own quality flags.) | | | | | If G&C software flags a problem either from the health & status telemetry or with the attitude solutions, it will request action from fault protection. Usually this is by coupturiting flags that are used in in the premise of various autonomy rules. | | | | | | Software reboot, tracker reset, or tracker power cycle may fis some problems with electronics or activate. Switching to recluded not many man alleviate problems if the error lies in common software. | | | Inputs | | | Power | | | | | | | | | | | | [| | | | | Time code | | | | | | | | | | | | | | | | | S/c velocity from FSW | | | | | | | | | | | | *************************************** | | | | | Multiplexer | | | | | | | | | | | | | | GC-1.2 | Star Tracker B | <u> </u> | İ | İ | 1 | 1 | | | | 1 | | | | İ | İ | | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Possible Causes | Phase | Local | Effect
Next Higher | Mission | Umbra Violation | Severity 1 | ype of FM | Observable | How Observed? | Detection Meth
TIm for Diagnosis | od TIm Path for Diagnosis | Time to Detect Time to Detect (Local) (System) | |------------------|--------------------------------|---|--
--|--|---|--|--|---|------------|----------------------------|-------------|---|-------------------------------------|---|--| | | Solar Limb Sensors | on the current design, there is ofter ally redundant. This two terminally redundant. This two experiences of the mass of the reduction of the mass | | | At default attitude when <0.8
AU from Sun | | | | Note on umbra violation for SLS. When any of the SLS heads see the Sun, then safe and see the Sun, the safe and see the Sun, the safe and see the Sun, the safe and see the Sun the safe and see the Sun before the safe and see the Sun before the SLS heads will be suffered to the SLS heads will be suffered to the SLS head see the Sun before the SLS heads will be suffered to suffer suffered to suffere | GC-2.1.a | | | signor message not a reached or processed. (The solar limb sensors may reed some information from the avionics/SSW to set gains or awareners that are used in comparing som offset angle from cell intensity readings. A salar on the s/s dee from cell intensity readings. A salar on the s/s dee from time the solar intensity readings. A salar on the system of the available will cause problems for the solar limb sensor that the angle solutions coming out will be degraded. (cases where angle solutions are grossly incorrect are included in another section below)) | Faulty connector or harness/wiring inside unit Localized electronics fault that affects message processing logic First in solar limb sensor internal firmware (PPGA) | | Sun geometry when first detected is
iunchanged so time of detection is
unaffected; sold imbo bearon used of
or incorrect information to generate
Son offerst englis angle accuracy to
some offerst englis and sold sold sold
incorrect information to
output may be delayed. | Control correction will be wrong because offset angle is Will not meet WISPR pointing requirements with meet wisPR pointing requirements willing based on S.S. data. S.C may think it's seeing the Son earlier than a tactually is, for may "see" it too late. | SLS. If we avoid umbra
violation, we may be able to
correct the parameter values
before we have another
attitude anomaly where SLS
would see the Sun.(With luck | Possible. Spacecraft could drift into s/c packaging umbra while trying to correct attitude using SLS angle data if control action is not "strong" enough or not taken soon enough. | | None
Active P
Active | robably not | Don't think there is a way to detect this. If we are using the wrong parameters in the SLS signal processing, we won't have any way to conclude that we are getting wrong answers. (This assumes that target attitude is *271PS to Sun.) | 1) None
2) SLS heartbeat? | 2) None
2) SLS to CDH to Autonomy
II SLS to CDH to Autonomy |
31 Nane
23 7 None
31 7 | | GC-21b | | | Case 1: Failure to output requested telemetry; output messages and generated. (One solar limb sensor head does not output any Sun presence or offset angle data (presumes that we get to an intribute where the new output set was to so that it should be instructed and the solar output set of the solar presence flags and offset angle values).) | Sensor/detector not able to collect measurements, damage to detector elements (Sheled, Ozore glass, solar cells, etc.) — Permanent radiation damage to detector element — Failure in detector solar cells for output current — Craks, pits, or material deposits (contemantation) on cover glass blocks or alters path of Sun (glit reaching detector cells — Sing light reaching detector cells — Sing light reaching detector cells — The contemporary of the cells of the cells of the cells — Admitted the cells of the cells of the cells — Reaching of the cells of the cells — Reaching | | none -SLS is trying to communicate
and int't able to or cannot detect the
Sun when it is exposed to it | None if failure confined to
single side of detector head or
one side of redundant
electronics (the loss of a single
sensor is oil.). The other side of
the head would detect the Sur
and alter G&C software to the
volation. Or data available
from other side of electronics.
(Presumes we mu with both
sides on at all times) | Potential loss of mission if SLS
data not available from | No if data still available from other side of detector head or detectories, each of side its common to both electronics or both sides of a single sensor head | 2R | one F | robably not | There may not be a way to detect this since the normal condition for the SLS is to not have any data to output because the heads are not seeing the Sun if we run with both sides on, we might be able to see that one side of a head is outputting data and the other one in it assuming that head is seeing the Sun if assuming that head is seeing the Sun | SL5 output | SLS to CDH | y None | | 6€-2.1.¢ | | | Case 2: Failure to output requested telemetry; output messages
and generated. (One side of SLS electronics does not output any
Sun presence or offset angle data (presumes that we get to an
stitute where one more heads voud set be Sun so that it
should be outputting Sun presence flags and offset angle values).) | - Hardware damage or fault in internal electronics boards or harnessing that prevents
detector data processing Hardware damage or fault in internal electronics boards or harnessing or connectors | | none - SLS is trying to communicate and int's able to or cannot detect the Sun when it is exposed to it | None if failure confined to
single side of detector head or
one side of redundant
electronics (the loss of a single
sensor is ok). The other side of
the head would detect the Sur
and alert G&s oftware to the
violation. Or data available
from other side of electronics.
(Presumes we run with both
sides on at all times) | Potential loss of mission if SLS
data not available from | common to both electronics | 2R N | one h | | We may be able to detect that the electronics never puts data on the interface to the SCIF card. We won't be able to detect that the electronics outputs a message that says "Sun not present" when a head really is seeing the Sun. | | SLS to CDH | 7 None | | GC-2.1.d | | | are flagged valid. (solar limb sensor outputs Sun presence flags or | 1) Environmental/viewing conditions cause failse Sun detection 3) Glint reflected off other spacecard components illuminates the detector head enough to cause it to think it see the Sun cause it is the Sun of cause it is sun of | | None - solar limb sensor thinks
everything is ok | Depends how we program the
G&C software when looking at
SL data. If we decide to
respond to any single
detection by one of side of the
control action when it isn't
necessary. If we are always
getting information from both
discleded to the control of the
side to each head, we may be
side to detect that just one
side thinks it's sening the
sun and the other side doesn't.
But then it's not clear which
side we should believe. | try to change the attitude
when it's at the correct
attitude and end up moving | | 2R A | tive A | Maybe | G&C software may be able to isolate the false reading if data wailable from both sides the head (and fault is not common to both sides). May be difficult to detail with side is sending the "urong" data. | Error flag? | G&C to CDH to Autonomy | 7 None | | GC-21e | | | Core 2-Output belienetry contains incorrect measurements while
we flagged walfs. (solar limb series outputs Sun presence flags or
other supeled staff are aroung but without inclinating any
problems with the solutions in its own status flags (if there are any
Care 2 Gross) incorrect Sun offset angle data - not tracking true
Sun-relative geometry.) | component in processing chain course signals to be combined incorrectly when | | None - solar limb sensor thinks everything is ok | Depends how we program the
G&C software when looking at
SL data. If we decide to
respond to any side of
the SL heads, then we may take
control action when it isn't
necessary. If we are always
getting information from both
difference between what the
way that the
two sides are outputting. But
then it's not clear with side
we should believe. | when it's at the correct
attitude or make the wrong
change to an off-Sun attitude
Either way we end up moving | . isolated false readings. | 2R | htive h | | GSC software may be able to isolate the false reading if data wailable from both iden of the head (and fault is not common to both iden). Seriously bad readings—like being 40 deg off Sum near periapse—can probably be rejected since the syl would not survive this condition. Smaller offsets that are incorrect would be harder to detect. No good way to determine which sensor is sending the "wrong" data. | Error flag? | G&C to CDH to Autonomy | y None | | 60-2-1.1 | | | are flagged valid. (solar limb sensor outputs Sun presence flags or
offset angle data that are wrong but without indicating any
problems with the solutions in its own status flags (if there are any
Case 3 Incorrect timing of Sun presence or angle data - indications | Error in electronics interface with s/c A) Mismatch in timing between output of messages by SLS and readout of interface by | | None - solar limb sensor keeps working
as if everything is ok | Depends on the size of the delay and how erratically the data are delivered to the G&C accidence of accide | unable to respond soon | Possible if failure is common to both sides of head or determine. If delay is too long between SLS head first seeing between SLS head first seeing he sum and reporting it to GAC. (if may have driffed sides, may be not be under a boundary. Or GAC may pause sides, manghe to the umbra boundary. Or GAC may pause that saking action if there are long time gaps in the SLS data. If delay is siolated to one side, the differences in readings some to deal with save to be deal with a save to be deal with contracted about horse is not confused about how much correction is needed. | 2R | h tive | faybe | G&C software may be able to deal with differences between disea and use data from the "earliest" side to correct attitude. | Error flag? | GEC to CDH to Autonomy | 7 None | | Inputs
GC-2.2 | Solar Limb Sensor ^p | | Power | | | No effect if power is only lost to one
side of electronics, | No effect. | No effect. | N/A | 4 | | | | | | | | QC-2.2 | Judi Liniu Sensor B | <u>.</u> | A | | .1 | .t | A | A | | | | | <i>,</i> | | <i></i> | ·ii | | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Response Level | Desired Local Response | Allocation of
Local Response | | Time to
Transmit | Response
Desired System Response | Allocation of
System | Time to fix system | Time to
Transmit | Ground Response / Contingency | System Side
Switch | Quick
Processor
Switch | Response
Safe Mode | Remediation | Revisit | |------------------|---------------------
--|--|---------------------------------|---|---------------------------------------|------|-------------------------|-------------------------------------|-------------------------|--------------------|---------------------|--|-----------------------|------------------------------|-----------------------|--|--------------| | GC-2 | Solar Limb Sensons | the three current desires, there is, one electronics box which is correctly reduced. The two victorials yield-united his two series of heads and to the spacecraft (two destination of the control of the control of the control of the control heads, such is series of heads, such is series of heads, such is series of heads, such is series of heads, such is series of heads, and the control heads, such is series of heads of the electronics. There is a connected to a different side of the electronics. There is a connected to a different side of the electronics. There is a connected to a different side of the electronics. There is a connected to a different side of the electronics electron | | | | | | Signal | | Response | | Signal | | | | | | | | GC-2.1.a | sider Limb Semont A | | Input message not received or processed. (The solar limb sensors may need some information from the avoincit/SW to set gains or againstens that are used in computing some offers angle from cell intensity readings. A faut on the ty clade or inside the solar limb avoincition of | I) None
2) Local
3) Local | IJ None
2J Power cycle SLS
IJ Power cycle SLS | I) None
2) Autonomy
3) Autonomy | None | 1) None
2) 7
3) 7 | None | None | None | None | None | | | | Redundant heads may not help because the
parameters are probably the same for both
might help if the other side of the
neight help if the other side of the
electronics doesn't have the internal
problem that causes it to miss getting
inplated parameters. But then we have to
figure out have to give the "right" data from
the two readings from each side.
Might be able to it on Fight callbration at
larger solar distances, but unlikely since will
be at the saturation limit for low intervally
insoit of the time where we could attempt
scalabration. Triging to calibrate at ornal solar
scalabration. Triging to calibrate at ornal solar
scalabration. Triging to calibrate at ornal solar
far enough off Sun for the SLS head to see
the Sun and generate angle data – assuming
that the star tracker and ephemeris
would hold us at an attitude that was still
outside the si/c packaging unbra and using
the attitude and pehemeris indice to get the
star scalabration. Triging
the attitude and ephemeris find to get the
star scalabration and the
star scalabration and
scalabration. The
scalabration is a star scalabration
scalabration. The
scalabration is
scalabration. The
scalabration is
scalabration scalabration
scalabration scalabration
scalabration. The
scalabration scalabration
scalabration scalabration scalabration
scalabration scalabration scalabration
scalabration scalabration scalabration
scalabration scalabration scalabration scalabration
scalabration scalabration scalabration scalabration scalabration
scalabration scalabration scalabration scalabration scalabration scalabration
scalabration s | | | GC-2.1.b | | | Case 1: Failure to output requested telemetry, output messages
ned generated. (One solar limb sensor head does not output any
sun presence or offset angle data (presumes that we get to an
attitude where the head
would see the sun to that 2 should be
outputting Sun presence flags and offset angle values).) | Local / Ground | None | Ground | None | None | None | None | None | None | Ground contingency - turn on both 51s to used from fails to output data; journally try to power cycle? | | | | like redundant harborer - redundant i
succions of single electronics unit and
redundant sections of detector heads.
(Issuaming the fallure is not common to both
sides of a head or the electronics.) If
common to both lides of a head, we've lost
data from one of the 4 heads. Depending no
here the Sun is actually drifting off from
*2, we may not detect the drift and get to an
unbrav violation.
Any contamination or alignment shifts will
skey affect both ties of a single head
shey affect both ties of a single head
head (but not
impossible)
slight be able to both off contamination
material - assuming we ever realized it was
three in the first place. | n n | | GC-21.c | | | Case 2. Failure to output requested telemetry, output messages
not generated. (One side of 3.5 electronics does not output any
Sun presence or offset angle data (presumes that we get to an
situate where one or more heads would see the Suns to that 4
should be outputting Sun presence flags and offset angle values).) | Local / Ground | None | Ground | None | None | None | None | None | None | Ground contingency - turn on both
SLS to see if one fails to output data;
possibly try to power cycle? | | | | Use redundant side of electronics. Solar
limb sensor power cycle might clear the
fault in the electronic. Or there may not be
any way to fix this problem if hardware
inside the solar limb sensor is broken or if it
is a common problem due to common
fermware. | 1 | | GC-2.1.d | | | Case 1: Output telementry contains incorrect measurements which
are flagged valid. (colar limb sensor outputs Sun presence flags or
officet angle data that are wrone plan without indicating any
problems with the solutions in its own stath flags (if there are and
Case 1 False Sun detection - indicating Sun presence when head is
not seeing the Sun.) | | 7 | Autonomy | 7 | 7 | None | None | None | None | None | | | | Use redundant hardware - either separate
redundant units, or redundant sections of
single electronics unit and redundant optical
heads.
The real question here is how likely is a false
detection. There are not many good ways to
detect this assuming that the SLS is on
detect this assuming that the SLS is on
detect this assuming that the SLS is ont
defense against attitude drifting off Sun.
Use of redundant sensor or electronics may
not solve problems due to common or
similar equipment.
SLS feet or poener cycle may clear an
electronics or SW/FW fasit, but may not.
Association in the support
cycle the SLS while in view of the Sun. | al
e
o | | GC-21.e | | | Case 2. Output telemetry contains incorrect measurements which
are flagged vaid. (colar limb sensor outputs Sup presence flags or
offerst angle data hat are wong but without indicating any
grorbelms with the solutions in its own status flags (if there are any
Case 2 Grossy) incores Sun offset angle data – not tracking true
Sun-relative geometry.) | Local | 7 | Autonomy | 7 | ? | None | None | None | None | | | | | Use redundant hardware - either separate redundant units, or redundant section of single electronics until and redundant optical single electronics until and redundant optical. The red question here is how likely getting really bids angle views is - there are not many (if any) ways to detect this by independent means. Use of redundant hardware may not alleviate the problem if the failure is in a common or similar component. Power cycling may fix an electronics or SW/FW error, but would have no effect on a jewt faul. | 1 | | 6C-2.1.f | | | Case 3: Output telemetry contains incorrect measurements which
are flagged valid. (Josa limb senor outputs Sun presence flags or
officet angle data that are wong Dut without indicating any
problems with the solutions in its own status flags (if there are any
case a liscorrect timing of Sun presence range data - Indications
come too late relative to the true Sun-relative geometry.) | Local | , | Autonomy | 7 | 2 | None | None | None | None | | | | | Use redundant hardware - silter separate redundant units, or redundant section of redundant section of heads. The real question here is how likely is getting into gitting time delays or erratic behavior on the data interface. | ng. | | Inputs
GC-2.2 | Solar Limb Sensor B | | Power | | | | | | | | | | | | | | | х | | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Possible Causes | Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | TIm for Diagnosis | TIm Path for Diagnosis | Time to Detect Time to E | |---------|---------------------------|--|--|--|-------|--|---|--|--|----------|------------|------------
--|--|-------------------------------|--| | ı | inertial Measurement Unit | loop mode. If two fail, a TCM
couldn't be performed. A
single failure at any point in
time in the mission would be
ok. The FMEA results are the
same as what is listed (for the | Note that the current design has redundancy in both the number
of individual gross and in the electronic/jower supplies. Minimum
requirement for controllability is juyers covering 3 orthogonal
directions. Liber we will have one unit with it gives and 2
electronic/jower supplies (more likely) or just that each have 3
gross and 1 electronic/jower supply (less likely). In the latter
case, we would have for un with both units on lay probably month
them in different orientations) to ensure we'd have 3 good gross at
all times. | | | | | | | | | | | | | | | | IMU Side A | | | | | | | | ļ | | | | | | å | | | 3.1.a | | | liput command not received or acted on (When turned on, some IMM), need to be sent a series of commands that configure them to the correct operational mode. If the IMM is unable to correctly process these commands, it on fall to reach, it on fall to reach the normal operating mode where it would start outputting given rate data.) | | All | | if some gyro data are available, G&C software may generate less accurate spouccarfla stitule. & rate solutions, if no gyro data is evaluable, G&C software may be unable to generate authorid/rise solutioner/of the solutioner/of the spacecraft. G&C software will yet oue rate informer of the spacecraft. G&C software will yet oue rate informer of the spacecraft is gyro data are available. | the rest of the mission. This
would be a loss of mission if
redundant IMU/gyros are not | eventually result in an umbra | 2R | Active | Probably | If MU is able to output believely. It should indicate in current operating mode. GBC software will be monitoring isome of these health & status flags. Telemetry will also be downlinked octasionally as part of ground monitoring of GBC component. | IMU Operating Mode
G&C IMU error flag | CDH to Autonomy | 3 Mone | | 3.1.b | | | Imput message not received or processed [The IMU typically needs
some timing information from the avionics/TSW to generate
correct time tags on the gyro rate data solutions. A fluid on the s/c
swallbel will called problems for the Mill in that the rate
measurements coming out will be misleading or dropped due to
the incorrect time tags.) | Faulty connector or harness/wiring inside unit Coolined electronics fault that affects message processing logic Forer in MU processor internal software/firmware | All | MILLUS SE INTO SOUL TIME IN THE SECOND TO | gyro measurements if their
time tags are inconsistent with | rate data is available, this | enough to cause an umbra
violation would be accepted
by the G&C software even if it
were generated by the IMU. A
slowly drifting attitude
solution might be harder to | 2R | Active | Maybe | Most IMUs have status
telemetry that will indicate if it
is receiving the timing pulse or
bother input data. Good
software will be monitoring
of the control of
lags. Telemetry will also be
downlinked occasionally as
part of ground monitoring of
G&C component
performance. | | MU to GNC/CDH to
Autonomy | ? None | | 3.1.c | | | generated (into dues not output any gyro rate measurements) | 1) Sensor/detector nor able to collect measurements 2) Damage for detector elements internal to the gyrol (strange mechanisms are specific 2) Damage for detector elements internal to the gyrol (strange), for itilis or earticle respective for the strange for the control of | | Gyros may fransision to a mode where
they don't try to generate rate data or
data may be flagged invalid from one or
more gyros | Since insufficient gyro data is
available, G&C software will
either use rate information
from the star ratempt to
propagate s/c attitude
through continuing star
ratcker attitude solutions. Ratt
knowledge will be degraded -
knowledge or continuing
requirements may not be met. | can't be obtained, the IMU
could be deemed unusable for
the rest of the mission.
Probably will not meet
attitude knowledge or control
accuracy requirements | missing or degraded rate data
will slowly drift from true | 2R | Active | Maybe | Some IMUs have status telemetry that will indicate that they can no longer generate grow data. G&C software will be monitoring some of these health & status flags. G&C stitude estimation software will liga problem if too many consecutive measurements from the same BMU are missing. Felemetry will also be downishly as part of ground monitoring of G&C component performance. | IMU health and status flags | IMU to GNC/CDH to
Autonomy | Probably 5-10
seconds to
secide that a
problem is
persistent and
we second to the second
section | | 8.1.d | | | not output the expected number/quantity of gyro rate
measurements of does not generate telementry messages at
expected rate for read out or full complement of measurements
not generated for single data message) | 1) Sensor/detector sporadically unable to collect gyro rate data 2) Damage to gyros (damage mechanisms are specific to the tupe of gyro selected (FOG, EMG, MBGM, MSG), examples for rifical are particle trapped inside or misalighment of resonator pieces causes friction or disturbs the normal resonance) of informational privings conditions degrading gyro measurements (sensitivity to of informational privings conditions degrading gyro measurements (sensitivity to of information (and the privings of privi | | Gyros may transition to a mode where
they don't try to generate rate data or
data may be Hagged invalid from one or
more gyros | Since insufficient gyro data are
wallable, G&C ioftware will
form the star tracker
measurements or attempt to
propagate s/6 attitude
through continuing star
tracker attitude solutions. Bate
innowledge will be degraded -
knowledge or control
requirements may not be met. | If sufficient gyro rate data
can't be obtained, the IMU
could be deemed unusable for
the rest of the mission.
Probably will not meet
attitude knowledge or control | Propagated attitude with missing or degraded rate data will slowly drift from true stituted and could eventually result in an umbra violation. | 2R | Active | Maybe | some IMU have status telemetry that will indicate that they can no longer generate grow date. Giving some of these health. Giving some of these health. & status, 1849. Get a status of these health. & status large, G&C status de estimation software will flag a problem if so many consecutive invesurements from the same date of the status | MU health and status flags | MAU to GNC/CDH to
Autonomy | Probably 5-10 econds to decide that a groblem is prosiblem is persistent and warrants taking action | | lie | | | Output telemetry contains degraded measurements (IMU outputs)
or gyror are data whose quality is less than expected or not meeting
spec) | 1) Environmental conditions degrading gyro data
3) CMG or other radiation event temporarly causing too much noise in rate data
3) Local source of IMU stimulation (e.g. vibration) causing "noise" in rate data
3) Local source of IMU stimulation (e.g. vibration) causing "noise" in rate data
1-litips of noise temporate that can be compensated by internal temperature control
inechanisms.
2) Elizar or in software or related memory degrades processing of gyro rate measurements
3) Gyror read out of data
processing algorithms are iscerred.
3) Time stamp associated with gyro rate data is blaced from correct time | | Data may be flagged invalid or quality
indicators may be changed ot indicate
the problem with data from one or
more gyros | G&C software may reject some of the rate data if it does not pass consistency checks. Software should continue to be able to generate attitude solutions, but hey will not be as accurate. Rate knowledge or control requirements may not be met. | could be deemed unusable for
the rest of the mission.
Probably will not meet
attitude knowledge or control
accuracy requirements | Propagated attitude with missing or degraded rate data will slowly drift from true attitude and could eventually result in an umbra violation. | 2R | Active | Maybe | Some fMU have slatus
telemetry that will indicate
that they can no longer
generate gro data. G.G.
controlled the controlling
specification of controlling
specificatio | IMU health and status flags | aMU to GNC/CDH to
Autonomy | Probably 5-10 seconds to decide that a problem is persistent and warrants taking action | | 3.1.f | | | quality flags) | 1) Environmental/viewing conditions degrading gyro rate data 3) CMI or other radiation event temporarily causing too much noise in rate data 3) CMI or other radiation event temporarily causing too much noise in rate data 5) Local source of MIS instituation (e.g. vibration) classing "noise" in rate data 6) leigh or low temperature that can't be compensated by internal temperature control mechanisms. 2) Error in some or radiated memory company processing of your can ensurements 2) Error in synthesis that package rave gror exadout for one message temperature 3) Error in hardware chain for gyror readout causes incorrect data to be used by processing software - raw readings are corrupted and don't reflect actual gyro output | | None - IMU thinks everything is ok MAU structs down | G&C software will reject a
measurement if it's not
consistent with recent past
history of s/c attitude & rate
history of s/c attitude & rate
But there will be bounds
associated with these checks
and some bad measurements
may be used in the attitude
estimation if they are just
"slightly off" instead of
obviously out of family.
Switch sides of IMU | unusable for the rest of the
mission. Probably will not
meet attitude knowledge or
control accuracy requirement:
without gyro rate data. May
be loss of mission.
No effect. | rate measurements could be
off just enough to cause the
spacecraft to "tilt" relative to
the Sun or slowly drift off
from the desired TPS to Sun | 2R
2R | Active | Maybe | G&C attitude estimation software will flag a problem if too many consecutive gyro rate measurements from the same gyro are rejected. Telemetry will also be downlinked occasionally as part of ground monitoring of G&C component performance. | IMU health and status flags | IMU to GNC/CDH to
Autonomy | Probably 5-10 seconds to decide that a problem is persistent and warrants taking action | | | | | Relay commands | | | | No effect until the IMU configuration needs to be changed. | Should always be able to have
3 gyros and one data interface
board working. Might not be
able to access all the
accelerometers, which means
that TCMs could not be
performed in closed-loop
mode. | N/A | 3 | | | | | | | | | | | Data (commands from the SCIF) | | | Some IMU data is lost | Since insufficient gyro data is available, G&C software will either use rate information from the star tracker measurements or attempt to propagate s/C attitude through continuing star tracker attitude solutions. Rat knowledge will be degraded-knowledge or control requirements may not be met. | can't be obtained, the IMU
could be deemed unusable for
the rest of the mission.
Probably will not meet
attitude knowledge or control
accuracy requirements | missing or degraded rate data
will slowly drift from true | 2R | | | | | | | | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Response Level | Desired Local Response | Allocation of
Local Response | Time to fix locally | Time to
Transmit | Response Desired System Response | Allocation of
System | Time to fix system | Time to
Transmit | Ground Response / Contingency | System Side
Switch | Quick
Processor
Switch | Response
Safe Mode | Remediation | Revisit | |----------|--|---|---|----------------|---|---------------------------------|---------------------|---------------------|----------------------------------|-------------------------|--------------------|---------------------|-------------------------------|-----------------------|------------------------------|-----------------------|---|---------| | C-3 | inertial Measurement Unit | couldn't be performed. A
single failure at any point in
time in the mission would be
ok. The FMEA results are the
same as what is listed (for the | Note that the current design has redundancy in both the number of individual gross and in the electronic/gover supplies. Minimum requirement for controllability is a grow covering 3 orthogonal directions. Either we will have one unit with 4 gross and 2 exterioric/gover supplies (more likely) of cults that each have 3 gross and 1 electronic/gover supply (less likely). In the latter case, we would have for in with bloot units on lay probably month them in different orientations) to ensure we'd have 3 good gross at at times. | | | | | Signal | | Response | | Signal | | | | | | | | iC-3.1 | IMU Side A | | | | | | | | | | ļ | ļ | | | | | Use star tracker rate data if redundant gyro |
! | | GC-3.1.a | | | Input command not received or acted on (When hursed on, some and the configure them to the correct operational mode. If the MUI is unable to correctly process these commands, it can full to reach the normal operation, and on the correctly process these commands, it can full to reach the normal operating mode where it would start outputting give rate 66s.) | Local | astU switch | Autonomy | 7 | 2 | None | None | None | None | | | | | hardware is not available. Software reset or IMMJ power cycle may cornect a software or electronic problem. Switching to the redundant IMMJ may not fiss a problem that lite is normann electronic software. If a software is normann electronic software is not remediated in increasany if 3-2 gyros continue to operate normally. If 3 gyros continue to operate normally, If 4 3 gyros are providing data, then the full attitude state is not observable and G&C coftware provided patch, then the full attitude state is not observable and G&C coftware removaled have to supplement the gyros data with another source of rate data (se star tracker measurements) if available. In other words, we are tolerant to loss of some gyros tracker measurements) if available in other sources, we are tolerant to loss of some gyros. | | | GC-3.1.b | | | thout message not received or processed (The IMU typically needs
come timing information from the eviolocit/SW to generate
correct time tage on the pror rate data solutions. A fault on the s/c
side or inside the IMU that causes this information to not the
side or inside the IMU that causes this information to not
available will cause probleme for the IMU in that the rate
measurements coming out will be misleading or dropped due to
the incorrect time tags.) | Local | MU switch | Autonomy | 7 | 2 | None | None | None | None | None | | | | Use star tracker net data if redundant gyro
nardware in not available. If the error in the time tags for the IMU data
could be characterized on the ground, the
GGG FSW could be modified to correct the
time tags on-board. If the star tracker kept
working, we should have time to detend
correct this with ground analysis. This is not
something that on-board fault protection
could handle. Soft reboot or power cycle may correct an
electronics or software/firmware bissue.
Any faults due to common components or
software would not be corrected with an
iMU switch. | | | GC-3-1.c
 | | Failure to output requested telemitry, output messages not
igenerated (IMU does not output any gyro rate measurements) | Local | and I switch of GGC software flags a problem either from the health & status eithenty or with the giro measurements, it will request ston from fault protections. Shoully this to by outputting flags and are used in the premise of earthcase authorizing value either flags. | Autonomy | 7 | 2 | None | None | None | None | None | | | | Use star tracker rate data if redundant gyro
hardware is not available. Software reset or IMU power cycle may
correct a software or electronic problem.
Switching to the redundant IMU may not fix
a problem that fies in common electronics or
software. | | | GC-3.1.d | | | Output telemetry contains insufficient measurements (MMU does
not output the expected number/quantity of gro rate
measurements or does not generate telemetry messages are
specied cate for rood of rolf complement of measurements
and generated for single data message) | Local | MU switch of GGC software flags a problem where from the health & status elementery or with the gyro measurements, it will request section from fault protection. Justilly this is by outputting flags are are used in the premise of serious autonomy rules; | Autonomy | 7 | 2 | None | :None | None | None | None | | | | Use star tracker rate data if redundant gyro
hardware is not available.
Software restor full power cycle may
correct a software or electronics problem.
Switching to the deundant IRUI may not fix
a problem that lies in common electronics or
software. | | | GC-3.1.e | | | Output telemetry contains degraded measurements (IMU outputs
gyro rate data whose quality is less than expected or not meeting
spec) | Local | MU switch If GGC software flags a problem where from the health & status sheenedry or with the gyro measurements, it will request scion from fault protection. I health with is by outputting flags that are used in the premise of serious autonomy rules. | Autonomy | 7 | 7 | None | None | None | None | None | | | | Use star tracker rate data if redundant gyro
hardware is not available. Software reset or MIM Jower cycle may
correct a software or electronics problem.
which may be redundant IMU may not fix
a problem that lies in common electronics or
software. | | | GC-3.1.f | | | Output telementry contains incorrect measurements which are flagged valid (IML) outputs gyro rate data whose time or rate is wrong but without indicating any problems with the data into own quality flags) | Local | MU switch If G&C software flags a problem other from the health & status telemetry or with the gyro rates, it will request action from fault protection. Usually this is by sortputting flags that are used in the premise of various autonomy rules. | Autonomy | 7 | ? | None | None | None | None | None | | | | Use star tracker rate data if redundant gyro
hardware in not available.
Software reset of MIJ power cycle may
correct a software or electronics problem.
Switching to the redundant IMU may not fix
a problem that lies in common electronics or
software. | | | Inputs | | | Relay commands | | | | | | | | | | | | | | | х | | | | | Data (commands from the SCIF) | | | | | | | | | | | | | | | х | | GC-4 | IMU Side B
Reaction Wheels
Rx Wh 1 | | | | | | | | | | | | | | | | | | | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Possible Causes | Phase | Local | Effect
Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Detection Method | od
TIm Path for Diagnosis | Time to Detect (Local) (System) | |----------|------|----------|--|--|--|--
---|--|---|----------|------------|----------------------------------|--|------------------|------------------------------|---| | GC-4.1.a | | | brable to eart force/forque on spacecraft (flywheel is not being consistent on to existing the change its spin; flywheel anturally spins shown due to losses in the system (friction); flywheel is unable to rotate) | | All except launch (of less
concern when thrusters as
concern when thrusters are
control, but of all will always
some effect since we
continue to command the
wheels during TCMs and
momentum dumps) | reach a low or zero speed equilibrium
but could be kicked up again by externa | pick up the slack and maintain
desired attitude, just not as
accurately. Probably will not
meet jitter requirements and
may not meet science pointing
accuracy requirements as
wheel is spinning down. | remaining 3 wheels, but
momentum dumps will be | Unlikely since the other 3
wheels should maintain
attitude, although they may b
running at higher | 2R | | r'es | compare wheel speed/torque to commanded wheel speed/torque to commanded wheel speed/torque from the speed to commanded wheel speed to commanded wheel speeds and other health status torque and other health status the monit | | | TIIO - probably ** which for a ** control opics to opics an heel unvesponsive | | GC-4.1.b | | | Case 1: Incorrect force/forque exerted on spacecraft | Frozen torque command - direction and magnitude stay at some fixed value; include both max and below max magnitude values. | | The "stuck" or "run away" wheel will eventually reach saturation (man speed with how long that takes depending on the speed magnitude when command first froze. | and once 2 of them are saturated, we lose | case - even if solar limb
sensors detect the umbra
violation it may not be
correctable in the time
available depending on how
we design the auto dump logi | Possible if failed wheel is still
considered available, but
despends on more members sate
despends on the members as a
second of the second of the
occurs and timing of
momentum dump logic and
wheel fault logic (to turn off
misbehaving wheel) | 2 | | res | compare wheel speed/forque to commanded wheel speed/forque for the speed/forque for the speed forque for the speed forque for the speed forque | | | TIIO - probably "In was the for a " "In control of the | | GC-4.1.c | | | Case 2: Incorrect force/torque exerted on spacecraft | Direction stack at + or , magnitude correct responding only to magnitude part of command. | | The "stuck" wheel will eventually reach isturation (max speed) with how long that takes depending on the speed magnitude when direction first got stuck. | The controller will mistakenly keep sending commands to all the wheels. The one that's only responding to to torque magnitude will eventually saturate at mas speed. The momentum will be higher, but may or may not be at the dump limit when the wheel may limit when the wheel may limit when the wheel may limit when the wheel and none 2 of them are saturated, we lose controllability. If the system can do a momentum dump before 2
of the wheels reach saturation, we may survive longer but dumps will be done more frequently (if allowed) is used to be a start of the | Loss of mission in the worst
case - even if solar limb
sensors detect the umbra
violation it may not be | Possible if too many wheels
reach saturation before a
momentum dump can be
performed. | 2 | | | | | | | | GC-4.1.d | | | Case 3: incorrect force/torque exerted on spacecraft | Direction reversed, magnitude correct - error in wheel interface electronics; most
wheels have separate inputs for the direction and magnitude of the commanded torque
that are probably processed separately in the wheel electronics. | | Wheel will spin in opposite direction
from commanded direction and exert a
lorque that fights against the desired
control. Worn treessarily reach
saturation (mas speed) since direction
agar can still change with time. | when this occurs. There | Loss of mission in the worst
case - even if solar limb
sensors detect the umbra
violation it may not be | Probably not in this case. | 2 | | | | | | | | GC-4-1.e | | | Case 4: Incorrect force/torque exerted on spacecraft | Magnitude studs, direction correct; responding only to direction part of command, but
non-zero magnitude; include both max and below max magnitude values. | | Wheel will spin in correct direction from
commanded direction but torque
magnitude will be larger or smaller that
commanded. Worn necessarily reach
saturation (max speed) since direction
sign can still change with time. It
sessentially adding in some disturbance
torque that can work with the system o
against it. | oscillate between + and -
values. If magnitude is high,
this might just drive one of the
other wheels to saturation and
if a momentum dump isn't | correctable in the time
available depending on how | Possible, but less likely if torque magnitude is lower. | 2 | | | | | | | | 6041.1 | | | Case 5: Incorrect force/torque exerted on spacecraft | Wheel responding significantly out-of-spec - magnitude and direction of torque icommand are correct, but torque output to spacecraft deviates from it all cucalized increase in infiction is part of lymbeller ottoining registral increase in infiction passing shall be a facility of the completely stop in from moving, of learning the completely stop in from moving. Of learning noting the completely stop in from moving of learning the complete stop in from moving of learning the complete stop in from moving of learning the complete stop in s | | a) If wheel is sluggish, it puts out less torque than commanded and may consume more power as the motor works to overcome bigger foss effects. b) If wheel is "energetic", it puts out more torque than commanded, unlikely usually it she tisses that are bigger than expected, if I puts out of the put pu | b) Turns may complete faster. c) Hard to predict without
guessing at the nature of the
erratic behavior. But if it's
intermittent even at max
torque, the other 3 wheels | sensors detect the umbra
violation it may not be
correctable in the time | a) Possible if failed wheel is still considered available, but sidepends on monetum state of system when wheel failure occurs and timing of momentum dump logic and wheel is still considered available, but is still considered available, but sidepends on monetum state of system when wheel fault logic and wheel is still considered available, but depends on monetum state of system when wheel fault logic for momentum dump logic and wheel sall logic (to turn off misbehaving wheel) c) Unlikely in this case | 2 | | | | | | | | GC-41.g | | | Degraded force/torque exerted on spacecraft | 1) Slight deviation in magnitude of torque, direction correct; leading to a sluggish system but not likely leading to any gross failure 2) When responding slightly not of-spec; 3) When friction than expected 3) Inhablance causing irregular rotation of flywhed; 3) Inhablance causing irregular rotation of flywhed; 6) Electric motor causing motor control actions to be just slightly off what is needed to get wheel to desired torque | | Wheel takes longer to get to desired
speed/forque; might consume more
power in trying to get to commanded
state | pointing accuracy | Science measurements possibly degraded (WISPR) if
Inter requirements are
violated. If offending wheel is
disabled, will need momentur
dumps more often, using
more fuel | Probably not | 2R | | ground analysis,
not on-board | May be able to detect
something like this by long-
term trending of wheel speed
and torque assuming we get
enough telemetry to the
ground | | | | | FMEA ID Name | Function | Failure Mode / Limit / Constraint | Response Level | Desired Local Response | Allocation of
Local Response | Time to fix | Time to
Transmit | Response Desired System Response | Allocation of
System | Time to fix system | Time to
Transmit | Ground Response / Contingency | Quict System Side Processor Switch Switch | k Response
Safe Mode | Remediation | Revisit | |--------------|----------|--|----------------|------------------------|---------------------------------|-------------|---------------------|----------------------------------|-------------------------|--------------------|---------------------|--------------------------------------|---|-------------------------|--|---------| | 6C-4.1.a | | Unable to exert force/forque on spacecraft (flywheel is not being scred on to maintain or change its spin; flywheel naturally spins sidown due to losses in the system (friction); flywheel is unable to rotate) | | | | | Signal | | Proposes | | Signal | Ground might attempt a power switch. | | | First action would be to switch sides (REM) for commanding of the wheels for just this wheel if we can do it on a per wheel basis) - sessing the falliers is in the commanders of | | | 6C41b | | Case 1: incorrect force/torque exerted on spacecraft | | | | | | | | | | | | | For this case, we are assuming that the failed swheel is still actively rotating and not in the way the controlled commanded it to. The way the controlled commanded it to. The way the controlled commanded it to. The same of the control con | | | 6C-4.1.c | | Case 2: Incorrect force/torque exerted on spacecraft | | | | | | | | | | | | | | | | GC41.d | | Case 3: Incorrect force/forque exerted on spacecraft | | | | | | | | | | | | | Will do polarity tests pre-launch that should detect in-wiring or miscommunication in the second of | | | GC41e | | clase 4: Incorrect force/forque exerted on spacecraft | | | | | | | | | | | | | | | | GC-41.f | | Case 5: Incorrect force/torque exerted on spacecraft | | | | | | | | | | | | | | | | GC-41g | | Degraded force/torque exerted on spacecraft | | | | | | | | | | | | | Stop using the one wheel that's misbehaving
assuming the other 3 wheels are still
performing in spec. Will have to adjust
control parameters to tune to the 3 wheels
that are left. | | ## Solar Probe Plus (SPP) Failure Modes and Effects Analysis (FMEA) | | | | | à. | | | Effect | | | | | | | Detection Metho | d | | | |----------|--------------------|----------|--
---|-------|--|--|---|--|----------|------------|---|---|-------------------|------------------------|--------------------------|----------------------------| | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Possible Causes | Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | TIm for Diagnosis | TIm Path for Diagnosis | Time to Detect ' (Local) | Time to Detect
(System) | | GC-4.1.h | | | Failure to output requested telemetry; output messages not generated | 1) Permanent loss of tachometer data - cause depends on mechanism that wheel uses to
irriday speed data. Calculation of wheel speed can be done in wheel isted or in light
incharacter or similar data output by wheel salcometer.
2) loss of feetbask of songer or other health 8. status televiety - may only be loss of
electronics - can't read data from internal source, can't correctly generate telemetry
inessage, etc. | | | I) Incorrect estimate of wheel
and system momentum. Might
wait longer than we should to
initiate a momentum dump. If
the other 3 wheels still have
sould speed estimates and we
have valid angular rate
estimate, we should be ok.
2) G&S coftware loses ability
to detect some problems with
the wheel. | No effect. G&C will have less data for long-term trending of wheel performance. | | 4 | | Yes | No wheel speed messages
for some long period of time. No wheel telementy
messages received for some
long period of time. | | | | | | GC-4.1.i | | | Output telemetry contains insufficient measurements | 3) Temporary loss of tachometer counts or wheel speed data - intermitten skips or repeats, born periods of no data - intermitten skips or 25 kips and apps in dechadax of torque or other health & status telemetry - may only be loss of monitor data, these data are not directly used in the control loop | | | the computation. Might initiate a dump when not needed or wait too long to initiate a dump if skipped counts cause wheel to appear to be rotating much faster or | Might do more momentum
dumps than needed if errors
in wheel speed estimate are
not detected. More
momentum dumps decreased
science time and increase
propellant usage (should have
sufficient margin). J G&C will have less data for
long-term trending of wheel | Unlikely - if too much time lapses between momentum dumps, the SLSes will see the Sun prior to umbra violation and safe the s/c. | 4 | | Probably -
depends on how
the data loss
manifests itself | GBC software will have checks
on changes in wheel speed
estimates, compared with
previous speed and
commanded torque. Gross
jumps should be detected and
flagged as errors. | | | | | | GC-4.1.j | | | Output telemetry contains incorrect measurements which are flagged valid | Tachometer outputs wrong signals/counts or incorrect wheel speed is output | | None - wheel continues to respond to commands, it just deser't talk back every time it's expected to. | incorrect estimate of wheel
and system momentum.
Might initiate a dump when
on needed or wait too long it
initiate a dump if wheel
appears to be rotating much
faster or slower than it
actually is | dumps than needed if errors
in wheel speed estimate are
not detected. More
momentum dumps decreased | | 4 | | | | | | | | | GC-4.1.k | | | Higher friction in a wheel happens in combination with a side switch (for other reasons) | | | Wheel spins down due to side switch.
Only a single wheel is affected by the
friction, but all wheels are affected by
the side switch. | Spacecraft turns (direction
and speed depends on
conditions at time of side
switch). | Possibly mission-ending. | Possible, depending on where
in orbit, how fast, and which
direction it's turning. | 1 | | No | | | | | | | Inputs | | | Power | | | Wheel spins down. | OK due to margin with other
three. | No effect. | N/A | 4 | | Yes | - PDU current goes to 0 - Expect otuput data and acknowledge commands that aren't sent of SW should flag it and tell FSW. | | | | | | GC-4.3 | Rx Wh 2
Rx Wh 3 | | Commands from TAC | | | Wheel would spin down if not commanded. | Controller will see attitude and
rate errors and will try to get
them to 0. FSW will re-
command. Could switch to
other TAC. | No effect. | N/A | 4 | | Yes | Stop acknowledging commands. | | | | | | GC-4.4 | Rx Wh 4 | | <u> </u> | .i | L | .l | i | i | i | | i | İ | | | L | i. | | | | | | | | | | | Response Desired System Response | | | | | | Quick | Response | | | |----------|-------------------------------|----------|--|----------------|------------------------|---------------------------------|-------------------------------|----------------------------------|-------------------------------------|-----------------------|-------------------------------|----------------------------|----------------------------|---------------------|-----------|---|---------| | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Response Level | Desired Local Response | Allocation of
Local Response | Time to
Transmit
Signal | Desired System Response | Allocation of
System
Response | Time to fix
system | Time to
Transmit
Signal | Ground Response / Continge | ency System Side
Switch | Processor
Switch | Safe Mode | Remediation | Revisit | | GC-4.1.h | | | failure to output requested telemetry; output messages not generated | | | | | | | | | | | | | Switch to other side for wheel telementy interface to seel It elementy is restored.
Power cycling the wheel could clear an electronics problem. May not help if the problem is internal to the wheel. Would not recommend anything other than side switd for no-board automore, change to propagate wheel speed from last valid estimate and torque commands. Might try turning off wheel, depending on lost telementy. | | | GC-4.1.i | | | Output telemetry contains insufficient measurements | | | | | | | | | | | | | Switch to other side for wheel telemetry interface to see if telemetry is restored.
Power cycling the wide could clear an electronic problem. May not help if the problem is internal to the wheel. Would not recommend anything other than side switch do not bear all actions.
If error persists, might take wheel off-line. | | | GC-4.1.j | | | Output telemetry contains incorrect measurements which are flugged valid | | | | | | | | | | | | | Power cycling the wheel could clear an electronics problem. May not help if the problem is internal to the wheel. Might try flight software charge to propagate wheel speed using forage commands: gingore remoneus telementy. Or might be possible to correct telementy if we can back out correct wheel speeds from ground analysis of telementry over long time periods. If error persists, might take wheel off-line. | | | GC-4.1.k | | | Higher friction in a wheel happens in combination with a side switch (for other reasons) | | | | | | | | | | | | | | | | Inputs | | | Power | | | | | | | | | | | | | | | | | | | Commands from TAC | | | | | | | | | | | | | | | | GC-4.3 | Rx Wh 2
Rx Wh 3
Rx Wh 4 | | | | | ļ | | | | | | | | <u> </u> | | | | Subject Matter Jack Ercol Notes: Initially filled out by Jack Ercol, but basically redone by HSSSS. Clay is talking to Expert(s): HSSSS contact HSSSS for updates/verification. | Expert(s): | HSSSS contact | HSSSS for updates/verification. | | | | | Effec | • | | I | 1 | | Detection Method | | | |------------|-----------------------------------
---|---|---|--|--|---|---|-----------------|----------|------------|--|--------------------------------------|-----------------------------|----------------| | FMEA ID | Name | Function | Failure Mode / Limit / | Possible Causes | Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable How Observed? | Tim for Diagnosis Tim Path for Diagn | osis Time to Detect (Local) | Time to Detect | | TCS-ACCU-1 | Accumulator | Stores coolant water prior to system charge; Provides thermal expansion and loop leakage compensation. Coolant is internal to the accumulator tank bellows and the fluid is expelled using a fixed P2 gas charge that is applied between the bellows and the tank shell. Holds T3D in 3 min. of coolant; T3D p3g MDP; Bellows neutral position is T3D. | Constraint Cross-bellows Internal Leakage | 1) Over stress (ext induced);
2) Contaminants induced;
3) Corrosion;
4) Fatigue;
5) Material/process (weld)
flaw. | All | The bellows will extend to its neutral no-load position; interchanging and mixing of fluids between N2 and coolant cavities due to temperature excursions. | N2 bubbles getting into the coolant
loop could cause cavitation of the
active pump (items PM1/PM2).
Decrease or loss of flow would lead
to rise in loop temperatures and
potential inability to meet solar array
cooling needs. | would lead to loss ICS and | N/A | 2 | | 1) Pump delta-p sensor and/c
current and temp sensors
detect cavitation; 2) Loop temp sensors detect
degraded cooling | | | (System) | | TCS-ACCU-2 | Accumulator | Stores coolant water prior to system charge; Provides thermal expansion and loop leakage compensation. Coolant is internal to the accumulator tank bellows and the fluid is expelled using a fixed NZ gas charge that is applied between the bellows and that has shell. Holds 3piled between the bellows and the tank shell. Holds 1D in 3 min. of coolant; TBD psig MDP; Bellows neutral position is TBD. | External Coolant Leakage | 1) Over stress (ext induced);
2) Corrosion;
3) Fatigue;
4) Material/process (weld)
flaw. | All | Coolant leaks to external from the accumulator. | Potential pump cavitation and eventual loss of cooling capability. | Redundant pump failures due
to cavitation common cause
and loss of coolant would lead
to loss TCS and mission. | N/A | 2 | | 1) Tank pressure and temperature sensors detect loss of coolant; 2) Pump delta-p sensor and/c current and temp sensors detect cavitation; 3) P2 detects loss of main loo pressure. 4) Loop temp sensors detect loss of cooling | | | | | TCS-ACCU-3 | Accumulator | Stores coolant water prior to system charge; Provides thermal expansion and loop leakage compensation. Coolant is internal to the accumulator tank bellows and the fluid is expelled using a fixed NZ gas charge that is applied between the bellows and the tank shell. Notice TBD in 3 min. of coolant; TBD psig MDP; Bellows neutral position is TBD. | External Gas Leakage | (1) Over stress (ext induced);
2) Corrosion;
3) Fatigue;
4) Material/process (weld)
flaw. | All | Gas leaks to external from the | Unable to maintain a net positive
pump input pressure resulting in
pump cavitation. Inability to provide
thermal for expansion could result in
bellows rupture. | loss of coolant due to rupture | | 2 | | 1) Tank pressure sensor detects loss of pressurization 2) Pump delta-p sensor and/c current and temp sensors detect cavitation; 3) P2 detects loss of main loo pressurization; 4) Loop temp sensors detect loss of cooling | | | | | TCS-ACCU-4 | Accumulator | Stores coolant water prior to system charge; Provides thermal expansion and loop leakage compensation. Coolant is internal to the accumulator tank bellows and the fluid is expelled using a fixed M2 gas charge that is applied between the bellows and the tank shell. Holds TBD In 3 min. of coolant; TBD psig MDP; Bellows neutral position is TBD. | Fails to Expand/Contract | Jammed bellows
(Interference of moving parts); Contamination. | All | inability to expand during high
temp operation could cause
bellows over pressure and
potential rupture.
inability to contract during low
temp operation could cause
pump cavitation. | Potential pump cavitation and eventual loss of cooling capability. | Redundant pump failures due
to cavidation common cause or
loss of coolant due to rupture
would lead to loss TCS and
mission. | N/A | 2 | | 1) Tank pressure and temperature sensors may detect pressure fluctuations due to temperature excursions; 2) Pump delta-p sensor and/current and temp sensors detect cavitation; 3) Loop temp sensors detect loss of cooling | | | | | TCS-LV1-1 | Accumulator isolation valve | Valve is launched closed and isolates the coolant in the accumulator from the rest of the system. Opens following launch to allow coolant into radiators 1 and 4 and solar arrays. | Fails open | 1) Contamination; 2) Seal
failure; 3) FSW Failure; 4)
Electrical/ Electronics failure;
5) Autonomy failure; 6) Failed
sequence | | Coolant would be allowed into
the main loop before it is
desired. | Coolant would freeze, potentially leading to rupture. | Rupture due to freezing results in loss of TCS and mission. | N/A | 2 | | 1) Tank pressure and temperature sensors may detect loss of coolant into the main loop; 2) Pump delta-p sensor and system pressure and temp sensors will all detect rupture resulting in loss of TCs. | | | | | TCS-LV1-2 | Accumulator isolation valve | Valve is launched closed and isolates the coolant in the accumulator from the rest of the system. Opens following launch to allow coolant into radiators 1 and 4 and solar arrays. | internal leakage (large leak) | 1) Contamination; 2) Seal
fallure | All | | Sufficient coolant leaks into system to cause a blockage when it freezes, potentially leading to rupture. | | N/A | 2 | | 1) Tank pressure and temperature sensors may detect loss of coolant into the main loop; 2) Pump delta-p sensor and system pressure and temp sensors will all detect rupture resulting in loss of TCs. | | | | | TCS-LV1-3 | Accumulator isolation valve | Valve is launched closed and isolates the coolant in the
accumulator from the rest of the system. Opens
following launch to allow coolant into radiators 1 and 4
and solar arrays. | Internal leakage (small leak) | 1) Contamination; 2) Seal
failure | All | Coolant would be allowed into
the main loop before it is
desired. | Coolant leak is insufficient to block
pipe when frozen. Frozen coolant
would eventually melt with no
damage to the system. | No effect. | N/A | 4 | | Tank pressure and
temperature sensors may
detect loss of coolant into the
main loop. | | | | | TCS-LV1-4 | Accumulator isolation valve | Valve is launched closed and isolates the coolant in the
accumulator from the rest of the system. Opens | Valve stays closed when
commanded to open | 1) Contamination; 2) Jamming;
3) Binding; 4) Seal failure; 5)
FSW Failure; 6) Electrical/
Electronics failure; 7)
Autonomy failure; 8) Failed
sequence | All | Valve stays closed. | Re-send command to open valve,
but if failure persists, no coolant is
available to the TCS. | | N/A | 2 | | 1) Pump delta-p sensor
detects loss of flow;
2) Loop temp sensors detect
loss of cooling | | | | | TCS-LV1-5 | Accumulator isolation valve | Valve is launched closed and isolates the coolant in the
accumulator from the rest of the system. Opens
following launch to allow coolant into radiators 1 and 4
and solar arrays. | Valve closes when not commanded to close | Mechanical failure (cannot be
commanded to close after
ground testing is completed) | All | Valve closes. | The system loses access to the
accumulator, resulting in potential
rupture or pump cavitation as a
result of high/low temperature
excursions, respectively. | Rupture due to high
temperatures leads to loss of
coolant, loss of TCS, and loss
of mission. Pump cavitation due to low
temperatures leads to pump
failures, loss of TCS, and loss
of mission. | N/A | 2 | | 1) Tank pressure and temperature sensors detect loss of cooland due to rupture 2) Pump delta-p sensor detects loss of flow; 3) Loop temp sensors detect loss of cooling | | | | | TCS-LV1-6 |
Accumulator isolation valve | Valve is launched closed and isolates the coolant in the accumulator from the rest of the system. Opens following launch to allow coolant into radiators 1 and 4 and solar arrays. | External leakage | 1) Over-stress; 2) Corrosion; 3)
Fatigue; 4) Material/process
or weld flaw; 5) Seal failure | | Coolant leaks to space. | Potential pump cavitation and eventual loss of cooling capability. | Redundant pump failures due
to cavitation common cause
and loss of coolant would lead
to loss TCS and vehicle. | N/A | 2 | | 1) Tank pressure and temperature sensors detect loss of coolant; 2) Pump delta-p sensor and/current and temp sensors detect cavitation; 3) P2 detects loss of main loo pressure; 4) Loop temp sensors detect loss of cooling | | | | | TCS-LV1-7 | Accumulator isolation valve | Valve is launched closed and isolates the coolant in the
accumulator from the rest of the system. Opens
following launch to allow coolant into radiators 1 and 4
and solar arrays. | Position indicator indicates
"closed" when valve is actually
open | Sensor malfunction | All | | Re-send open command (does not
affect state of valve). Will see
reduction in pressure in accumulator
from fully-loaded position, and will
see cooling to the solar arrays.
Eventually will assume PI sensor
failure. | No effect. | N/A | 4 | | Accumulator pressure sensor sees drop in accumulator pressure The pressure 2) Temperature telemetry with show that system is operating. | | | | | TCS-LV1-8 | Accumulator isolation valve | Valve is launched closed and isolates the coolant in the
accumulator from the rest of the system. Opens
following launch to allow coolant into radiators 1 and 4
and solar arrays. | Position indicator indicates
"open" when valve is actually
closed | Sensor malfunction | Launch through cooling
system activation | Valve is closed, as | Will see no pressure drop at
accumulator (expected if valve is
open). Eventually will assume PI
sensor failure. | No effect. | N/A | 4 | | Accumulator pressure sensor does not detect drop in accumulator pressure. | | | | | TCS-LV2-1 | Upstream radiator isolation valve | Valve is launched closed and isolates radiators 2 and 3 on | Fails open | 1) Contamination; 2) Seal
failure; 3) FSW Failure; 4)
Electrical/ Electronics failure;
5) Autonomy failure; 6) Failed
sequence | From initial cooling system activation (radiators 1 & 4) through final cooling system activation (radiators 2 & 3) | Coolant would be allowed into
the loop containing Radiators
2&3 before it is desired. | | Rupture due to freezing
results in loss of TCS and
vehicle | N/A | 2 | | Pump delta-p sensor and
system pressure and temp
sensors will all detect rupture
resulting in loss of TCs. | | | | Subject Matter Jack Ercol Expert(s): HSSSS contact Notes: Initially filled out by Jack Ercol, but basically redone by HSSSS. Clay is talking to HSSSS for updates/verification. | | HSSSS contact | HSSSS for updates/verification. | | | | | | | Response | | | | | | Quick Response | | | | |------------|--------------------------------------|---|---|--|------------------------|------------------------------|---------------------|------------------------|----------|------------------------------|--------------------|-------------------------|----------------------------------|--------------------|------------------|-----------|---|---------| | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Response Level | Desired Local Response | Allocation of Local Response | Time to fix locally | Time to Transmit Signa | | Allocation of System Respons | Time to fix system | Time to Transmit Signal | Ground Response /
Contingency | System Side Switch | Processor Switch | Safe Mode | Remediation | Revisit | | TCS-ACCU-1 | Accumulator | Stores coolant water prior to system charge; Provides thermal expansion and loop leakage compensation. Coolant is internal to the accumulator tank bellows and the fluid is expelled using a fixed P2 gas charge that is applied between the bellows and the tank shell. Holds T8D In alm. of coolant; T8D psig MDP; Bellows neutral position is TBD. | Cross-bellows Internal Leakage | Seconds/minutes | | | | | N/A | None | | | | | | | Historically this has been an accepted risk in similar spaceflight applications, based on it's a highly reliable all welded pressure barrier metal beliow assembly design, rigourous design stress analyses, manufacturing process controls, mandatory hardware inspection points, and qual/accept tests. | | | TCS-ACCU-2 | Accumulator | Stores coolant water prior to system charge; Provides thermal expansion and loop leakage compensation. Coolant is internal to the accumulator tank bellows and the fluid is expelled using a fixed NZ gas charge that is applied between the bellows and the tank shell. Holds TBD In3 min. of coolant; TBD psig MDP; Bellows neutral position is TBD. | External Coolant Leakage | Seconds/minutes | | | | | N/A | None | | | | | | | | | | TCS-ACCU-3 | Accumulator | Stores coolant water prior to system charge; Provides thermal expansion and loop leakage compensation. Coolant is internal to the accumulator tank bellows and the fluid is expelled using a fixed NZ gas charge that is applied between the bellows and the tank shell. Holds TBD In3 min. of coolant; TBD psig MDP; Bellows neutral position is TBD. | External Gas Leakage | Seconds/minutes | | | | | N/A | None | | | | | | | | | | TCS-ACCU-4 | Accumulator | Stores coolant water prior to system charge; Provides thermal expansion and loop leakage compensation. Coolant is internal to the accumulator tank bellows and the fluid is expelled using a fixed NZ gas charge that is applied between the bellows and the tank shell. Holds TBD In a min. of coolant; TBD psig MDP; Bellows neutral position is TBD. | Fails to Expand/Contract | Seconds/minutes | | | | | N/A | None | | | | | | | | | | TCS-LV1-1 | Accumulator isolation valve | Valve is launched closed and isolates the coolant in the accumulator from the rest of the system. Opens following bunch to allow coolant into radiators 1 and 4 and solar arrays. | Fails open | Minutes | | | | | N/A | None | | | | | | | | | | TCS-LV1-2 | Accumulator isolation valve | Valve is launched closed and isolates the coolant in the
accumulator from the rest of the system. Opens
following launch to allow coolant into radiators 1 and 4
and solar arrays. | Internal leakage (large leak) | Minutes | | | | | N/A | None | | | | | | | | | | TCS-LV1-3 | Accumulator isolation valve | Valve is launched closed and isolates the coolant in the
accumulator from the rest of the system. Opens
following launch to allow coolant into radiators 1 and 4
and solar arrays. | Internal leakage (small leak) | Minutes (depends on
severity of leak) | | | | | N/A | None | | | | | | | | | | TCS-LV1-4 | Accumulator isolation valve | Valve is launched closed and isolates the coolant in the
accumulator from the rest of the system. Opens
following launch to allow coolant into radiators 1 and 4
and solar arrays. | Valve stays closed when commanded to open | Minutes | | | | | N/A | None | | | | | | | Redundant, independent opening electronics. This would require two failures. | | | TCS-LV1-5 | Accumulator isolation valve | Valve is launched closed and isolates the coolant in the
accumulator from the rest of the system. Opens
following bunch to allow coolant into radiators 1 and 4
and solar arrays. | Valve closes when not commanded to close | Minutes | | | | | N/A | None | | | | | | | | | | TCS-LV1-6 | Accumulator isolation valve | Valve is launched closed and isolates the coolant in the accumulator from the rest of the system. Opens following launch to allow coolant into radiators 1 and 4 and solar arrays. | External leakage | Seconds/minutes | | | | | N/A | None | | | | | | | | | | TCS-LV1-7 | Accumulator isolation valve | Valve is launched closed and isolates the coolant in the
accumulator from the rest of the system. Opens
following launch to allow coolant into radiators 1 and 4
and solar arrays. | Position indicator indicates
"closed" when valve is actually
open | | | | | | | | | | | | | | | | | TCS-LV1-8 | Accumulator isolation valve | Valve is launched closed and isolates the coolant in the
accumulator from the rest of the system. Opens
following launch to allow coolant into radiators 1 and 4
and solar arrays. | Position indicator indicates
"open" when valve is actually
closed | | | | | | | | | | | | | | | | | TCS-LV2-1 | Upstream radiator isolation
valve | Valve is launched closed and isolates radiators 2 and 3 on
the upstream side. Opens about 1 month into the
mission to allow coolant into radiators 2 and 3. | Fails open | Minutes | | | | | N/A | None | | | | | | | Can adjust vehicle orientation to prevent freezing | | | FMEA ID | Name | Function | Failure Mode / Limit / | Possible Causes | Phase | Local | Effer
Next Higher | ct
Mission | Umbra Violation | Severity | Type of FM | Observable How Observed | | ion Method TIm Path for Diagnosis | Time to Detect (Local) | Time to Detect | |-----------
--|---|---|---|--|---|--|--|-------------------|----------|--------------|---|--------------------------------------|------------------------------------|------------------------|----------------| | | Name | runcuon | Constraint | rossible causes | Filase | Local | Next Higher | Wilsou | Ollibra violation | Severity | Type of Five | 1) Tank pressure and | Till for Diagnosis | illi Fatti toi Diagnosis | Time to Detect (Local) | (System) | | TCS-LV2-2 | Upstream radiator isolation valve | Valve is launched closed and isolates radiators 2 and 3 or
the upstream side. Opens about 1 month into the
mission to allow coolant into radiators 2 and 3. | internal leakage (large leak) | 1) Contamination; 2) Seal
failure | From initial cooling system activation (radiators 1 & 4) through final cooling system activation (radiators 2 & 3) | the loop containing Radiators | Sufficient coolant leaks into system to cause a blockage when it freezes, potentially leading to rupture. | | N/A | 2 | | temperature sensors of
temperature sensors re
detect loss of coolant
main loop;
2) Pump detta-p senso
system pressure and t
sensors will all detect
resulting in loss of TCS | nto the
and
mp
upture | | | | | TCS-LV2-3 | Upstream radiator isolation valve | Valve is launched closed and isolates radiators 2 and 3 or the upstream side. Opens about 1 month into the mission to allow coolant into radiators 2 and 3. | internal leakage (small leak) | 1) Contamination; 2) Seal
failure | From initial cooling system activation (radiators 1 & 4) through final cooling system activation (radiators 2 & 3) | Coolant would be allowed into
the loop containing Radiators
2&3 before it is desired. | | No effect. | N/A | 4 | | Tank pressure and
temperature sensors r
detect loss of coolant
main loop. | | | | | | TCS-LV2-4 | Upstream radiator isolation valve | Valve is launched closed and isolates radiators 2 and 3 or
the upstream side. Opens about 1 month into the
mission to allow coolant into radiators 2 and 3. | Valve stays closed when commanded to open | 1) Contamination; 2) Jamming,
3) Binding; 4) Seal failure; 5)
FSW Failure; 6) Electrical/
Electronics failure; 7)
Autonomy failure; 8) Failed
sequence | From final cooling system activation (radiators 2 & 3) on. | Valve stays closed. | Re-send command to open valve,
but if failure persists, no coolant is
available to radiators 2 & 3. | Loss of TCS. Loss of mission. | N/A | 2 | | 1) Pump delta-p senso
detects loss of flow;
2) Loop temp sensors
loss of cooling
3) Position indicator o
indicates closed state | letect | | | | | TCS-LV2-5 | Upstream radiator isolation valve | Valve is launched closed and isolates radiators 2 and 3 or the upstream side. Opens about 1 month into the mission to allow coolant into radiators 2 and 3. | Valve closes when not commanded to close | Mechanical failure (cannot be
commanded to close after
ground testing is completed) | | Valve closes. | The system loses access to Radiator
2 & 3. | S Loss of TCS. Loss of mission. | N/A | 2 | | 1) Pump delta-p senso
detects loss of flow;
2) Loop temp sensors
loss of cooling
3) Position indicator o
indicates closed state | letect | | | | | TCS-LV2-6 | Upstream radiator isolation valve | Valve is launched closed and isolates radiators 2 and 3 or
the upstream side. Opens about 1 month into the
mission to allow coolant into radiators 2 and 3. | External leakage | 1) Over-stress; 2) Corrosion; 3)
Fatigue; 4) Material/process
or weld flaw; 5) Seal failure | From initial cooling system activation (radiators 1 & 4) on. | Coolant leaks to space. | Potential pump cavitation and eventual loss of cooling capability. | Redundant pump failures due to cavitation common cause and loss of coolant would lead to loss TCS and vehicle. | 1 | 2 | | 1) Tank pressure and temperature sensors closs of coolant; 2) Pump delta-p sensor current and temp sens detect exhatation; 3) PZ detects loss of m pressure; 4) Loop temp sensors loss of cooling. | and/or
ors
ain loop | | | | | TCS-LV2-7 | Upstream radiator isolation valve | Valve is launched closed and isolates radiators 2 and 3 or
the upstream side. Opens about 1 month into the
mission to allow coolant into radiators 2 and 3. | Position indicator indicates
"closed" when valve is actually
open | Sensor malfunction | From final cooling system activation (radiators 2 & 3) on. | Valve is open, as commanded | Re-send open command (does not
affect state of valve). Will see
reduction in pressure in
accumulator, and will see additional
cooling to solar arrays. Eventually
will assume a PI sensor failure. | No effect. | N/A | 4 | | Accumulator pressus sensor sees drop in accumulator pressure Temperature telem show that system is of | try will | | | | | TCS-LV2-8 | Upstream radiator isolation
valve | Valve is launched closed and isolates radiators 2 and 3 or
the upstream side. Opens about 1 month into the
mission to allow coolant into radiators 2 and 3. | Position indicator indicates
"open" when valve is actually
closed | Sensor malfunction | Launch through final cooling
system activation (radiators 2
& 3) | Valve is closed, as
commanded. | No effect until initial cooling system
activation (Radiators 1 & 4). At initi
cooling system activation, will see
that the temperatures surrounding
Radiators 2 & 3 do not change. Will
eventually assuming a PI sensor
failure. | al
No effect. | N/A | 4 | | Accumulator pressure
does not detect drop i
accumulator pressure. | | | | | | TCS-LV3-1 | Downstream radiator isolation
valve | Valve is launched closed and isolates radiators 2 and 3 or
the downstream side. Opens about 1 month into the
mission to allow coolant into radiators 2 and 3. | Fails open/Internal leakage | 1) Contamination; 2) Seal
failure; 3) Software Failure; 4)
Electrical/ Electronics failure | All | Coolant may be allowed into
the radiator 2/3 segment of
the cooling loop before it is
desired. | Potential coolant freezing,
potentially leading to rupture and
subsequent leakage. | Rupture due to freezing
results in loss of TCS and
vehicle | N/A | 2 | | P3 detects pressure ris
coolant leaks in | e as | | | | | TCS-LV3-2 | Downstream radiator isolation valve | Valve is launched closed and isolates radiators 2 and 3 or the downstream side. Opens about 1 month into the mission to allow coolant into radiators 2 and 3. | Fails closed | 1) Contamination; 2) Jamming;
3) Binding; 4) Seal failure; 5)
Software Failure; 6) Electrical/
Electronics failure | All | Valve doesn't open when commanded, or valve closes inadvertently. | Loss of flow to radiators 2 and 3. | Inability to supply coolant to
radiators 2 and 3 results in
inability to handle nominal
heat loads, which eventually
leads to loss of vehicle when
the TCS can no longer keep | | 2 | | Loop temp sensors de
failure to supply flow t
radiators 2 and 3. | | | | | | TCS-LV3-3 | Downstream radiator isolation
valve | Valve is launched closed and isolates radiators 2 and 3 or the downstream side. Opens about 1 month into the mission to allow coolant into radiators 2 and 3. | External leakage, upstream
side | 1) Over-stress; 2) Corrosion; 3)
Fatigue; 4) Material/process
or weld flaw; 5) Seal failure | All | Coolant leaks to external from
the downstream side of the
valve beginning when LV2 and
LV3 are opened. | | Redundant pump failures due to cavitation common cause and loss of coolant would lead to loss TCS and vehicle. | • | 2 | | 1) Tank pressure and temperature sensors colors of colonal rafer I/ been opened; 2) Pump deta-p senso current and temp sens detect cavitation; 3) PZ detects loss of m pressure. 4) Loop temp sensors loss of cooling | 2 has
r and/or
ors
ain loop | | | | | TCS-LV3-4 | Downstream radiator isolation valve | Valve is launched closed and isolates radiators 2 and 3 or the downstream side. Opens about 1 month into the mission to allow coolant into radiators 2 and 3. | External leakage, downstream
side | 1) Over-stress; 2) Corrosion; 3)
Fatigue; 4) Material/process
or weld flaw; 5) Seal failure | ! | | Potential pump cavitation and eventual loss of cooling capability. | Redundant pump failures due
to cavitation common cause
and loss of coolant would lead
to loss TCS and vehicle. | N/A | 2 | | 1) Tank pressure and temperature senors costs of coolant after LV been opened; 2) Pump delta-p senso current and temp sendetect cavitation; 3) P2 detects loss of m pressure. [4)
Loop temp sensors | 1 has
and/or
ors
ain loop | | | | | TCS-CV1-1 | Pump check valve | Check valve prevents back flow through the inactive pump leg | internal Leakage | 1) Ball/seat deformation; 2)
Contamination | All | Some coolant recirculation flow is allowed through the check valve. | Degraded flow performance through the solar arrays and radiators. | If the leakage is severe
enough, then inability to
h handle nominal heat loads is
possible, leading to loss of
vehicle when the TCS can no
longer keep up. | N/A | 2 | | loss of cooling 1) Pump delta-p senso detects flow degradat 2) Loop temperature s detect degraded cooli performance | on;
ensors | | | | | TCS-CV1-2 | Pump check valve | Check valve prevents back flow through the inactive pump leg | Fails in PM1 flow position | 1) Ball/seat deformation; 2)
Contamination | All | Check valve is stuck blocking
flow through the PM2 leg | Running PM2 results in a dead head condition. Unable to use PM2 to provide flow. | | N/A | 2R | | 1) Pump delta-p senso detects loss of flow wh is running; 2) PM2 current and sp sensors detect dead h condition; 3) Loop temperature s detect loss of cooling; PM2 is active. | eed
ad
ensors | | | | | TCS-CV1-3 | Pump check valve | Check valve prevents back flow through the inactive pump leg | Fails in PM2 flow position | 1) Ball/seat deformation; 2)
Contamination | All | Check valve is stuck blocking
flow through the PM1 leg | Running PM1 results in a dead head condition. Unable to use PM1 to provide flow. | Loss of pump redundancy. If
next failure is PM2, then loss
of TCS and vehicle. | N/A | 2R | | 1) Pump delta-p senso detects loss of flow wh is running; 2) PMI current and sp sensors detect dead h condition; 3) Loop temperature s detect loss of cooling if PMI is active. | eed
ad
ensors | | | | | | | | | | | | | Response | | | | | | Quick Response | | | | |-----------|--|---|---|----------------------------------|------------------------------|---------------------|-------------------------|----------|-------------------------------|--------------------|-------------------------|----------------------------------|--------------------|------------------|-----------|---|---------| | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Response Level | ocation of Local
Response | Time to fix locally | Time to Transmit Signal | | Allocation of System Response | Time to fix system | Time to Transmit Signal | Ground Response /
Contingency | System Side Switch | Processor Switch | Safe Mode | Remediation | Revisit | | TCS-LV2-2 | Upstream radiator isolation
valve | Valve is launched closed and isolates radiators 2 and 3 on the upstream side. Opens about 1 month into the mission to allow coolant into radiators 2 and 3. | Internal leakage (large leak) | Minutes | | | | N/A | None | | | | | | | Can adjust vehicle orientation to prevent freezing | | | TCS-LV2-3 | Upstream radiator isolation valve | Valve is launched closed and isolates radiators 2 and 3 on
the upstream side. Opens about 1 month into the
mission to allow coolant into radiators 2 and 3. | Internal leakage (small leak) | Minutes | | | | N/A | None | | | | | | | Can adjust vehicle orientation to prevent freezing | | | TCS-LV2-4 | Upstream radiator isolation
valve | Valve is launched closed and isolates radiators 2 and 3 on the upstream side. Opens about 1 month into the mission to allow coolant into radiators 2 and 3. | Valve stays closed when commanded to open | Minutes | | | | | | | | | | | | | | | TCS-LV2-5 | Upstream radiator isolation
valve | Valve is launched closed and isolates radiators 2 and 3 on the upstream side. Opens about 1 month into the mission to allow coolant into radiators 2 and 3. | Valve closes when not commanded to close | Minutes | | | | | | | | | | | | | | | TCS-LV2-6 | Upstream radiator isolation
valve | Valve is launched closed and isolates radiators 2 and 3 on the upstream side. Opens about 1 month into the mission to allow coolant into radiators 2 and 3. | External leakage | Seconds/minutes | | | | | | | | | | | | | | | TCS-LV2-7 | Upstream radiator isolation
valve | Valve is launched closed and isolates radiators 2 and 3 on
the upstream side. Opens about 1 month into the
mission to allow coolant into radiators 2 and 3. | Position indicator indicates
"closed" when valve is actually
open | | | | | | | | | | | | | | | | TCS-LV2-8 | Upstream radiator isolation
valve | Valve is launched closed and isolates radiators 2 and 3 on
the upstream side. Opens about 1 month into the
mission to allow coolant into radiators 2 and 3. | Position indicator indicates
"open" when valve is actually
closed | | | | | N/A | None | | | | | | | | | | TCS-LV3-1 | Downstream radiator isolation
valve | Valve is launched closed and isolates radiators 2 and 3 on
the downstream side. Opens about 1 month into the
mission to allow coolant into radiators 2 and 3. | Fails open/Internal leakage | Minutes | | | | N/A | None | | | | | | | Can adjust vehicle orientation
to prevent freezing | | | TCS-LV3-2 | Downstream radiator isolation
valve | Valve is launched closed and isolates radiators 2 and 3 on the downstream side. Opens about 1 month into the mission to allow coolant into radiators 2 and 3. | Fails closed | Minutes | | | | N/A | None | | | | | | | | | | TCS-LV3-3 | Downstream radiator isolation
valve | Valve is launched closed and isolates radiators 2 and 3 on
the downstream side. Opens about 1 month into the
mission to allow coolant into radiators 2 and 3. | External leakage, upstream
side | Seconds/minutes | | | | n/A | None | | | | | | | | | | TCS-LV3-4 | Downstream radiator isolation
valve | Valve is launched closed and isolates radiators 2 and 3 on
the downstream side. Opens about 1 month into the
mission to allow coolant into radiators 2 and 3. | External leakage, downstream
side | Seconds/minutes | | | | n/A | None | | | | | | | | | | TCS-CV1-1 | Pump check valve | Check valve prevents back flow through the inactive pump leg | internal Leakage | Minutes | | | | N/A | None | | | | | | | | | | TCS-CV1-2 | Pump check valve | Check valve prevents back flow through the inactive pump leg | Fails in PM1 flow position | Seconds (after PM2 is commanded) | | | | n/A | None | | | | | | | | | | TCS-CV1-3 | Pump check valve | Check valve prevents back flow through the inactive
pump leg | Fails in PM2 flow position | Seconds (after PM1 is commanded) | | | | n/A | None | | | | | | | | | | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Possible Causes | Phase | Local | Effec
Next Higher | ct | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Detection TIm for Diagnosis | Method Tim Path for Diagnosis | Time to Detect (Local) | Time to Detect
(System) | |-----------|------------------|--|---|--|-------|---|---|---|-----------------|----------|------------|------------|---|-----------------------------|--------------------------------|------------------------|----------------------------| | TCS-CV1-4 | Pump check valve | Check valve prevents back flow through the inactive pump leg | External Leakage | 1) Over-stress; 2) Corrosion; 3)
Fatigue; 4) Material/process
or weld flaw; 5) Seal failure | All | Coolant leaks to external beginning when LV1 is opened post launch. | Potential pump cavitation and eventual loss of cooling capability. | Redundant pump failures due
to cavitation common cause
and loss of coolant would lead
to loss TCS and vehicle. | | 2 | | | 1) Tank pressure and
temperature sensors detect
loss of coolant after LV1 has
been opened;
2) Pump delta-p sensor and/or
current and temp sensors
detect cavitation;
3) PZ detects loss of main loop
pressure.
4) Loop temp sensors detect | | | | (Opening) | | TCS-PM1-1 | Pump 1 | Provides coolant flow through the solar arrays and radiators | Overspeed/Excessive flow | 1) Motor Controller
Electronics failure; 2) Software
Failure | All | | Waste of vehicle power, potential cooling performance degradation | If the degradation is severe
enough, then inability to
handle nominal heat loads is
possible, leading to loss of
vehicle when the TCS can no
longer keep up. Can switch to
the redundant pump to avoid
this. | 0 | 2R | | | lioss of cooling 1) Pump delta-p sensor detects excessive flow; 2) Pump current sensor detects excessive current draw; 3) Loop temperature sensors detect degraded cooling performance | | | | | | TCS-PM1-2 | Pump 1 | Provides coolant flow through the solar arrays and radiators | Underspeed/insufficient flow
delta-p | 1) Motor
controller electronics
failure; 2) Software failure; 3)
Bearing failure; 4) Excessive
internal leakage; 5) Loose
impeller; 6) Entrapped
contaminants | All | | Degraded flow performance through
the solar arrays and radiators | if the degradation is severe
enough, then inability to
handle nominal heat loads is
possible, leading to loss of
vehicle when the TCS can no
longer keep up. Can switch to
the redundant pump to avoid
this. | 0 | 2R | | | 1) Pump delta-p sensor
detects flow degradation; 2) Loop temperature sensors
detect degraded cooling
performance | | | | | | TCS-PM1-3 | Pump 1 | Provides coolant flow through the solar arrays and radiators | Locked rotor | Excessive bearing wear or
contamination resulting in
increased bearing drag or
seizure; 2) Binding | All | Loss of coolant flow. Pump
should be safe with regard to
current indefinitely (TBC) | No coolant flow through the solar
arrays and radiators | Must switch to the redundant pump to resume cooling. If the redundant pump also fails then loss of TCS and vehicle. | • | 2R | | | 1) Pump delta-p sensor
detects loss of flow;
2) Pump current sensor
detects current draw
characteristic of a locked rotor
event;
3) Loop temperature sensors
detect degraded cooling | | | | | | TCS-PM1-4 | Pump 1 | Provides coolant flow through the solar arrays and radiators | Pump/motor overheat | Pump cavitations; 2) Flow blockage; 3) High heat load/environment; 4) High coolant temp; 5) Bearing degradation | All | Potential for a fire | If a fire occurs, potential damage to
pump and surrounding equipment | | ?? | 2 | | | performance Loop temp sensors may provide an indirect indication that the pump is overheating | | | | | | TCS-PM1-5 | Pump 1 | Provides coolant flow through the solar arrays and radiators | Overcurrent | 1) Electronics failure; 2)
Bearing drag | All | Local heating, potential for a fire | If a fire occurs, potential damage to
pump and surrounding equipment | Potential loss of TCS and vehicle | ?? | 2 | | | Pump current sensor and
vehicle level overcurrent
protection features (TBD) will
catch many overcurrent
scenarios in time to allow for
pump shutdown | | | | | | TCS-PM1-6 | Pump 1 | Provides coolant flow through the solar arrays and radiators | Fails on | 1) Motor Controller
Electronics failure; 2) Software
Failure | All | Pump is on when not expected to be on | Waste of vehicle power, potential cooling performance degradation | If the degradation is severe enough, then inability to handle nominal heat loads is possible, leading to loss of vehicle when the TCS can no longer keep up. Can switch off the redundant pump to restore normal flow. | N/A | 2R | | | 1) Pump delta-p sensor
detects irregular flow; 2) Pump current sensor
detects current from
inactive pump; 3) Loop temperature sensors
detect degraded cooling
performance | | | | | | TCS-PM1-7 | Pump 1 | Provides coolant flow through the solar arrays and radiators | Fails off | 1) Motor Controller
Electronics failure; 2) Software
Failure | All | Loss of coolant flow | No coolant flow through the solar
arrays and radiators | Must switch to the redundant
pump to resume cooling. If
the redundant pump also fails
then loss of TCS and vehicle. | | 2R | | | 1) Pump delta-p sensor
detects loss of flow; 2) Pump current sensor
detects no current draw; 3) Loop temperature sensors
detect loss of cooling | | | | | | TCS-PM1-8 | Pump 1 | Provides coolant flow through the solar arrays and radiators | External leakage | 1) Over-stress; 2) Corrosion; 3)
Fatigue; 4) Material/process
or weld flaw; 5) Seal failure | All | Coolant leaks to external from
the pump beginning when LV1
is opened post launch. | Potential pump cavitation and eventual loss of cooling capability. | Redundant pump failures due to cavitation common cause and loss of coolant would lead to loss TCS and vehicle. | 4 | 2 | | | Tank pressure and temperature sensors detect loss of coolant after LV1 has been opened; Pump delta-p sensor and/or current and temp sensors detect cavitation; P2 detects loss of main loop pressure. Lloop temp sensors detect loss of cooling | | | | | | TCS-PM2-1 | Pump 2 | Provides coolant flow through the solar arrays and radiators | Overspeed/Excessive flow | 1) Motor Controller
Electronics failure; 2) Software
Failure | All | Pump outputs excessive flow and draws excessive current | Waste of vehicle power, potential cooling performance degradation | If the degradation is severe
enough, then inability to
handle nominal heat loads is
possible, leading to loss of
vehicle when the TCS can no
longer keep up. Can switch to
the redundant pump to avoid
this. | 0 | 2R | | | 1) Pump delta-p sensor
detects excessive flow;
2) Pump current sensor
detects excessive current
draw;
3) Loop temperature sensors
detect degraded cooling
performance | | | | | | TCS-PM2-2 | Pump 2 | Provides coolant flow through the solar arrays and radiators | Underspeed/insufficient flow
delta-p | 1) Motor controller electronics
failure; 2) Software failure; 3)
Bearing failure; 4) Excessive
internal leakage; 5) Loose
impeller; 6) Entrapped
contaminants | All | Pump outputs insufficent flow delta-p | Degraded flow performance through
the solar arrays and radiators | If the degradation is severe
enough, then inability to
handle nominal heat loads is
possible, leading to loss of
vehicle when the TCS can no
longer keep up. Can switch to
the redundant pump to avoid
this. | 0 | 2R | | | Pump delta-p sensor
detects flow degradation; Loop temperature sensors
detect degraded cooling
performance | | | | | | TCS-PM2-3 | Pump 2 | Provides coolant flow through the solar arrays and radiators | Locked rotor | Excessive bearing wear or contamination resulting in increased bearing drag or seizure; 2) Binding | All | Loss of coolant flow. Pump
should be safe with regard to
current indefinitely (TBC) | No coolant flow through the solar
arrays and radiators | Must switch to the redundant pump to resume cooling. If the redundant pump also fails then loss of TCS and vehicle. | 1 | 2R | | | Pump delta-p sensor detects loss of flow; Pump current sensor detects current draw characteristic of a locked rotor event; J toop temperature sensors detect degraded cooling | | | | | | TCS-PM2-4 | Pump 2 | Provides coolant flow through the solar arrays and radiators | Pump/motor overheat | 1) Pump cavitations; 2) Flow
blockage; 3) High heat
load/environment; 4) High
coolant temp; 5) Bearing
degradation | All | Potential for a fire | If a fire occurs, potential damage to
pump and surrounding equipment | | ?? | 2 | | | performance Loop temp sensors may provide an indirect indication that the pump is overheating | | | | | | TCS-PM2-5 | Pump 2 | Provides coolant flow through the solar arrays and radiators | Overcurrent | 1) Electronics failure; 2)
Bearing drag | All | Local heating, potential for a fire | If a fire occurs, potential damage to
pump and surrounding equipment | | ?? | 2 | | | Pump current sensor and
vehicle level overcurrent
protection features (TBD) will
catch many overcurrent
scenarios in time to allow for
pump shutdown | | | | | | | | | | | | | | Response | | | | | | Quick Response | | | | |-----------|------------------|---|---|-----------------|---|---------------------|------------------------|----------|-------------------------------|--------------------|-------------------------|----------------------------------|--------------------|------------------|-----------|-------------|---------| | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Response Level | Desired Local Response Allocation of Local Response | Time to fix locally | Time to Transmit Signa | | Allocation of System Response | Time to fix system | Time to Transmit Signal | Ground Response /
Contingency | System Side Switch | Processor Switch | Safe Mode | Remediation | Revisit | | TCS-CV1-4 | Pump check valve | Check valve prevents back flow through the inactive nump leg | External Leakage | Seconds/minutes | | | | N/A | None | | | | | | | | | | TCS-PM1-1 | Pump 1 | Provides coolant flow through the solar arrays and radiators | Overspeed/Excessive flow | Minutes | | | | N/A | None | | | | | | | | | | TCS-PM1-2 | Pump 1 | Provides coolant flow through the solar arrays and radiators | Underspeed/insufficient flow
delta-p | Minutes | | | | N/A | None | | | | | | | | | | TCS-PM1-3 | Pump 1 | Provides coolant flow through the solar arrays and radiators | Locked rotor | Seconds | | | | N/A | None | | | | | | | | | | TCS-PM1-4 | Pump 1 | Provides coolant flow through the solar arrays and radiators | Pump/motor overheat | Minutes | | | | N/A | None | | | | | | | | х | | TCS-PM1-5 | Pump 1 | Provides coolant flow through the solar arrays and radiators | Overcurrent | Seconds | | | | N/A | None | | | | | | | | х | | TCS-PM1-6 | Pump 1 | Provides coolant flow through the solar arrays and radiators | Fails on | Seconds | | | | N/A | None | | | | | | | | | | TCS-PM1-7 | Pump 1 | Provides coolant flow through the solar arrays and radiators | Fails off | Seconds | | | | N/A | None | | | | | | | | | | TCS-PM1-8 | Pump 1 | Provides coolant flow through the solar arrays and fradiators | External leakage | Seconds/minutes | | | | N/A | None | | | | | | | | | | TCS-PM2-1 | Pump 2 | Provides coolant flow through the solar arrays and radiators | Overspeed/Excessive flow | Minutes | | | | N/A | None | | | | | | | | | | TCS-PM2-2 | Pump 2 | Provides coolant flow through the solar arrays and radiators | Underspeed/Insufficient flow
delta-p | Minutes | | | | N/A | None | |
| | | | | | | | TCS-PM2-3 | Pump 2 | Provides coolant flow through the solar arrays and radiators | Locked rotor | Seconds | | | | N/A | None | | | | | | | | | | TCS-PM2-4 | Pump 2 | Provides coolant flow through the solar arrays and radiators | Pump/motor overheat | Minutes | | | | N/A | None | | | | | | | | х | | TCS-PM2-5 | Pump 2 | Provides coolant flow through the solar arrays and radiators | Overcurrent | Seconds | | | | N/A | None | | | | | | | | х | | | | | | | | | | | | | | | i | | | | | | | | | | | | | Effec | t | | | | | | Detection | Method | | | |-----------|-------------------|--|--------------------------------------|---|-------|---|--|---|-----------------|----------|------------|------------|--|-------------------|------------------------|------------------------|----------------------------| | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Possible Causes | Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | TIm for Diagnosis | Tlm Path for Diagnosis | Time to Detect (Local) | Time to Detect
(System) | | TCS-PM2-6 | Pump 2 | Provides coolant flow through the solar arrays and radiators | Fails on | 1) Motor Controller
Electronics failure; 2) Software: All
Failure | | Pump is on when not
expected to be on | Waste of vehicle power, potential cooling performance degradation | If the degradation is severe enough, then inability to handle nominal heat loads is noossible, leading to loss of vehicle when the TCS can no longer keep up. Can switch off the redundant pump to restore normal flow. | N/A | 2R | | | Pump delta-p sensor
detects irregular flow; Pump current sensor
detects current draw from
inactive pump; Jupp temperature sensors
detect degraded cooling
performance | | | | | | TCS-PM2-7 | Pump 2 | Provides coolant flow through the solar arrays and radiators | Fails off | 1) Motor Controller
Electronics failure; 2) Software All
Failure | | Loss of coolant flow | No coolant flow through the solar arrays and radiators | Must switch to the redundant pump to resume cooling. If the redundant pump also fails, then loss of TCS and vehicle. | N/A | 2R | | | 1) Pump delta-p sensor detects loss of flow; 2) Pump current sensor detects no current draw; 3) Loop temperature sensors detect loss of cooling | | | | | | TCS-PM2-8 | Pump 2 | Provides coolant flow through the solar arrays and radiators | External leakage | 1) Over-stress; 2) Corrosion; 3)
Fatigue; 4) Material/process
or weld flaw; 5) Seal failure | | Coolant leaks to external from
the pump beginning when LV:
is opened post launch. | | Redundant pump failures due
to cavitation common cause
and loss of coolant would lead
to loss TCS and vehicle. | N/A | 2 | | | 1) Tank pressure and temperature sensors detect loss of coolant after IV1 has been opened; 2) Pump delta-p sensor and/or current and temp sensors detect cavitation; 3) P2 detects loss of main loop pressure. 4) Loop temp sensors detect loss of cooling | | | | | | TCS-MV-1 | Manual fill valve | Open for tank charging. Closed for the rest of the mission to provide a barrier against coolant leakage to exterior. | Fails open/Internal leakage | 1) Contamination; 2) Seal
failure; 3) Software Failure; 4) All
Electrical/ Electronics failure | | Coolant leaks through the manual valve | No effect while the line is capped | No effect. If the cap also fails,
then loss of coolant leading to
loss of TCS and vehicle | N/A | 2R | | | First failure undetectable while line is capped. If the cap also fails, then: 1) Tank pressure and temperature sensors detect loss of coolant; 2) Pump delta-p sensor and/or current and temp sensors detect cathodistion; 3) P2 detects loss of main loop pressure. 4) Loop temp sensors detect loss of cooling | | | | | | TCS-MV-2 | Manual fill valve | Open for tank charging. Closed for the rest of the mission to provide a barrier against coolant leakage to exterior. | Fails closed | 1) Contamination; 2) Jamming;
3) Binding; 4) Seal failure; 5)
Software Failure; 6) Electrical/
Electronics failure | | Unable to fill through the manual valve | Can't fill the accumulator pre-launch | Mission delay | N/A | 4 | | | N/A | | | | | | TCS-MV-3 | Manual fill valve | Open for tank charging. Closed for the rest of the mission to provide a barrier against coolant leakage to exterior. | External leakage, tank side | 1) Over-stress; 2) Corrosion; 3)
Fatigue; 4) Material/process
or weld flaw; 5) Seal failure | | Coolant leaks to external from the manual valve | Potential pump cavitation and eventual loss of cooling capability. | Redundant pump failures due
to cavitation common cause
and loss of colant would lead
to loss TCS and vehicle. | N/A | 2 | | | Tank pressure and
temperature sensors detect
loss of coolant; Pump delta-p sensor and/or
current and temp sensors
detect cavitation; To 2 detects loss of main loop
pressure. To 2 detects loss of sensors detect
loss of cooling | | | | | | | | | | | | | | | Response | | | | | | Quick Response | | 1 | | |-----------|-------------------|--|-----------------------------|-----------------|------------------------|---------------------|---------------------|-------------------------|-----------------|-------------------------------|--------------------|-------------------------|-------------------|--------------------|------------------|-----------|-------------|---------| | FMEA ID | Name | Function | Failure Mode / Limit / | Response Level | Desired Local Response | Allocation of Local | Time to fix locally | Time to Transmit Signal | Desired System | Allocation of System Response | Time to fix system | Time to Transmit Signal | Ground Response / | System Side Switch | Processor Switch | Safe Mode | Remediation | Revisit | | TCS-PM2-6 | Pump 2 | Provides coolant flow through the solar arrays and radiators | Constraint
Fails on | Seconds | | Response | | | Response
N/A | None | | | Contingency | | | | | | | TCS-PM2-7 | Ритр 2 | Provides coolant flow through the solar arrays and radiaturs | Fails off | Seconds | | | | | N/A | None | | | | | | | | | | TCS-PM2-8 | Pump 2 | Provides coolant flow through the solar arrays and radiators | External leakage | Seconds/minutes | | | | | N/A | None | | | | | | | | | | TCS-MV-1 | Manual fill valve | Open for tank charging. Closed for the rest of the mission to provide a barrier against coolant leakage to exterior. | Fails open/internal leakage | Minutes | | | | | N/A | None | | | | | | | | | | TCS-MV-2 | Manual fill valve | Open for tank charging. Closed for the rest of the mission to provide a barrier against coolant leakage to exterior. | Fails closed | Seconds | | | | | N/A | None | | | | | | | | | | TCS-MV-3 | | Open for tank charging. Closed for the rest of the mission to provide a barrier against coolant leakage to exterior. | | Seconds/minutes | | | | | N/A | None | | | | | | | | | Subject Matter Dave Copeland Expert(s): (Telecomm) Components are listed for completeness, but failure mode chris Haskins (FR) and FMEA information is only displayed in the first copy of | | Chris Haskins (FR) | and three information is only | displayed in the first copy of | | | | Eff | ect | | | | | | Detection Method | | | |--------------------|---|-------------------------------|--|---|-------|---|--|------------|-----------------|----------|------------|-----------------------------|---|--|-----|--------------------------------| | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Possible Causes | Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Tlm for Diagnosis Tlm Pa
Diagr | | ect Time to Detect
(System) | | TM-1
TM-1.1 | Transponder | | | ļ | | | | | | | | | | | (| (C)CICINI) | | TM-1.1
TM-1.1.1 | FR A
Power Converter | | | | | | | | | | | | | | | | | TM-1.1.1.a | | | Overcurrent (in power converter or one of its loads) | 1). SEU
2) Hard circuit failure
3) Both exciters on | | Depends on the severity
of the overcurrent. Ranges from no effect to unrecoverable failure of FR A. | | No effect. | N/A | 2R | Active | Yes | FR A would go down. Loss of
telemetry, timing, etc. Loss of
comm if in contact with
ground. PDU would detect
overcurrent condition. | PDU tim for FR A current | N/A | ? | | TM-1.1.1.b | | | Hard failure | 1) Component failure
2) Overcurrent | | Transponder A shuts down. | Might blow fuse to FR A.
Switch to B-side of telecomm.
No other effect. | No effect. | N/A | 2R | Active | Yes | FR A would go down. Loss of
telemetry, timing, etc. Loss of
comm if in contact with | Heartbeat from FR 7 | n/a | ? | | | | | Out of regulation secondary | 1) Overcurrent | | Ranges from negligible to hard | worst case: switch to RF side B | | | | | | ground.
Analyze downlink telemetry | Trending by RF | | | | TM-1.1.1.c | | <u> </u> | voltage | Circuit-level failure anywhere in radio | | failure of radio. | (would lose heart beat) | No effect. | N/A | 2R | None | Yes, with human-in-the-loop | (long-term trending) | team | N/A | N/A | | Inputs | | | 28V and return (applies to
whole radio) | | | Radio down | Switch to RF side B | | | 4 | | | | | | | | TM-1.1.2 | Spacecraft Interfaces
(except power) | | | | | | | | | | | | | | | | | TM-1.1.2.1 | | Spacewire | | | | | | | | | | | | | | | | TM-1.1.2.1.a | | | No/out-of-tolerance output | Hardware failure (broken
harness, pin, or circuit failure) | | Radio could not be configured
for different modes of
operation. Couldn't send
downlink telemetry. Uplink
data stream would be lost on
non-critical virtual channels. | S/C wouldn't receive uplink data stream, request for downlink data, configuration data, status data. Would do RF side switch first to see if it corrects the problem, followed by an avionics side switch. | No effect. | N/A | 4 | None | yes | Ground might notice an issue with the frames repeating or being empty, indicates that radio works, but no data is coming down - router status, error message, bad command counts. Autonomy could checi run state to see if FSW, etc. is responding (command loss timer, etc.) | | | | | TM-1.1.2.1.b | | | Corrupt data (both to and fron
the radio) | FPGA, logic or clock failure | | Radio could not be configured for different modes of operation. Couldn't send downlink telemetry. Uplink data stream would be lost on non-critical virtual channels. | downlink data, configuration
data, status data. Could clog
up SpaceWire at s/c level. | No effect. | N/A | 4 | None | yes | Ground might notice an issue with the frames repeating or being empty, indicates that radio works, but no data is coming down - bad command counts, CRC error | | | | | TM-1.1.2.2.a | | JART (output) | No/out-of-tolerance output | Hardware failure (broken
harness, pin, or circuit failure) | | No critical commands | Would likely follow common
response to CLT timeout - soft
reset of radio, power cycle to
radio, side switch of RF, then
sideswitch of avionics. | No effect. | N/A | 4 | Active | yes | CLT will expire. CCD
commands are only sent durin
ground contact (failure of
commands will be seen in
trending). No autonomous
reaction. | Ground - loss of
signal/lock
CLT not tickled | ? | N/A | | TM-1.1.2.2.b | | | Corrupt data | FPGA, logic or clock failure | | No critical commands | Would likely follow common
response to CLT timeout - soft
reset of radio, power cycle to
radio, side switch of RF, then
sideswitch of avionics. | No effect. | N/A | 4 | Active | yes | CLT will expire. CCD commands are only sent durin ground contact (failure of commands will be seen in trending). No autonomous reaction. | Ground - loss of
signal/lock
CLT not tickled | ? | N/A | | TM-1.1.2.3 | | Clock (output) | | Hardware failure (broken | | Avionics would detect the | | | | - | | | Lack of clock from transponder | | | | | TM-1.1.2.3.a | | | No/out-of-tolerance output | harness, pin, or circuit failure) | | failure of the clock output. | Switch to side B of RF. | No effect. | N/A | 2R | Active | yes | Would not affect RF. | Clock output RF to REM | ? | N/A | | TM-1.1.2.3.b | | | Corrupt data | FPGA, logic or clock failure | | Avionics would detect the
failure of the clock output. | Switch to side B of RF. | No effect. | N/A | 2R | Active | yes | Lack of clock from transponder
Would not affect RF. | Clock output RF to REM | ? | N/A | | TM-1.1.2.4 | | Baseband | | <u> </u> | | ļ | | | ļ | | | | | ‡ | | | | TM-1.1.2.4.a | | | No/out-of-tolerance output | Hardware failure (broken
harness, pin, or circuit failure) | | Not used in flight. | If baseband enable receiving failed (so s/c is expecting commanding via baseband instead of RF), at CLT timeout, could force s/c to ignore baseband and use RF command path instead. | No effect, | N/A | 4 | Active | yes | CLT expires, no commands
coming through RF. | Ground - loss of
signal/lock
CLT not tickled | ? | N/A | | TM-1.1.2.4.b | | | Corrupt data | FPGA, logic or clock failure | | Not used in flight. | If baseband enable receiving failed (so s/c is expecting commanding via baseband instead of RP), at CLT timeout, could force s/c to ignore baseband and use RF command path instead. | No effect, | N/A | 4 | Active | yes | CLT expires, no commands
coming through RF. | Ground - loss of
signal/lock
CLT not tickled | ? | N/A | | TM-1.1.2.4 | | MET Synch | | | | | | | | | | | | - | | | | TM-1.1.2.4.a | | | No/out-of-tolerance output | Hardware failure (broken
harness, pin, or circuit failure) | | Ground use only | No effect. | No effect. | N/A | 4 | None | N/A | | | | | | TM-1.1.2.4.b | X-Band Rx (function - | | Corrupt data | FPGA, logic or clock failure | | Ground use only | No effect. | No effect. | N/A | 4 | None | N/A | | - | | | | TM-1.1.3 | includes at least two | 1 | 1 | 1 | | | | | | | | | | | | | Subject Matter Dave Copeland Expert(s): (Telecomm) Components are listed for completeness, but failure mode chris Haskins (FR) and FMEA information is only displayed in the first copy of | FMEA ID | Name | Function | Failure Mode / Limit / | Response Level | Desired Local Response | Allocation of Local | Time to fix locally | Time to Transmit | Desired System | | Time to fix system | | | System Side Switch | Quick Look Processor Switch | Safe Mode | Remediation | |--|-----------------------|----------------|--|-------------------|--|---------------------|---------------------|--|---|-----------------|--------------------|--------|--|--------------------|-----------------------------|-----------|---| | <i>N</i> -1 | Transponder | 1 | Constraint | | | Response | | Signal | Response | System Response | | Signal | Contingency | | | | | | Л-1
Л-1.1 | FR A | | | <u> </u> | | | | <u> </u> | | | <u> </u> | | | | i i | | <u> </u> | | l-1.1.1 | Power Converter | <u> </u> | | <u>. </u> | | <u> </u> | <u> </u> | <u> </u> | | | . | ļ | | İ | ļļ | | | | M-1.1.1.a | | | Overcurrent (in power | Local | Power cycle radio and if condition still exists power down radio and re-enforce other side? Question on how to implementlimit power cycle rule fire count and use longer persistence for side switch rule? | Autonomy | N/A | ~1 sec (next
telemetry status | None | None | None | None | , | | | | ARC cycles power to converter, avionics would
need to redirect signal through switching matrix
to switch to side B. | | V-2.2.2.0 | | | converter or one of its loads) | | If the radio is overcurrent, I
would think we would do an RF
side switch rather than power
cycling? Does radio have CB and fuse? | | | packet from radio) | | | | | | | | | Switching is done through the ARC, but
autonomy would detect a fault and then tell
ARC to power cycle or power off | | И-1.1.1.b | | | Hard failure | Local | RF Side Switch | Autonomy | N/A | ~1 sec (next
telemetry status
packet from radio) | None | None | None | None | ? | | | | | | M-1.1.1.c | | | Out of regulation secondary
voltage | Local? | None | None/Ground? | ? | | None | None | None | ? | Contingency proc needed? | | | | Reduce operating temperature range, optimize
bus voltage. | | Inputs | <u> </u> | | 28V and return (applies to | <u></u> | | | | <u> </u> | | | | | | | | | | | | Spacecraft Interfaces | | whole radio) | <u> </u> | | | | | | | | | | | | | | | TM-1.1.2 | (except power) | | | | | | | | | | | | | | j j | | | | TM-1.1.2.1 | | Spacewire | | | | | | | | | | | RF side switch, then avionics | | | | | | TM-1.1.2.1.a | | | No/out-of-tolerance output | None | None | Ground? | | | | | | | side switch (is avionics side
switch different from system
side switch?) | | | | Power cycle, switch to side B | | M-1.1.2.1.b | | | Corrupt data (both to and from the radio) | ¹ None | None | Ground? | | | | | | | RF side switch, then avionics side switch (is avionics side switch different from system side switch?) | | | | Power cycle, soft reset | | TM-1.1.2.2 | | UART (output) | | | | | | | | | | | Ground contingency to | | | | | | ГМ-1.1.2.2.а | | | No/out-of-tolerance output | Local/System | Power cycle FR, RF side switch? Possible system side switch? Could use 2 CLTs, first to power cycle | Autonomy | | | Depending on how
CLT implemented
2nd CLT might be
used for
system
side switch | Autonomy | ? | ? | reacquire SC Need to talk through all the combinations within RF system that ground should try when attempting to reacquire | Maybe? | | | | | M-1.1.2.2.b | | | Corrupt data | Local/System | Power cycle FR, RF side switch?
Possible system side switch?
Could use 2 CLTs, first to power | Autonomy | | | Depending on how
CLT implemented
2nd CLT might be
used for system | Autonomy | ? | ? | Ground contingency to
reacquire SC
Need to talk through all the
combinations within RF system | Maybe? | | | | | | | | | | cycle | | | | side switch | | | | that ground should try when
attempting to reacquire | | | | | | M-1.1.2.3
M-1.1.2.3.a | | Clock (output) | No/out-of-tolerance output | Local | RF side switch | Autonomy | ? | ? | None | None | None | None | None | | | | | | M-1.1.2.3.b | | | Corrupt data | Local | RF side switch | Autonomy | ? | ? | None | None | None | None | None | | ļ | | | | M-1.1.2.4 | | Baseband | | | | | | | | | | | | <u> </u> | | | | | | | | | | Power cycle FR, RF side switch?
Possible system side switch? | | | | Depending on how
CLT implemented | | | | Ground contingency to reacquire SC | | | | | | M-1.1.2.4.a | | | No/out-of-tolerance output | Local/System | Part of CLT response should include re-enforcing RF Could use 2 CLTs, first to power cycle | Autonomy | | | 2nd CLT might be
used for system
side switch | Autonomy | ? | ? | Need to talk through all the
combinations within RF system
that ground should try when
attempting to reacquire | Maybe? | | | | | | | | | | Power cycle FR, RF side switch? Possible system side switch? | | | | Depending on how
CLT implemented | | | | Ground contingency to reacquire SC | | | | | | ΓM-1.1.2.4.b | | | Corrupt data | Local/System | Part of CLT response should include re-enforcing RF Could use 2 CLTs, first to power | Autonomy | | | 2nd CLT might be
used for system
side switch | Autonomy | ? | ? | Need to talk through all the
combinations within RF system
that ground should try when
attempting to reacquire | Maybe? | | | | | | | MET Synch | | | cycle | | | | | | | | . • • • • • • • • • • • • • • • • • • • | | | | | | TM-1.1.2.4 | | | | | | < | . (| · | | ····· | . A | | | | | | | | | | | No/out-of-tolerance output | | | | | | | | | | | | | | | | TM-1.1.2.4
FM-1.1.2.4.a
FM-1.1.2.4.b | | | No/out-of-tolerance output
Corrupt data | | | | | | | | | | | | | | | | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Possible Causes | Phase | Local | Next Higher | fect
Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Detection Method | Tim Path for | Time to Detect | Time to Detect | |---------------------|-----------|----------|--|--|-------|---|---|---|--|----------|------------|------------|--|---|--------------|----------------|----------------| | TM-1.1.3.a | | | Locks up/resets (probably wouldn't happen at the card level) | 1) SEU
2) Component failure | | No critical commands | Switch to side B of RF. | No effect. | N/A | 2R | FM | yes | CLT will expire. CCD
commands are only sent durir
ground contact (failure of
commands will be seen in
trending). No autonomous
reaction. | B
Heartbeat from FR;
FR reset type | Diagnosis | (Local) | (System) | | TM-1.1.3.b | | | Hard failure | 1) Component failure | | Transponder A shuts down. | Switch to B-side of telecomm.
No other effect. | No effect. | N/A | 2R | Active | Yes | FR A would go down. Loss of
telemetry, timing, etc. Loss of
comm if in contact with
ground. | Heartbeat from FR | | N/A | N/A | | TM-1.1.3.c | | | Failure to acquire | 1) Component failure
2) Radiation effects | | Status telemetry would
indicate loss of signal/lock | Ground would try to reacquire s/c. Eventually CLT would timeout. Would switch to side for telecomm. Would likely follow common response to CLT timeout - soft reset of radio, power cycle to radio, is deswitch of RF, then sideswitch of avionics. Decision-maker would depend on phase of mission. C&DH does the actual switching. Might need to retransmit any upload in progress. | None. | if ground is unable to uplink to
s/c, a stale ephemeris could
lead to UV. CLT should timeout
prior to this happening and s/c
should "safe." | t 3 | Active | Yes | S/c would know that it didn't
acquire an uplink signal. If in
contact with ground, FCs wou
notice failure to acquire. | Ground - loss of
signal/lock
d CLT not tickled | | ? | w/A | | TM-1.1.3.d | | | Failure to detect commands | 1) Component failure
2) Radiation effects
3) Failure to acquire | | No critical commands, althoug
there would be signal lock with
ground. | Ground would try to reaquire s/c. Eventually CLT would itmeout. Would likely follow common response to CLT itmeout - soft reset of radio, abover cycle to radio, side switch of RF, then sideswitch of avionics. Decision-maker would depend on phase of mission. C&DH does the actual switching. Might need to retransmit any upload in progress. | | if ground is unable to uplink to
is/c, a stale ephemeris could
lead to UV. CLT should timeout
prior to this happening and s/c
should "safe." | t 3 | | yes | CLT will expire. CCD commands are only sent durir ground contact (failure of commands will be seen in trending). No autonomous reaction. | Ground - loss of
g signal/lock
CLT not tickled | | ? | √/A | | TM-1.1.3.e | | | Reduced performance | 1) Component failure
2) Radiation effects | | See loss of signal/lock. Ground could see dropped commands. Performance reduction may be minor and it's likely that the ground would react, not the s/c. | timeout - soit reset of radio, | | if ground is unable to uplink to
is/c, a stale ephemeris could
lead to UV. CLT should timeout
prior to this happening and s/c
should "safe." | t 3 | Active | Yes | Non-incrementing command
counters, incrementing bad
command counters, bad s/c II
BCH errors. Margin might hid
problems, would need to look
at data trending. | signal/lock
,
CLT not tickled | | ? | √/A | | Inputs | | | RF Signal from ground | No signal corrupted signal incorrect data rate or corrupted data (miscorrected data (misconfiguration of ground station) | | lock and AGC would report no
signal
2) Could be reporting lock and
valid AGC, but still have
corrupted data
3) Possible intermittent lock, | switch sides of radio, check
switch assembly, no data from
ground. S/c unaffected 3) bad frame counts would | Should be able to fix problem on ground. No effect to mission | If ground is unable to uplink to
s/c, a stale ephemeris could
lead to UV. CIT should timeout
prior to this happening and s/c
should "safe." | t 3 | Active | Yes | 1) Would show loss of lock, unexpected AGC voltage 2) Could show lock, but bad frame counter would increment or command to counter would not increment 3) Varying AGC levels, lower than expected AGC level, increased error count. 4) Ground would notice failun to acquire | Ground - loss of
signal/lock
CLT not tickled | | | N/A | | | | | Configuration commands from
C&DH | | | Could be reporting lock and
vaild AGC, but still have
corrupted data. Would see a
loss of lock or reduced signal
strength | 5/c wouldn't receive commands. S/c could re-issue correct configuration or possibly check the mode of the s/c. Would likely follow common response to CLT timeout - soft reset of radio, power cycle to radio, side switch of Rr, then sideswitch of avionics. | critical commands, mission should be unaffected. | if ground is unable to uplink to
s/c, a stale ephemeris could
lead to UV. CLT should timeout
prior to this happening and s/c
should "safe." | t 3 | Active | Yes | Reported status telemetry | Ground - loss of
signal/lock
CLT not tickled | | ? | N/A | | TM-1.1.4 TM-1.1.4.a | X-Band Tx | | Locks up/resets | 1) SEU | | Transponder A would come
back on in the "off" state. | Next ground contact would see no response from s/c. Would likely follow common response to CLT timeout - soft reset of radio, power cycle to radio, side switch of RF, then sideswitch of avionics. | | N/A | 4 | Active | Yes | Ground would see issue | Heartbeat from FR;
FR rest type | | N/A | N/A | | TM-1.1.4.b | | | Hard failure | 1) Component failure | | Transponder A doesn't work. | Overcurrent might cause FR to be shut down by s/c Undercurrent could heat up TWTA which might cause damage to radio. (critical temperature point, needs a thermostat) | No effect. | N/A | 2R | Active | Yes | S/C might not be able to deter
failure, but ground would see
loss of comm | | | N/A | N/A | |
TM-1.1.4.c | | | Reduced performance | Radiation effects Component degradation | | Radio wouldn't notice any
problem. | S/C wouldn't notice any
problem. Ground will detect
and will switch sides of the
Radio | No effect. | N/A | 4 | None | Yes | Ground would see issue | TIm for reducecd
performance
defined by RF team | | None | None | | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Response Level | Desired Local Response | Allocation of Local
Response | Time to fix locally | Respor
Time to Transmit
Signal | Desired System
Response | Allocation of
System Response | Time to fix system | Time to Transmit
Signal | Ground Response / Contingency | System Side Switch | Quick Look
Processor Switch | Safe Mode | Remediation | Revisit | |------------|------------|----------|--|----------------|---|---------------------------------|---------------------|--|---|----------------------------------|--------------------|----------------------------|--|--------------------|--------------------------------|-----------|---|---------| | TM-1.1.3.a | | | Locks up/resets (probably
wouldn't happen at the card
level) | Local | Power cycle FR | Autonomy | N/A | ~1 sec (next
telemetry status
packet from radio) | None . | None | None . | None | None | | | | | | | TM-1.1.3.b | | | Hard failure | Local | Power cycle FR; when rule fire count met, the RF side switch? | Autonomy | N/A | ~1 sec (next
telemetry status
packet from radio) | None | None | None | None | None | | | | | | | TM-1.1.3.c | | | Failure to acquire | Local/System | Power cycle FR, RF side switch?
Possible system side switch?
Could use 2 CLTs, first to power
cycle | Autonomy | | | Depending on how
CLT implemented
2nd CLT might be
used for system
side switch | Autonomy | 7 | 7 | Ground contingency to reacquire SC Need to talk through all the combinations within RF system that ground should try when attempting to reacquire | Maybe? | | | Cycle power to radio or issue firmware reset or reconfiguration cmd. | | | TM-1.1.3.d | | | Failure to detect commands | Local/System | Power cycle FR, RF side switch?
Possible system side switch?
Could use 2 CLTs, first to power
cycle | Autonomy | | | Depending on how
CLT implemented
2nd CLT might be
used for system
side switch | Autonomy | 7 | 2 | Ground contingency to reacquire SC Need to talk through all the combinations within RF system that ground should try when attempting to reacquire | Maybe? | | | Power cycle, firmware reset, reconfigure | | | TM-1.1.3.e | | | Reduced performance | Local/System | Power cycle FR, RF side switch?
Possible system side switch?
Could use 2 CLTs, first to power
cycle | Autonomy | | | Depending on how
CLT implemented
2nd CLT might be
used for system
side switch | Autonomy | 2 | ? | Ground contingency to reacquire SC Need to talk through all the combinations within RF system that ground should try when attempting to reacquire | Maybe? | | | Power cycle, reoptimize ground station links
(pick stations with most margin), operate with
shorter passes (reduce elevation angle range) | | | Inputs | | | RF Signal from ground | Local/System | Power cycle FR, RF side switch?
Possible system side switch?
Could use 2 CLTs, first to power
cycle
Ground may be able to fix | Autonomy / Ground | | | Depending on how
CLT implemented
2nd CLT might be
used for system
side switch | Autonomy | 7 | 7 | Ground contingency to reacquire SC Need to talk through all the combinations within RF system that ground should try when attempting to reacquire | | | | Ground would fix their problem | | | TM-1.1.4 | X-Band Tx | | Configuration commands from C&DH | Local/System | Power cycle FR, RF side switch?
Possible system side switch?
Could use 2 CLTs, first to power
cycle
Ground may be able to fix | Autonomy / Ground | | | Depending on how
CLT implemented
2nd CLT might be
used for system
side switch | Autonomy | ? | ? | Ground contingency to reacquire SC Need to talk through all the combinations within RF system that ground should try when attempting to reacquire | | | | issue correct configuration commands | | | TM-1.1.4.a | ps some IA | | Locks up/resets | Local | Power cycle FR; when rule fire count met, the RF side switch? | Autonomy | N/A | | None | None | None | None | None | | | | | | | TM-1.1.4.b | | | Hard failure | <u>Local</u> | Power cycle FR; when rule fire count met, the RF side switch? | Autonomy | N/A | OWLT | None | None | None | None | None | | | | | | | TM-1.1.4.c | | | Reduced performance | None/Local? | RF side switch | Ground | | | None | None | None | None | Ground to monitor
performance; contingency for
RF side switch | | | | Power cycle, firmware reset, switch sides, reconfigure | | | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Possible Causes | Phase | Local | Next Higher | fect
Mission | Umbra Violation | Severity | Type of
FM | Observable | How Observed? | | Im Path for
Diagnosis | Time to Detect
(Local) | Time to Detect
(System) | |--|--|---|--|--|-------|---|---|---|-----------------|----------|---------------|------------|---|--|--------------------------|---------------------------|----------------------------| | Inputs | | | Configuration commands from C&DH | | | | Ground would see problem with data or would see no lock and would take steps to reacquire lock. | | N/A | 4 | | Yes | Reported status telemetry | TIm for reducecd
performance
defined by RF team | | None | None | | TM-1.1.5
TM-1.1.5.a | Ka-Band Tx | | Locks up/resets | 1) SEU | | Transponder A would come
back on in the "off" state. | Next ground contact would see
no response from s/C. Would
likely follow common response
to CLT timeout - soft reset of
radio, power cycle to radio,
side switch of RF, then
sideswitch of avionics. | | N/A | 4 | Active | Yes | Ground would see issue | Heartbeat from FR;
FR reset type | | N/A | N/A | | TM-1.1.5.b | | | Hard failure | 1) Component failure | | Transponder A doesn't work. | Overcurrent might cause FR to be shut down by s/c Undercurrent could heat up TWTA which might cause damage to radio. (critical temperature point,
needs a thermostat) | No effect. | N/A | 2R | Active | Yes | S/C might not be able to detec
failure, but ground would see
loss of comm | | | N/A | N/A | | TM-1.1.5.c | | | Reduced performance | Radiation effects Component degradation | | Radio wouldn't notice any
problem. | S/C wouldn't notice any
problem. Ground will detect
and will switch sides of the
Radio | No effect. | N/A | 4 | None | Yes | Ground would see issue | TIm for reducecd
performance
defined by RF team | | None | None | | Inputs | | | Configuration commands from
C&DH | | | | Ground would see problem
with data or would see no lock
and would take steps to re-
acquire lock. | Will need to reschedule
interrupted data download. | N/A | 4 | None | Yes | Reported status telemetry | TIm for reducecd
performance
defined by RF team | | None | None | | TM-1.2
TM-1.2.1
TM-1.2.2 | FR B Power Converter Spacecraft Interfaces (except power) | | | | | | | | | | | | | | | | | | TM-1.2.2.1
TM-1.2.2.2
TM-1.2.2.3
TM-1.2.2.4
TM-1.2.2.4
TM-1.2.3
TM-1.2.4 | X-Band Rx
X-Band Tx | Spacewire UART Clock Baseband MET Synch | | | | | | | | | | | | | | | | | TM-1.2.5
TM-2
TM-2.1 | Ka-Band Tx
TWTA
IX TWTA A/EPC | | | | | | | | | | | | Current and voltage would be out-of-spec, ground would lose downlink. | | | | | | TM-2.1.a | | | No RF output | 1) hard failure in TWTA | | Fails TWTA and EPC | Downlink lost. PDU would
switch the TWTA and FR to side
B. No other effect. | No effect. | N/A | 2R | Active | Yes | If anode voltage too low, would signal EPC failure - response would be to cycle jower to EPC. If anode voltage looks fine, but RF output power drops - response would be MOps contingency procedure if TWTA turns off and on repeatedly, might need an avoincis side switch. | EPC anode voltage How to catch TWTA ⁷ on/off? | | ? | ? | | TM-2.1.b | | | Fault reported in TWTA tlm
lines / No RF output | High helix current Overcurrent High temperature Failure in EPC | | Might cycle power | If monitored parameters
affected, PDU would switch to
B string. No other effect. | No effect. | N/A | 4 | Active | yes | High voltage monitored by the s/c Only ground would notice variation in received power | EPC aliveness;
TWTA current | | ? | ? | | Inputs | | | +28V | | | TWTA doesn't work | Downlink lost. PDU would
switch the TWTA and FR to side
B. No other effect. | No effect. | N/A | 4 | Active | Yes | TWTA doesn't come on when commanded to. Symptoms would initially imflict those of "No RF output," specifically: If anode voltage too low, would signal EPC failure - response would be to cycle power to EPC if anode voltage looks fine, but RF output power drops - response would be MOps contingency procedure if TWTA turns off and on repeatedly, might need an avionics side switch. | TWTA aliveness ? | | 7 | None | | TM-2.2
TM-2.3 | X TWTA B/EPC Ka TWTA A/EPC | | RF input from radio | | | No RF output (but EPC comes
on and TWTA is receiving
power) | Downlink lost. PDU would
switch the TWTA and FR to RF
side B. No other effect. | No effect. | N/A | 4 | Active | yes | Ground wouldn't see output.
The CLT might expire. | TWTA/EPCc health tlm? ? | | ? | ? | | TM-2.3.a | TO THE PARTY OF TH | | No RF output | 1) hard failure in TWTA | | Fails TWTA and EPC | Downlink lost. S/C would
switch the TWTA and FR to RF
side B. No other effect. | No effect. | N/A | 2R | Active | Yes | Current and voltage would be out-of-spec, ground would lost downlink. If anode voltage too low, would signal EPC failure - response would be to cycle power to EPC If anode voltage looks fine, but RF output power drops - response would be MOps contingency procedure if TWTA turns off and on repeatedly, might need an avionics side switch. | TWTA power state PDU t | o
Autonomy | ? | 7 | | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Response Level | Desired Local Response | Allocation of Local
Response | Time to fix locally | Respon Time to Transmit Signal | se
Desired System
Response | Allocation of
System Response | Time to fix system | Time to Transmit
Signal | Ground Response /
Contingency | System Side Switch | Quick Look
Processor Switch | Safe Mode | Remediation | Revisit | |--|--|---------------------------|--|----------------|---|---------------------------------|---------------------|--|----------------------------------|----------------------------------|--------------------|----------------------------|--|--------------------|--------------------------------|-----------|---|----------| | Inputs | | | Configuration commands from C&DH | None/Local? | RF side switch or re-issue correct configuration | Ground | | | None | None | None | None | Ground to monitor
performance; contingency for
RF side switch and/or re-issue
correct configuration | | | | issue correct configuration commands | | | TM-1.1.5 | Ka-Band Tx | | | | | | | | | | | | | | | | | | | TM-1.1.5.a | | | Locks up/resets | Local | Power cycle FR | Autonomy | N/A | | None | None | None | None | None | | | | | | | TM-1.1.5.b | | | Hard failure | Local | Power cycle FR; when rule fire count met, the RF side switch? | Autonomy | N/A | OWLT | | | | | | | | | | | | TM-1.1.5.c | | | Reduced performance | None/Local? | RF side switch or re-issue correct configuration | Ground | | | None | None | None | None | Ground to monitor
performance; contingency for
RF side switch and/or re-issue
correct configuration | | | | Power cycle, firmware reset, switch sides, reconfigure | | | Inputs | | | Configuration commands from
C&DH | None/Local? | RF side switch or re-issue correc
configuration | Ground | | | None | . <mark>None</mark> | None | None | Ground to monitor
performance; contingency for
RF side switch and/or re-issue
correct configuration | | | | lssue correct configuration commands | | | TM-1.2
TM-1.2.1 | FR B Power Converter Spacecraft Interfaces | | | | | | | | | | | | | | | | | | | TM-1.2.2
TM-1.2.2.1 | (except power) | Spacewire | | | | | | | | | | | | | | | | | | TM-1.2.2.2
TM-1.2.2.3
TM-1.2.2.4 | | UART
Clock
Baseband | | | | | | | | | | | | | | | | | | TM-1.2.2.4
TM-1.2.3
TM-1.2.4 | X-Band Rx
X-Band Tx | MET Synch | | | | | | | | | | | | | | | | | | TM-1.2.5
TM-2 | Ka-Band Tx
TWTA | | | | | | | | | | | | | | | | | ļ | | TM-2.1 | X TWTA A/EPC | | | | | | | | | | | | | | | | | | | TM-2.1.a | | | No RF output | Local/System | Power cycle EPC | Autonomy | ? | ? Depends on how
often those values
are sampled.
Probably 1Hz tick. | Possible system side
switch? | Autonomy | 3 | ? | ? | | | | | | | TM-2.1.b | | | Fault reported in TWTA tlm
lines / No RF output | Local | Power cycle EPC, TWTA Possible RF side switch | Autonomy | ? | ? Depends on how
often those values
are sampled.
Probably 1Hz tick. | None | None | None | None | Ground to monitor
performance; contingency for
RF side switch | Inputs | | | +28V | Local | RF side switch | Autonomy | ? | ? | None | None | N one | None | ? | | | | | | | | | | RF input from radio | Locacl | RF side switch | Autonomy | ? | ? | None | None | None | None | ? | | | | | | | TM-2.2
TM-2.3 | X TWTA B/EPC
Ka TWTA A/EPC | | | | | | | | | | | | | | | | | | | TM-2.3.a | | | No RF output | Local | RF side switch | Autonomy | ? | ? Depends on how
often those values
are sampled.
Probably 1Hz tick. | None | None | None | None | SC reacquire contingency - no
downlink | | | | Ka TWTA can switch radios independently of RF
side. Ground could also switch antenna
plarization. S/C would not do any of this
autonomously. | | | | | | | <u></u> | | | | | | | | | | | | | | <u> </u> | | FMEA ID | Name | Function | Failure Mode / Limit / | Possible Causes | Phase | Local | Eff
Next Higher | ect
Mission | Umbra Violation | Severity | Type of | Observable | How Observed? | Detection Me | | Time to Detect | Time to Detect | |----------|---|----------|--|--|-------|--|--|---|-----------------|----------|---------|------------|--|--|------------------------|----------------|----------------| | | | | Constraint | | | | | | | , | FM | | | | Diagnosis | (Local) | (System) | | TM-2.3.b | | | Fault reported in TWTA tlm
lines / No RF output | High helix current Overcurrent High temperature
Failure in EPC | | TWTA would continue working
but would output incorrect
voltage | If monitored parameters
affected, S/C would switch to B
string. No other effect. | No effect. | N/A | 4 | Active | Yes | High voltage monitored by
the s/c Only ground would notice
variation in received power | PDU TWTA currer | PDU to
CDH/Autonomy | ? | ? | | Inputs | | | ÷28V | | | TWTA doesn't work | Downlink lost. S/C would
switch the TWTA and FR to RF
side B. No other effect. | | | 4 | Active | Yes | TWTA doesn't come on when commanded to. Symptoms would initially mimic those of "No RF output," specifically: If anode voltage too low, would signal EPC failure response would be to cycle power to EPC III anode voltage looks fine, but RF output power drops-response would be MOps contingency procedure IT TWTA turns off and on repeatedly, might need an avionics side switch. | | t CDH/Autonomy | 2 | ? | | | | | RF input from radio | | | No RF output | Downlink lost. S/C would
switch the FR to RF side B. No
other effect. | | | 4 | Active | Yes | Ground wouldn't see output.
The CLT might expire. | No RF output on ground CLT expiration | ? | ? | ? | | | Ka TWTA B/EPC
Low Noise Amplifier | | | | | | | | | | | | | | | | | | | LNA A | | No output | 1) component failure | | No uplink signal to radio | Command loss timer limit violation will cause (autonomy?) switch to RF side B and adjust switches to point to the other antenna. No other | No effect. | N/A | 2R | Active | Yes | S/C would see absence of commands from ground. CLT not tickled. | None
No RF output on
ground | ? | ? | ? | | TM-3.1.b | | | incorrect output | 1) Degraded performance
(gain, noise figure) | | Degraded link performance for
that uplink. | effect. S/c would only notice if degradation was sufficient to cause errors in uplink datastream. Not noticable with sufficient link margin. Radio's input power would not match the expected value [probably noticed on ground, not on board s/c). (Ground command to) S/c would switch to side B. | | N/A | 4 | None | | S/c would only notice if degradation was sufficient to cause errors in uplink datastream. Not noticable with sufficient link margin. Radio's input power would not match the expected value (probably noticed on ground, not on board s/c). Ground would perform any switches. | CLT expiration None - degraded performance | None | None | None | | Inputs | | | Secondary voltage from Radio | | | No uplink signal to radio | Command loss timer limit
violation will cause | No effect. | N/A | 4 | Active | Yes | S/C would see absence of commands from ground. CLT not tickled. | None No RF output on ground CLT expiration | ? | ? | ? | | | | | RF input from filter | | | No uplink signal to radio | Command timer limit violation will cause (autonomy?) switch to side B. No other effect. | No effect. | N/A | 4 | Active | Yes | S/C would see absence of commands from ground. | No RF output on ground CLT expiration | ? | ? | ? | | | LNA B
Hybrid | | | | | | | | | | | | | CET EXPIRATION | | ļ | | | | HYDrio
Ka-Band HYB-2 | | No output / incorrect output | 1) Mechanical failure in device
2) Failure at waveguide flange | | No output to expected device
from Hybrid. | No RF or degraded RF signal.
Ground would notice lack or
degradation of signal and
command RF to switch sides
and/or switch Ka-band TWTAs,
but degraded signal would
remain even after switch. | Eventually overwhelm SSRs du
to only having fanbeam
downlink. | N/A | 2 | None | | Ground detects data errors,
incorrect power, or loses
downlink. Autonomy would
not react. | None - degraded
performance | None | None | None | | Inputs | | | RF output from FRs | | | No effect on hybrid. | Ground would detect data
errors, incorrect transmit
power, or lost downlink and
would command RF to switch
sides. | No effect. | N/A | 4 | None | | Ground detects data errors,
incorrect power, or loses
downlink. Autonomy would
not react. | None - degraded
performance | None | None | None | | TM-5.1 | Filter
Filter A (component
may be removed from
design) | | | | | | | | | | | | S/C would see absence of | | | | | | TM-5.1.a | | | No output | 1) component failure | | No uplink signal to radio | Command timer limit violation will cause (autonomy?) switch to side B. No other effect. | No effect. | N/A | 2R | Active | Yes | S/C would see absence of
commands from ground. CLT
not tickled. This is a
completely passive component
so ground might assume failun
is in the LNA. | | ? | ? | ? | | TM-5.1.b | | | Degraded output | 1) component failure | | Degraded link performance for
that uplink. | S/c would only notice if degradation was sufficient to cause errors in uplink datastream. Not noticable with sufficient his margin. Radio's input power would not match the expected value [probably noticed on ground, not on board s/c). (Ground command to) S/c would switch to side B. | | N/A | 4 | None | | S/c would only notice if degradation was sufficient to cause errors in uplink datastream. Not noticable with sufficient link margin. Radio's input power would not match the expected value (probably noticed on ground, not on board s/c). Ground would perform any switches. This is a completely passive component, so ground might assume failure is in the LNA. | None - degraded
performance | None | None | None | | Inputs | Filter B | | Uplink signal from diplexer | | | No uplink signal to radio | Command timer limit violation will cause (autonomy?) switch to RF side B. No other effect. | No effect. | N/A | 4 | Active | Yes | S/C would see absence of
commands from ground. CLT
not tickled. This is a
completely passive component
so ground might assume failur
is in the LNA. | None CLT expiration | ? | 7 | ? | | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Response Level | Desired Local Response | Allocation of Local
Response | Time to fix locally | Respon Time to Transmit Signal | se
Desired System
Response | Allocation of
System Response | Time to fix system | | t Ground Response / | System Side Switch | Quick Look Processor Switch | Safe Mode | Remediation | Revisit | |----------------|--|----------|--|----------------|------------------------|---------------------------------|---------------------|--|----------------------------------|----------------------------------|--------------------|----------------|---|--------------------|-----------------------------|-----------|--|----------| | TM-2.3.b | | | Fault reported in TWTA tlm
lines / No RF output | Local | RF side switch | Autonomy | ? | ? Depends on how
often those values
are sampled.
Probably 1Hz tick. | None Kesponse | None | None | Signal
None | Ground to monitor performance; contingency for RF side switch | | | | Ka TWTA can switch radios independently of RF
side. Ground could also switch antenna
plarization. S/C would not do any of this
autonomously. | | | Inputs | | | +28V | Local | RF side switch | Autonomy | ? | | None | None | None | None | SC reacquire contingency - no
downlink | | | | | x | | TM-2.4 | Ka TWYA B/FPC | | RF input from radio | Local | RF side switch | Autonomy | ? | ? | None | None | None | None | SC reacquire contingency - no downlink | | | | | х | | TM-3
TM-3.1 | Low Noise Amplifier
LNA A | | | | | | | | | | | | | | | | | <u> </u> | | TM-3.1.a | | | No output | Local | RF side switch | Autonomy | ? | ~1 sec | None | None | None | None | SC reacquire contingency - no
downlink | | | | if s/c is positioned appropriately, the other FR
could be in view of Earth and still receive
commands. Would give a positive indication of
failure - carrier lock on wrong radio. | | | TM-3.1.b | | | ncorrect output | Local / Ground | RF side switch | Ground | ? | ? | None | None | None | None | Ground to monitor performance; contingency for RF side switch | | | | | | | Inputs | | | Secondary voltage from Radio | Local | RF side switch | Autonomy | ? | ? | None | None | None | None | Ground to reacquire SC | | | | | | | | | | RF input from filter | Local | RF side switch | Autonomy | ? | ? | None | None | None | None | Ground to reacquire SC | | | | | | | TM-3.2
TM-4 | LNA B
Hybrid | | | | | | | | | | | | | | | | | <u> </u> | | TM-4.1.a | Ka-Band HYB-2 | | No output / incorrect output | Local / Ground | RF side switch | Ground | 2 | ? | None | None | None | None | Ground to monitor
performance; contingency for
RF side switch | | | | | | | Inputs | | | RF output from FRs | Local / Ground | RF side switch | Ground | ? | ? | None | None | None | None | Ground to monitor
performance; contingency for
RF side switch | | | | | | | TM-5.1 | Filter
Filter A (component
may be removed from | | | | | | | | | | | | | | | | | | | TM-5.1.a | design) | | No output | Local | RF side switch | Autonomy | 7 | , | None | None | None | None | Ground to reacquire SC | | | | If s/c is positioned appropriately, the other FR could be in view of Earth and still receive commands. Would give a positive indication of failure - carrier lock on wrong radio. | | | TM-5.1.b | | | Degraded output | Local / Ground | RF side switch | Ground | ? | ? | None | None | None | None | Ground to monitor performance; contingency for RF side switch | | | | | | | Inputs | Filter B | | Uplink signal from diplexer | Local | RF side switch | Autonomy | ? | ? | None | None | None | None | Ground to reacquire SC | | | | | | | FMEA ID | Name |
Function | Failure Mode / Limit / Possible Cause
Constraint | s Phase | Local | Ef
Next Higher | ect
Mission | Umbra Violation | Severity | Type of
FM | Observable | How Observed? | Detection Meth
Tlm for Diagnosis | od
TIm Path for
Diagnosis | Time to Detect
(Local) | Time to Detect
(System) | |----------|-------------------|----------|--|----------|--|--|---|-----------------|----------|---------------|------------|---|---|---------------------------------|---------------------------|----------------------------| | | Diplexer
DPA | | No output (uplink or downlink) 1) component failure | | Loss of uplink or downlink
signal | With severe enough degradation, (uplink - autonomy CLT timeout, downlink - ground would notice and send command) S/C would switch to RF side B. No other effect. | No effect. | N/A | 2R | Active | Yes | Loss of uplink would look like degraded LNA (s/c would see an absence of commands from ground, CLT wouldn't be tickled). Loss of downlink would cause a reduction in receive power on ground. | None
CLT expiration | ? | ? | ? | | TM-6.1.b | | | Degraded output (uplink or downlink) 1) component failure | | Degradation of uplink or
downlink signal | S/c or ground would detect
issue (Ground-sent command
to switch sides) and switch to
RF side B | No effect. | N/A | 4 | None | | S/C would not be able to isolate problem to diplexer. If uplink path failed, s/c would see loss of uplink. If downlink path failed, ground would see loss of downlink. Notice through trending. No autonomous reaction. | | None | None | None | | Inputs | | | Uplink signal from switch
assembly | | Loss of both uplink and
downlink signal | S/c or ground would detect
issue (Ground-sent command
to switch sides) and switch to
RF side B | No effect. | N/A | 4 | None | | S/C would not be able to isolate problem to diplexer. If uplink path failed, s/C would see loss of uplink. If downlink path failed, ground would see loss of downlink. Notice through trending. No autonomous reaction. | | None | None | None | | | | | Downlink signal in from X-band
TWTAs | | Loss of downlink signal | S/c or ground would detect
issue (Ground-sent command
to switch sides) and switch to
RF side B (could still uplink, if
necessary) | No effect. | N/A | 4 | None | | S/C would not be able to solate problem to diplexer. If uplink path failed, s/c would see loss of uplink. If downlink path failed, ground would see loss of downlink. Notice through trending. No autonomous reaction. | | None | None | None | | | DP B
RF Switch | | | | | | | | | | | | | | | | | | 5W1 | | Switch stuck in a single position Component failure | | Switch stuck in single configuration | Could still access all antennas
by switching FRs or TWTAs. No
effect on S/C. | No effect. | N/A | 2R | None | Yes | Tell-tales Would not be able to communicate through commanded path if switch didn't flip. | Switch Telltales | ? | ? | None | | TM-7.1.b | | | Telltales fail Component failure | | No sensing on switch. | No effect. Ground will need to infer position based on received power. | No effect. | N/A | 4 | None | Yes | Communications would work through a pathway configuration that the tell-tale status says the s/c is not in. | Switch Telltales and power status | ? | ? | None | | TM-7.1.c | | | Switch not in any position Redundant coils burnt (electrical fault) failures) | out (two | Switch not connected to any antenna | FR A can no longer transmit or receive from any X-band antenna. | No effect. | N/A | 2R | None | Yes | Ground would see loss of X-
band downlink. | Loss of downlink
signal | ? | ? | None | | TM-7.1.d | | | Switch not in any position not a credible failure (mechanical fault) | | Not a credible failure | No effect. | No effect. | N/A | 4 | None | | None | None | None | None | None | | Inputs | | | RF signal from previous switch, idplexer, or antenna | | Switch can't send RF signal on
to proper device | Worst case could lose an antenna | Lost RF coverage to some portion of s/c (x-band only). Worst case - lose abilty for nominal operations through 34M DSN. Lose x-band downlink capability until s/c has moved enough to see another antenna. Could rotat s/c for partial mitigation to achieve degraded link performance. | N/A | 4 | Active | | Ground would see loss of antenna. S/c could see loss of uplink, CLT time-out would cause autonomy to switch sides, but would eventually need to go looking for Earth with a different antenna. | CLT countdown
Ground - loss of
antenna coverage | CLT countdown in
Autonomy | 7 | ? | | TM-7.2 | SW2 | | | | | | | | | | | | | | | | | тм-7.2.а | | | Switch stuck in a single position Component failure | | Switch stuck in single configuration | Could still access all antennas
by switching FRs or TWTAs. No
effect on S/C. | No effect. | N/A | 2R | None | Yes | Tell-tales Would not be able to communicate through commanded path if switch didn't flip. | Switch Telltales | ? | ? | None | | TM-7.2.b | | | Telltales fail Component failure | | No sensing on switch. | No effect. Ground will need to
infer position based on
received power. | No effect. | N/A | 4 | None | Yes | Communications would work
through a pathway
configuration that the tell-tale
status says the s/c is not in. | Switch Telltales and power status | ? | ? | None | | TM-7.2.c | | | Switch not in any position Redundant coils burnt
lelectrical fault) failures) | out (two | Switch not connected to any antenna | FR B can no longer transmit or receive from any X-band antenna. | No effect. | N/A | 2R | None | Yes | Ground would see loss of X-
band downlink. | Loss of downlink
signal | ? | ? | None | | TM-7.2.d | | | Switch not in any position not a credible failure (mechanical fault) | | Not a credible failure | No effect. | No effect. | N/A | 4 | None | | | None | None | None | None | | Inputs | | | RF signal from previous switch, diplexer, or antenna | | Switch can't send RF signal on
to proper device | Worst case could lose an antenna | Lost RF coverage to some Lost RF coverage to some Dortion of s/c (x-band only). Worst case - lose ability for nominal operations through 34M DSN. Lose x-band downlink capability until s/c has moved enough to see another antenna. Could rotat s/c for partial mitigation to achieve degraded link performance. | N/A | 4 | Active | | Ground would see loss of uplink, CLT time-out would cause autonomy to switch sides, but would eventually need to go looking for Earth with a different antenna. | CLT countdown
Ground - loss of
antenna coverage | CLT countdown in
Autonomy | 7 | ? | | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Response Level | Desired Local Response | Allocation of Local
Response | Time to fix locally | Respor
Time to Transmit
Signal | Desired System Response | Allocation of
System Response | Time to fix system | Time to Transm
Signal | it Ground Response /
Contingency | System Side Switch | Quick Look
Processor Switch | Safe Mode | Rem | nediation | Revisit | |----------|------------------|----------|---|-------------------|---|---------------------------------|---------------------|--------------------------------------|--------------------------------------|----------------------------------|--------------------|--------------------------|---|--------------------|--------------------------------|-----------|-----|-----------|---------------| | | Diplexer
DP A | IIW-0.1 | DF A | | | | | | | | | | | | | | | | | | † | TM-6.1.a | | | No output (uplink or downlink) | Local | RF side switch | Autonomy | ? | ? | None | None | None | None | Ground to reacquire SC | ļ | | | | | | | ļ | 2 | | | | | | | | | | Ground to monitor | | | | | | | | TM-6.1.b | | | Degraded output (uplink or
downlink) | Local / Ground | RF side switch | Ground | ? | ? | None | None | None | None | performance; contingency for
RF side switch | N side switch | Inputs | | | Uplink signal from switch
assembly | Local / Ground | RF side switch | Ground | ? | ? | None | None | None | None | Ground to monitor
performance; contingency for | | | | | | | | | | | assembly | | | | | | | | | | RF side switch | Downlink signal in from X-band
TWTAs | | | | | _ | | | | | Ground to monitor | | | | | | | | | | | TWTAs | Local / Ground | RF side switch | Ground | ' | , | None | None |
None | None | performance; contingency for
RF side switch | TM-6.2 | DP B | | | <u> </u> | ļ | | | ļ | | | ļ | ļ | | | | | | | | | TM-7 | RF Switch | | | ļ | <u></u> | | | <u></u> | | | <u></u> | <u> </u> | | i
 | | | | | | | TM-7.1 | SW1 | TM 7.1 - | | | C | Laurel / Consumed | Name | Constant | News | Name | Name | N | Name | Al | Need to talk through all the
combinations within RF system | | | | | | | | TM-7.1.a | | | Switch stuck in a single position | Local / Ground | None | Ground | None | None | None | None | None | None | that ground should try when
attempting to reacquire | | | • | | | | | | | | | | | | | | | | | ļ | | | | | | | | | | | | T. W. L. C. I | | | | | | | | | | Need to talk through all the
combinations within RF system | | | | | | | | TM-7.1.b | | | Telltales fail | Local / Ground | None | Ground | None | None | None | None | None | None | that ground should try when
attempting to reacquire | | | • | Need to talk through all the
combinations within RF system | | | | | | | | TM-7.1.c | | | Switch not in any position
(electrical fault) | Local / Ground | None | Ground | None | None | None | None | None | None | that ground should try when
attempting to reacquire; this | | | | | | | | | | | (electrical fault) | | | | | | | | | | fault would result in RF side | | | | | | | | | | | Switch not in any position | | | | ļ | ļ | | ļ | ļ | ļ | switch? | <u> </u> |
 | <u> </u> | | | | | TM-7.1.d | | | (mechanical fault) | None | Inputs | | | RF signal from previous switch, | Local | CLT expires and performs RF side | Autonomy | ? | ? | CLT 2 expires and
performs system | Autonomy | ? | ? | ? | | | | | | | | · | | | diplexer, or antenna | | switch | | | | side switch | ĺ | TM-7.2 | SW2 | | | | | | ļ | ļ | | | ļ | ļ | | | ļ | <u> </u> | | | | | 1.6171.2 | J | | | | | <u> </u> | <u></u> | | İ | <u> </u> | <u> </u> | İ | Need to talk through all the | <u></u> | | | | | - | | TM-7.2.a | | | Switch stuck in a single position | Local / Ground | None | Ground | None | None | None | None | None | None | combinations within RF system | | | ļ | | | | | | | | | | | | | | | | | | that ground should try when
attempting to reacquire | | | | | | | | | | | | | | | <u></u> | | ļ | | <u></u> | ļ | Need to talk through all the | | | | ļ | | - | | TM-7.2.b | | | Telltales fail | Local / Ground | None | Ground | None | None | None | None | None | None | combinations within RF system | that ground should try when
attempting to reacquire | | | | | | | | | | | | | | <u> </u> | <u></u> | | İ | <u> </u> | <u> </u> | İ | Need to talk through all the | <u></u> | | | | | - | | | | | Switch not in any position | | | | | | | | | | combinations within RF system | | | | | | | | TM-7.2.c | | | Switch not in any position
(electrical fault) | Local / Ground | None | Ground | None | None | None | None | None | None | that ground should try when
attempting to reacquire; this | fault would result in RF side
switch? | | | | | | | | TM 7.2 - | | | Switch not in any position | None | ļ | | | | | | | TM-7.2.d | | | (mechanical fault) | None ļ | | <u> </u> | | | . | CIT 2 avaises and | | | | | | | | | | | | Inputs | | | RF signal from previous switch,
diplexer, or antenna | Local | CLT expires and performs RF side switch | Autonomy | ? | ? | CLT 2 expires and
performs system | Autonomy | ? | ? | ? | | | | | | | | | | | preser, or antennia | | | | | | side switch | 1 | 1 | 1 | 1 | 1 | 1 | <u> </u> | 1 | <u> </u> | <u></u> | į | 1 | <u> </u> | į | <u>.</u> | į | | | | TM-7.3 | SW3 | | ······································ | 1 | | | • | 1 | | | | | | 1 | | 1 | | | | | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Possible Causes | Phase | Local | Eff
Next Higher | ect
Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Detection Meth
Tlm for Diagnosis | od
Tlm Path for
Diagnosis | Time to Detect | Time to Detect
(System) | |--------------------|------------------------|----------|---|---|-------|--|--|---|-----------------|--|------------|-------------------------------------|--|---|---------------------------------|----------------|----------------------------| | TM-7.3.a | | | Switch stuck in a single position | Component failure | | Switch stuck in single configuration | Could still access all antennas
by switching FRs or TWTAs. No
effect on S/C. | No effect. | N/A | 2R | None | Yes | Tell-tales Would not be able to communicate through commanded path if switch didn't flip. | Switch Telltales | ? | ? | None | | TM-7.3.b | | | Telltales fail | Component failure | | No sensing on switch. | No effect. Ground will need to infer position based on received power. | No effect. | N/A | 4 | None | Yes | Communications would work through a pathway configuration that the tell-tale status says the s/c is not in. | Switch Telltales and power status | ? | ? | None | | TM-7.3.c | | | Switch not in any position
(electrical fault) | Redundant coils burnt out (two
failures) | | Switch not connected to any antenna | S/c can no longer transmit or receive from any LGA. | No effect. | N/A | 2R | None | Yes | Ground would see loss of X-
band downlink. | Loss of downlink
signal | ? | ? | None | | TM-7.3.d | | | Switch not in any position
(mechanical fault) | not a credible failure | | Not a credible failure | No effect. | No effect. | N/A | 4 | None | | | None | None | None | None | | Inputs | | | RF signal from previous switch,
diplexer, or antenna | | | Switch can't send RF signal on
to proper device | Worst case could lose an
antenna | Lost RF coverage to some portion of s/c (x-band only). Worst case - lose ability for nominal operations through 34M DSN. Lose x-band downlink capability until s/c has moved enough to see another antenna. Could rotate s/c for partial mitigation to achieve degraded link performance. | N/A | 4 | Active | | Ground would see loss of antenna. S/c could see loss of uplink, CLT time-out would cause autonomy to switch sides, but would eventually need to go looking for Earth with a different antenna. | CLT countdown
Ground - loss of
antenna coverage | CLT countdown in
Autonomy | 2 | 2 | | TM-7.4
TM-7.4.a | 5W4 | | Switch stuck in a single position | Component failure | | Switch stuck in single configuration | Could still access all antennas
by switching FRs or TWTAs. No
effect on S/C. | No effect. | N/A | 2R | None | Yes | Tell-tales Would not be able to communicate through commanded path if switch didn't flip. | Switch Telltales | ? | ? | None | | TM-7.4.b | | | Telltales fail | Component failure | | No sensing on switch. | No effect. Ground will need to infer position based on received power. | No effect. | N/A | 4 | None | Yes | Communications would work
through a pathway
configuration that the tell-tale
status says the s/c is not in. | Switch Telltales and power status | ? | ? | None | | TM-7.4.c | | | Switch not in any position
(electrical fault) | Redundant coils burnt out (two
failures) | | Switch not connected to any antenna | S/c can no longer transmit or receive from any fan beam antenna. | No effect. | N/A | 2R | None | Yes | Ground would see loss of X-
band downlink. | Loss of downlink
signal | ? | ? | None | | TM-7.4.d | | | Switch not in any position
(mechanical fault) | not a credible failure | | Not a credible failure | No effect. | No effect. | N/A | 4 | None | | | None | None | None | None | | Inputs | | | RF signal from previous switch,
diplexer, or antenna | | | Switch can't send RF signal on
to proper device | Worst case could lose an antenna | Lost RF coverage to some portion of s/c (k-band only). Worst case - lose abilty for nominal operations through 34M DSN. Lose x-band downlink capability until s/c has moved enough to see another antenna. Could rotate s/c for partial mitigation to active vegerate of the performance. | N/A | 4 | Active | | Ground would see loss of antenna. S/c could see loss of uplink, CLT time-out would cause autonomy to switch sides, but would eventually need to go looking for Earth with a different antenna. | CLT countdown
Ground
- loss of
antenna coverage | CLT countdown in
Autonomy | 7 | ? | | | Flex Waveguide
FW A | | | | | | | | | | | | | | | | | | TM-8.1.a | | | Crack | 1) Material defect
2) Dust strike | | Degraded wave propagation to/from antenna | Degraded antenna
performance. Ground
command Switch to other side. | No effect. | N/A | 4 | None | Yes. (After process of elimination) | Gournd would see reduced downlink power. Autonomy would not act. | None | None | None | None | | Inputs | | | RF output from Ka-band TWTAs | | | Degraded wave propagation to/from antenna | Degraded antenna
performance. Ground
command Switch to other side. | No effect. | N/A | 4 | | Yes. (After process of elimination) | Gournd would see reduced
downlink power. Autonomy
would not act. | None | None | None | None | | TM-9 | FW B
Antennae | | | | | | | | | | | | | | | | | | TM-9.1
TM-9.1.a | HGA | | Mechanical failure | 1) Material defect
2) Dust strike | | Antenna fails to send/receive communications. | S/C unable to return data in a timely fashion. Ground would attempt to switch antenna polarization, but would not correct problem. | Mission success severely impacted by data rate loss. | N/A | 2 - if data return is too
low
3 - if science
requirements can still
be met | None | Yes. (After process of elimination) | No more comm to/from HGA. | None
Loss of comm with
HGA | None | None | None | | TM-9.1.b | | | Degraded performance | | | Poor perfomance (either less
power or corrupted signal) | Run at lower data rates.
Ground would switch antenna
polarization. | Mission success severely impacted by data rate loss. | N/A | 2 - if data return is too
low
3 - if science
requirements can still
be met | None | Yes. (After process of elimination) | Ground would see lower powe
or corrupted signal | None
r
Loss of comm with
HGA | None | None | None | | TM-9.2.a | IGA1 | | Mechanical failure | 1) Material defect
2) Oust strike | | Antenna falls to send/receive communications. | No problem as long as s/c can
orient itself such that working
antenna is pointing to Earth.
May not be possible at all
points in mission. Only used
during TCMs, may lose comm
due to s/c pointing
requirements for TCM. Ground
would command s/c to switch
antennae. | loss of LGA | N/A | 3 | | Yes. (After process of elimination) | No more comm to/from LGA. | None
Loss of comm with
LGA | None | None | None | | TM-9.3
TM-9.4 | FB 1 | | <u> </u> | | | | | | | <u> </u> | <u></u> | | | <u> </u> | | | | | FMEA ID | Name | Function | Failure Mode / Limit / | Response Level | Desired Local Response | Allocation of Local | Time to fix locally | | Desired System | Allocation of | Time to fix system | | | System Side Switch | Quick Look Processor Switch | Safe Mode | Remediation | Revisit | |--------------|------------------------|----------|---|-------------------|---|---------------------|---------------------|---------|-----------------------------------|-----------------|--------------------|--------|--|--------------------|-----------------------------|-----------|-------------|---------| | | | | Constraint | | | Response | | Signal | Response | System Response | | Signal | Contingency Need to talk through all the | | | | | | | M-7.3.a | | | Switch stuck in a single position | n Local / Ground | None | Ground | None | None | None | None | None | None | combinations within RF system
that ground should try when | attempting to reacquire | | | | | | | M-7.3.b | | | Telltales fail | Local / Ground | None | Ground | None | None | None | None | None | None | Need to talk through all the
combinations within RF system | | | | | | | | | | | , | | | | | | | | | that ground should try when
attempting to reacquire | Need to talk through all the combinations within RF system | | | | | | | M-7.3.c | | | Switch not in any position
(electrical fault) | Local / Ground | None | Ground | None | None | None | None | None | None | that ground should try when
attempting to reacquire; this | | | | | | | | | | Ciccincal laury | | | | | | | | | | fault would result in RF side
switch? | | | | | | | и-7.3.d | | | Switch not in any position | None | | | | | | | | | (mechanical fault) | CLT 2 expires and | | | | | | | | | | | puts | | | RF signal from previous switch,
diplexer, or antenna | ' Local | CLT expires and performs RF side switch | Autonomy | ? | ? | performs system
side switch | Autonomy | ? | ? | ? | 1-7.4 | SW4 | | | | | | | | | | | | | | | | | | | и-7.4.a | | | Switch stuck in a single position | n Local / Ground | None | Ground | None | None | None | None | None | None | Need to talk through all the
combinations within RF system | | | | | | | л-7.4.a | | | Switch stuck in a single position | in Eucar / Ground | None | Ground | None | None | None | None | None | None | that ground should try when
attempting to reacquire | Need to talk through all the | | | | | | | M-7.4.b | | | Telltales fail | Local / Ground | None | Ground | None | None | None | None | None | None | combinations within RF system
that ground should try when | attempting to reacquire | | | | | | | | | | Switch not in any position | | | | | | | | | | Need to talk through all the
combinations within RF system
that ground should try when | | | | | | | И-7.4.с | | | (electrical fault) | Local / Ground | None | Ground | None | None | None | None | None | None | attempting to reacquire; this fault would result in RF side | switch? | | | | | | | 1-7.4.d | | | Switch not in any position
(mechanical fault) | None | uts | | | RF signal from previous switch, | ' Local | CLT expires and performs RF side | Autonomy | 7 | ? | CLT 2 expires and performs system | Autonomy | 7 | 7 | 2 | | | | | | | | | | diplexer, or antenna | | switch | , | | | side switch | , | -8
-8.1 | Flex Waveguide
FW A | Need to talk through all the
combinations within RF system | | | | | | | N-8.1.a | | | Crack | Local / Groound | Contingency Procedure | Ground | ? | ? | None | None | None | None | that ground should try when
attempting to reacquire; this | fault would result in RF side
switch? | | | | | | | | | | | | | | | | | | | { | Need to talk through all the | | | | | | | outs | | | RF output from Ka-band TWTA | s Local / Groound | Contingency Procedure | Ground | ? | ? | None | None | None | None | combinations within RF system that ground should try when | attempting to reacquire; this
fault would result in RF side
switch? | | | | | | | л-8.2
л-9 | FW B | | | | | | | | | | | | SWILLIE | | | | | | | И-9
И-9.1 | Antennae
HGA | Need to talk through all the | | | | | | | И-9.1.a | | | Mechanical failure | Local / Ground | Contingency Procedure | Ground | ? | ? | None | None | None | None | combinations within RF system
that ground should try when
attempting to reacquire | И-9.1.b | | | Degraded performance | Local / Ground | Contingency Procedure | Ground | ? | ? | None | None | None | None | Need to talk through all the
combinations within RF system | that ground should try when
attempting to reacquire | | | | | | | -9.2 | LGA 1 | Need to talk through all the
combinations within RF system | | | | | | | И-9.2.a | | | Mechanical failure | Local / Ground | Contingency Procedure | Ground | (| ľ | None | None | None | None | that ground should try when
attempting to reacquire | 1 | 1 | 1 | 1 | | | | | | | | | | | | | | и-9.3 | LGA 2 | | | | - - | ļ | · • | · · | <u> </u> | | ļ | ļ | - | | ļ | | | | | | | | | | | | Ef | fect | | | | | | Detection Metho | d | | | |-----------------|--------------|----------|---|--------------------------------------|-------|---|---|------------|-----------------|----------|------------|-------------------------------------|--|---------------------------|---------------------------|---------------------------|----------------------------| | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Possible Causes | Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Tlm for Diagnosis | Tlm Path for
Diagnosis | Time to Detect
(Local) | Time to
Detect
(System) | | TM-9.4.a | | | Mechanical failure | 1) Material defect
2) Dust strike | | Antenna fails to send/receive communications. | No problem as long as s/c can orient itself such that working antenna is pointing to Earth. May not be possible at all points in mission. Would rotate around 2 to get to an LGA, during periods of Ka-band contact, would have reduced uplink capability through LGA. Ground would command s/c to switch antennae. | | N/A | 3 | None | Yes. (After process of elimination) | No more comm to/from FB. | None
Loss of comm with | Juagnoss | None | None | | TM-9.5
TM-10 | FB 2
RFDU | | | | | | Could probably still use that | | | | | | | | | | | | TM-10.a | | | Loss of single diode/resistor in
cross-strapping section | | | Loss of cross-strapping
capability to one side | side, but would probably
switch to side B | | N/A | 2R | | ? | ? | | | | | | TM-10.b | | | Loss of soft-start circuitry for
TWTs | | | TWT no longer available | Switch to B side | | | 2R | | | | | | | | | Inputs | | | Tell tale signal from switch assembly | | | No sensing on switch. | received power. | No effect. | N/A | 4 | | Yes | Communications would work
through a pathway
configuration that the tell-tale
status says the s/c is not in. | | | | | | | | | DC power to TWTs | | | Fails TWTA | Downlink lost. PDU would
switch the TWTA and FR to side
B. No other effect. | No effect. | N/A | 4 | | Yes | Current and voltage would be
out-of-spec, ground would los
downlink. | | | | | | | | | Control lines from avionics to switch assembly | | | | Could still access all antennas
by switching FRs or TWTAs. No
effect on S/C. | No effect. | N/A | 4 | | Yes | Tell-tales Would not be able to communicate through commanded path if switch didn't flip. | | | | | | | | | | | | | | Respor | | | | | | | Quick Look | | | | |----------|------|--|----------------------------------|----------------|------------------------|----------|---------------------|--------------------|----------|-----------------|---|-------------|--|--------------------|------------------|-----------|-------------|---------| | FMEA ID | Name | Function | Failure Mode / Limit / | Response Level | Desired Local Response | | Time to fix locally | | | | Time to fix system | | Ground Response / | System Side Switch | Processor Switch | Safe Mode | Remediation | Revisit | | | | | Constraint | | | Response | | Signal | Response | System Response | | Signal | Contingency | | | | | | | | | | | ļ | Need to talk through all the | | | | | 1 | | | | | | | | | 1 | | | | | | combinations within RF systen | | | | | | | TM-9.4.a | | | Mechanical failure | Local / Ground | Contingency Procedure | Ground | ? | ? | None | None | None | None | that ground should try when | attempting to reacquire | İ | 1 | | TM-9.5 | FB 2 | | | ļ | | | · | ļ | · | ļ | · · | | | · | | | | | | TM-10 | RFDU | ······································ | · · · · | | | | · | | · | · | · • | | | | | | | · | | | | | Loss of single diode/resistor in | | | | | | | | | | | | | | | | | TM-10.a | | | cross-strapping section | Local | RF side switch | | | | | | | | | | | | | Х | | | · • | | Loss of soft-start circuitry for | ļ | | | · | ļ | · | ļ | · · | | | · | | | | | | TM-10.b | | | TWTs | Local | RF side switch | | | | | | | | | | | | | Х | 1 | | | Tell tale signal from switch | Local | RF side switch | | | | | | | | | | | | | | | Inputs | | | assembly | LOCAI | RF Side SWILCH | | | | | | | | | | | | | | | | İ | | | İ | | | İ | | İ | | İ | İ | | i i | | | | İ | | | | | | | | | | ? Depends on how | | | | | | | | | | | | | | | DC power to TWTs | | 05.11 2.1 | | | often those values | | | | | | | | | | | | | | | DC power to I W Is | Local | RF side switch | | | are sampled. | | | 1 | | | | | | | 1 | | | | | | | | | • | Probably 1Hz tick. | · • · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | Control lines from avionics to | switch assembly | Local | RF side switch | .á | | <i>i</i> | á | | | . | | | . 4 | | ······································ | . ن | i | | | | Subject Matter Tim Cole Expert(s): Weilun Cheng Notes: Yellow highlighted blocks are redundant components. Components are listed for completeness, but failure mode and FMEA information is only displayed in the first copy of the component. | | information is only displayed i | in the first copy of the component. | | | F | ffect | | | | | | Detection Method | | | |---------------------------------|---------------------------------|---|---|---|---|--|---|----------|---------------|------------|--|---|------------------------|---------------------------| | FMEA ID Name | Function | Failure Mode / Limit / Constraint | Possible Causes Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of
FM | Observable | How Observed? | Tim for Diagnosis | Tlm Path for Diagnosis | Time to
Detect (Local) | | ME-1 Gimbals ME-1.1 Solar Array | | | | | | | | | | | | | | | | ME-1.1 Solar Array #1 | | | | | | | | | | | | | | | | ME-1.1.1.1 Flap Actuator | | | | | | | Ì | | | | | | | | | ME-1.1.1.1.a | | Fails to actuate when commanded | 1) bad/bound
bearing/mechanical failure
2) stepper motor failure
3) loose/separated connector | Solar array stuck in position | if SA needs to move out, generates insufficient power if SA needs to move in, generates too much power, potential overheating of wing (cells burned) | 1) eventually drain battery,
may be able to slew s/c to
retain partial power for a time
2) lose mission | If in encounter, and SAs stuck
out too far | 2 | Active | | Potentiometer telemetry. Turn
on redundant ECU for 3rd vote. | | ECU to REM | ? | | ME-1.1.1.1.b | | Incorrect actuation when commanded | 1) incorrect potentiometer reading 2) residual torque (should have sufficient margin) 3) Motor coil or winding is open | Solar array in incorrect positio | 1) if SA needs to move out, generates insufficient power (different than required). 2) if SA needs to move in, generates too much power (different than expected), potential overheating of wing (cells burned) | 1) eventually drain battery,
may be able to slew s/c to
retain partial power for a time
2) lose mission | If in encounter, and SAs stuck
out too far | 2 | Active | Yes | Power level, step count,
(potentiometer telemetry).
Turn on redundant ECU for 3rd
vote. | Potentiometer telemetry ;
redundant ECU telemetry
Battery state of charge
How do we detect power
level? | ECU to REM | ? | | ME-1.1.1.1.c | | Actuates when not commanded | Holding torque exceeded
(need to have sufficient E, C
margin) | Solar array in incorrect positio | 1) if SA needs to move out, generates insufficient power (different than required) 2) if SA needs to move in, generates too much power (different than expected), potential overheating of wing (cells burned) | 1) eventually drain battery,
may be able to slew s/c to
retain partial power for a time
2) lose mission | If in encounter, and SAs stuck
out too far | 2 | Active | Yes | Power level | Potentiometer telemetry ;
redundant ECU telemetry
Battery state of charge
How do we detect power
level? | ECU to REM | 3 | | ME-1,1,1,1,d | | Launch locks fail to release | 1) Frangibolt fails to release completely (electrically redundant, so more concerned with a mechanical fault) 2) Separation interfaces fail to crelease completely (mechanical Cearance issues/unexpected interferences) (probably adding a push-off spring to ensure deployment) | Solar arrays are stuck stowed | No/limited power to s/c | Lost mission (insufficient
power/heat generated at 1 AU
with only one solar array) | N/A | 2 | Active | Yes | Potentiometer telemetry,
battery fails to charge. Turn on
redundant ECU for 3rd vote. | Potentiometer telemetry ;
redundant ECU telemetry
Battery state of charge | ECU to REM | ? | | ME-1.1.1.1.e | | Launch lock premature release (two tie
downs) | 1) Temperature exceeds ~65C and frangibolt releases 2) inadvertent command (no power to safety bus until after s/c separation from 3rd stage) L 3) Incorrect notch on frangibolt
(controlled by 100% inspection of notch by vendor, will add a double-check to notch in I&T) | Array will not deploy, but will
"chatter" | May damage cells and/or
cooling system | With sufficient losses in Solar
Arrays and cooling system,
would lose mission | N/A | 2 | None | No | N/A | None | None | N/A | | Inputs | | ECU commands ("commands" really are pulses of power to the motor) | | Solar array in incorrect positio
or not moving at expected rate
(too fast or twoo slow) | 1) if SA needs to move out, generates insufficient power (different than required). Switch to redundant ECU. 2) if SA needs to move in, generates too much power (different than expected), potential overheating of wing (cells burned). Switch to redundant ECU. 3) wrong rate generates varying effects, depending on direction of motion and whether wing is safing or not. | | If in encounter, and SAs stuck
out too far | 4 | Active | Yes | Power level, step count,
(potentiometer telemetry).
Turn on redundant ECU for 3rd
vote. | Potentiometer telemetry ;
redundant ECU telemetry
Battery state of charge | ECU to REM | ? | Subject Matter Tim Cole Expert(s): Weilun Cheng ## Notes: Yellow highlighted blocks are redundant components. Components are listed for completeness, but failure mode and FMEA information is only displayed in the first copy of the component. | | | illiorillation is only displayed if | the first copy of the component. | | |--------------|----------------|-------------------------------------|---|-------------------------------| | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Time to
Detect
(System) | | ME-1 | Gimbals | | | | | ME-1.1 | Solar Array | | | | | ME-1.1.1 | Solar Array #1 | | · | <u> </u> | | ME-1.1.1.1 | Flap Actuator | | | ! | | IVIL-1.1.1.1 | i lap Actuatoi | | | ļ | | ME-1.1.1.1.a | | | Fails to actuate when commanded | ? | | ME-1.1.1.1.b | | | Incorrect actuation when commanded | ? | | ME-1.1.1.1.c | | | Actuates when not commanded | ? | | ME-1.1.1.1.d | | | Launch locks fail to release | ? | | ME-1.1.1.1.e | | | Launch lock premature release (two tie
downs) | N/A | | Inputs | | | ECU commands ("commands" really are pulses of power to the motor) | ? | | Solar Probe Plus (SPP) Failure Modes and Effects Analysis (FMEA) | | | |--|--|--| Mech - 82 of 317 Subject Matter Tim Cole Expert(s): Weilun Cheng Notes: Yellow highlighted blocks are redundant components. Components are listed for completeness, but failure mode and FME | Expert(s): | | Components are listed for com | cks are redundant components. In the first copy of the component. | | | | | | | | | | | | | | | | | | |--------------------|-------------------------------|-------------------------------|--|----------------|--|---------------------------------|---------------------------------------|----------------------------|--|--------------------|--------------------|----------------------------|----------------------------------|-------------|-------------------------|-----------|--|--|---|---------| | | | | • | | | | | Resp | | Allocation of | | | | System Side | Quick Look
Processor | Safe Mode | | • | | | | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Response Level | Desired Local Response | Allocation of
Local Response | Time to fix locally | Time to
Transmit Signal | Desired System
Response | System
Response | Time to fix system | Time to
Transmit Signal | Ground Response /
Contingency | Switch | Switch | | Remediation/ notes | Autonomy? | Comments | Revisit | | ME-1 | Gimbals | | | | | | | | | пеоропос | | | | | | | | | | | | ME-1.1
ME-1.1.1 | Solar Array
Solar Array #1 | ME-1.1.1.1 | Flap Actuator | | | | | | | | | | | | | | | | Power other ECU to | | (····· | | | ME-1.1.1.1.a | | | Fails to actuate when commanded | Local | If potentiometer and step
count are mismatched, turn
on redundant ECU for 3rd
vote; If third vote is correct
power off primary ECU
otherwise system side
switch??? | Autonomy | 7 | | If problem
persists, umbra
violation or
LBSOC | Autonomy | ? | ? | None | | | | compare potentiometer readings. If necessary, switch ECUs. re-command, slew, coolant system | During encounter: if tip
current sensors detect
current, autonomously
bring in solar arrays | Discuss with FSW
about making on
ECU "active" | | | ME-1.1.1.b | | | incorrect actuation when commanded | Local | If potentiometer and step
count are mismatched, turn
on redundant ECU for 3rd
vote; if third vote is correct
power off primary ECU
otherwise system side
switch??? | Autonomy | · · · · · · · · · · · · · · · · · · · | 7 | If problem
persists, umbra
violation or
LBSOC | Autonomy | 7 | ? | None | | | | change Power other ECU to compare potentiometer readings. If necessary, switch ECUs. re-command, slew, coolant system change, go back to "home position" then re-count/recalibrate | During encounter: if tip
current sensors detect
current, autonomously
bring in solar arrays | | | | ME-1.1.1.1.c | | | Actuates when not commanded | Local | If potentiometer and step
count are mismatched, turn
on redundant ECU for 3rd
vote; If third vote is correct
power off primary ECU
otherwise system side
switch??? | Autonomy | | 2 | If problem
persists, umbra
violation or
LBSOC | Autonomy | | , | None | | | | Power other ECU to compare potentiometer readings. If necessary, switch ECUs. re-command, slew, coolant system change, go back to "home position" then re-count/recalibrate | During encounter: if tip
current sensors detect
current, autonomously
bring in solar arrays | This is designed to
be non-credible | | | ME-1.1.1.1.d | | | Launch locks fail to release | Local | If potentiometer and step
count are mismatched, turn
on redundant ECU for 3rd
vote; If third vote is correct
power off primary ECU
otherwise system side
switch??? | Autonomy | ? | ? | If problem
persists, umbra
violation or
LBSOC | Autonomy | ? | ? | None | | | | slew to Sun,
oversized motor can
bust through,
recommand
frangibolt | | Could be
mitigated by
design if push
springs were
added - Weilun to
consider | | | ME-1.1.1.1.e | | | Launch lock premature release (two tie
downs) | None | N/A | N/A | N/A | | None | N/A | N/A | N/A | N/A | | | | | | | | | Inputs | | | ECU commands ("commands" really are pulses of power to the motor) | Local | If potentiometer and step
count are mismatched, turn
on redundant ECU for 3rd
vote; If third vote is correct
power off primary ECU
otherwise system side
switch??? | Autonomy | | 7 | If problem
persists, umbra
violation or
LBSOC | Autonomy | ? | 7-7-7-1 | None | | | | Switch ECUs re-command, slew, coolant system change, go back to "home position" then re- count/recalibrate | During encounter: if tip
current sensors detect
current, autonomously
bring in solar arrays | | | | | | | | | L1 | fect | | | | | | Detection Method | | | |---|----------|--|--|---|--|---|---|--|---------------|------------|--|--|------------------------|---------------------------| | FMEA ID Name | Function | Failure Mode / Limit / Constraint | Possible Causes Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of
FM | Observable | How Observed? | Tlm for Diagnosis | TIm Path for Diagnosis | Time to
Detect (Local) | | | ŀ | Harness too cold | | increases required torque
(above ability of motor) | Solar array unable to move. | Nearby heaters may be able to alleviate the issue (which is localized to the flexible portion of the harness connecting to the actuator). | N/A | 3 | Active | Yes | Power level, step count,
(potentiometer telemetry).
Turn on redundant ECU for 3rd
vote. | Potentiometer telemetry ;
redundant ECU telemetry
Battery state of charge | ECU to REM | ? | | ME-1.1.1.2 Feather Actuator ME-1.1.1.2.a | F | Fails
to actuate when commanded | 1) bad/bound
bearing/mechanical failure
2) stepper motor failure
3) loose/separated connector | Solar array stuck in position | generates insufficient power generates too much power so feathering makes it impossible for array to retract sufficiently for encounter | retain partial power for a time;
cooling system might get too | 3) excessive feathering
prevents array from retracting
sufficiently for encounter | 2 | Active | | Potentiometer telemetry. Turn
on redundant ECU for 3rd vote. | | ECU to REM | ? | | ME-1.1.1.2.b | l | ncorrect actuation when commanded | 1) incorrect potentiometer
reading
2) residual torque (should have
sufficient margin)
3) Motor coil or winding is
open | Solar array in incorrect position | | retain partial power for a time;
cooling system might get too | 3) excessive feathering
prevents array from retracting
sufficiently for encounter | 2 | Active | | Power level, step count,
(potentiometer telemetry).
Turn on redundant ECU for 3rd
vote. | Potentiometer telemetry ;
redundant ECU telemetry
Battery state of charge
How do we detect power
level? | ECU to REM | ? | | ME-1,1.1.2.c | F | Actuates when not commanded | Holding torque exceeded
(need to have sufficient C
margin) | Solar array in incorrect position | | retain partial power for a time;
cooling system might get too | 3) excessive feathering prevents array from retracting sufficiently for encounter | 2 | Active | Yes | Power level | Potentiometer telemetry ;
redundant ECU telemetry
Battery state of charge
How do we detect power
level? | ECU to REM | ? | | Inputs | | ECU commands ("commands" really are
pulses of power to the motor) | | Solar array in incorrect position | 1) if SA needs to move out, generates insufficient power (different than required) 2) if SA needs to move in, generates too much power (different than expected), potential overheating of wing (cells burned) | 1) eventually drain battery,
may be able to slew s/c to
retain partial power for a time
2) lose mission | If in encounter, and SAs stuck
out too far | 2 | Active | | Power level, step count,
(potentiometer telemetry).
Turn on redundant ECU for 3rd
vote. | Potentiometer telemetry ;
redundant ECU telemetry
Battery state of charge | ECU to REM | ? | | | ŀ | Harness too cold | | Increases required torque
(above ability of motor) | Solar array unable to feather. | Nearby heaters may be able to alleviate the issue (which is localized to the flexible portion of the harness connecting to the actuator). | N/A | 3 | Active | | Power level, step count,
(potentiometer telemetry).
Turn on redundant ECU for 3rd
vote. | Potentiometer telemetry ;
redundant ECU telemetry
Battery state of charge | ECU to REM | ? | | ME-1.1.2 Solar Array #2
ME-1.2 HGA | | | | | | | | | | | | | | | | ME-1.2.1 HGA Gimbal | | | | | | | | | | | | Autonomyould | | | | ME-1.2.1.a | | Fails to actuate when commanded
mechanical failure) | bad/bound bearing/mechanical failure 2) Exceeded life limit of bearing 3) stepper motor failure 4) loose/separated connector | HGA stuck in position | In some cases, may be able to slew spacecraft to point HGA to Earth. | Would have difficulty meeting minimum mission science return requirements. Worst case, loss of science. | If stuck at large enough angle,
could be an umbra violation | 2 - if data return is too
low
3 - if science
requirements can still
be met | Active | Yes | Potentiometer telemetry, step
count | Autonomy could power up the other ECU to check redundant potentiometer telemetry against primary potentiometer telemetry and motor step count (3rd vote) | ECU to REM | ? | | ME-1.2.1.b | | | Short in redundant windings
within actuator (two failures) | HGA stuck in position | In some cases, may be able to
slew spacecraft to point HGA
to Earth. | Would have difficulty meeting minimum mission science return requirements. Worst case, loss of science. | If stuck at large enough angle,
could be an umbra violation | 2 - if data return is too
low
3 - if science
requirements can still
be met | | Yes | Potentiometer telemetry, step
count | Potentiometer telemetry ;
redundant ECU telemetry | ECU to REM | ? | | ME-1.2.1.c | I | ncorrect actuation when commanded | 1) incorrect potentiometer
reading
2) residual torque (should have
sufficient margin) | HGA is in wrong position | Turn on back-up ECU to verify potentiometer readings. Switch to redundant ECU. Recommand to proper position. | None | N/A | 4 | Active | Yes | Potentiometer telemetry, step
count | Potentiometer telemetry ;
redundant ECU telemetry | ECU to REM | ? | | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Time to
Detect
(System) | |--------------------|-------------------|----------|---|-------------------------------| | | | | Harness too cold | ? | | ME-1.1.1.2 | Feather Actuator | | | | | ME-1.1.1.2.a | | | Fails to actuate when commanded | ? | | ME-1.1.1.2.b | | | Incorrect actuation when commanded | ? | | ME-1.1.1.2.c | | | Actuates when not commanded | ? | | Inputs | | | ECU commands ("commands" really are pulses of power to the motor) | ? | | | | | Harness too cold | ? | | ME-1.1.2
ME-1.2 | Solar Array #2 | | | | | ME-1.2
ME-1.2.1 | HGA
HGA Gimbal | | | | | ME-1.2.1.a | | | Fails to actuate when commanded
(mechanical failure) | ? | | ME-1.2.1.b | | | Fails to actuate when commanded
(electrical failure) | ? | | ME-1.2.1.c | | | Incorrect actuation when commanded | ? | Solar Probe Plus (SPP) Failure Modes and Effects Analysis (FMEA) Mech - 85 of 317 | | | | | | | | | Resp | onse | | | | | | Quick Look | | | | | | |--------------------|-----------------------|----------|---|----------------|--|---------------------------------|---------------------|----------------------------|--|-------------------------|--------------------|----------------------------|----------------------------------|-----------------------|---------------------|-----------|--|---|----------|---------| | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Response Level | Desired Local Response | Allocation of
Local Response | Time to fix locally | Time to
Transmit Signal | Desired System
Response | Allocation of
System | Time to fix system | Time to
Transmit Signal | Ground Response /
Contingency | System Side
Switch | Processor
Switch | Safe Mode | Remediation/ notes | Autonomy? | Comments | Revisit | | | | | | | If potentiometer and step | | | | | Response | | | | | | | | | | | | | | | Harness too cold | Local | count are mismatched, turn
on redundant ECU for 3rd
vote; If third vote is correct
power off primary ECU
otherwise system side
switch??? | Autonomy | ? | ? | If problem
persists, umbra
violation or
LBSOC | Autonomy | ? | ? | None | | | | | | | | | ME-1.1.1.2 | Feather Actuator | ME-1.1.1.2.a | | | Fails to actuate when commanded | Local | If potentiometer and step
count are mismatched, turn
on redundant ECU for 3rd
vote; If third vote is correct
power off primary ECU
otherwise system side
switch??? | Autonomy | ? | ? | If problem
persists, umbra
violation or
LBSOC | Autonomy | 7 | ? | None | | | | re-command, slew, cur
coolant system cur
change brir | ring encounter: if tip
rent sensors detect
rent, autonomously
ng in solar arrays; go to
fe" feathering position | | | | ME-1.1.1.2.b | | | Incorrect actuation when commanded | Local | If potentiometer and step
count are mismatched, turn
on redundant ECU for 3rd
vote; If third vote is correct
power off primary ECU
otherwise system side
switch??? | Autonomy | ? | ? | If problem
persists, umbra
violation or
LBSOC | Autonomy | 3 | ? | None | | | | change, go back to cur
"home position" cur | ring encounter: if tip
rent sensors detect
rent, autonomously
ng in solar arrays | | | | ME-1.1.1.2.c | | | Actuates when not commanded | Local | If potentiometer and step count are mismatched, turn on redundant ECU for 3rd vote; If third vote is correct power off primary ECU otherwise system side switch??? | Autonomy | ? | ? | If problem
persists, umbra
violation or
LBSOC | Autonomy | ? | ? | None | | | | change, go back to cur
"home position" cur | ring encounter: if tip
rent sensors detect
rent, autonomously
ng in solar arrays | | | | Inputs | | | ECU commands ("commands" really are pulses of power to the motor) | | If potentiometer and step
count are mismatched, turn
on redundant ECU for 3rd
vote; If third vote is correct
power off primary ECU
otherwise system side
switch??? | Autonomy | ? | ? | If problem
persists, umbra
violation or
LBSOC | Autonomy | ? | ? | None | | | | change, go back to cur
"home position" cur | ring encounter: if tip
rent sensors detect
rent, autonomously
ng in solar arrays | | | | | | | Harness too cold | | If potentiometer and step
count are mismatched, turn
on redundant ECU for 3rd
vote; If third vote is correct
power off primary ECU
otherwise system side
switch??? | Autonomy | ? | ? | If problem
persists, umbra
violation or
LBSOC | Autonomy | ? | ? | None | | | | | | | | | ME-1.1.2
ME-1.2 |
Solar Array #2
HGA | HGA Gimbal | | | | | | | | | | | | | | | | | | | , | | ME-1.2.1.a | | | Fails to actuate when commanded
(mechanical failure) | Local | If potentiometer and step
count are mismatched, turn
on redundant ECU for 3rd
vote; If third vote is correct
power off primary ECU
otherwise system side
switch??? | Autonomy | ? | ? | umbra violation | Autonomy | 7 | ? | None | | | | re-command, slew | nmand to a "safe"
iition | | | | ME-1.2.1.b | | | Fails to actuate when commanded
(electrical failure) | | If potentiometer and step
count are mismatched, turn
on redundant ECU for 3rd
vote; if third vote is correct
power off primary ECU
otherwise system side
switch??? | Autonomy | ? | ? | umbra violation | Autonomy | ? | ? | None | | | | Each motor winding goes to a different ECU. | | | | | ME-1.2.1.c | | | Incorrect actuation when commanded | | If potentiometer and step count are mismatched, turn on redundant ECU for 3rd vote; If third vote is correct power off primary ECU otherwise system side switch??? | Autonomy | ? | ? | umbra violation | Autonomy | ? | ? | None | | | | re-command slew | nmand to a "safe"
iition | | | | | | _ | | | | | Ef | fect | | | | | | Detection Method | | | |------------|---------------|---|---|---|-----|--|--|--|---|----------|---------------|------------|---|--|------------------------|---------------------------| | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Possible Causes Pha | ase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of
FM | Observable | How Observed? | Tlm for Diagnosis | Tlm Path for Diagnosis | Time to
Detect (Local) | | ME-1.2.1.d | | | Mechanical bias of actuator | | | HGA consistently moves to incorrect position | Turn on back-up ECU to verify potentiometer readings. Switch to redundant ECU. Recommand to proper position. | Ground would review long-
term trending to see what
corrections need to be made in
commanded position to
compensate for bias. Possible
decrease in gain, but should be
no long-term mission effects. | N/A | 4 | Active | Yes | Long-term trending of commanded vs. actual position (verified by potentiometers connected to both ECUs and the motor's step count). | Potentiometer telemetry ;
redundant ECU telemetry | ECU to REM | ? | | ME-1.2.1.e | | | Moves when not commanded | Holding torque exceeded
(need to have sufficient
margin) | | HGA is in wrong position | Re-command to proper
position | None | If this occurs during encounter
and if stuck at large enough
angle, could be an umbra
violation (~90-102deg is safe) | 4 | Active | Yes | Potentiometer telemetry, step
count | Potentiometer telemetry ;
redundant ECU telemetry | ECU to REM | ? | | ME-1.2.1.f | | | Launch locks fail to release | 1) Frangibolt pyro fails to actuate | | Failure to blow first pyro | Command second pyro to blow | No effect. | N/A | 4 | | Yes | ?? | | | | | ME-1.2.1.g | | | Launch locks fail to release | 1) Frangibolt fails to release completely (mechanical failure of frangibolt) 2) Separation interfaces fail to C release completely (mechanical clearance issues/unexpected interferences) | | HGA stuck stowed | Could slew s/c to use HGA. | Difficulty in meeting mission science data return requirements. | Would exceed "safe" angle | 2 | | Yes | Potentiometer telemetry | | | | | ME-1.2.1.h | | | Launch locks premature release | 1) Temperature exceeds ~65C
and frangibolt releases
2) inadvertent command
3) Incorrect notch on frangibolt | | Dish may vibrate more than expected (causing damage), gimbal may degrade | Reduced ability to return science data. | Potential loss of science if dish
damaged, eventual loss of
science with premature failure
of gimbal | When bearing dies, if stuck in position outside of "safe" | 2 | | No | | | | | | Inputs | | | ECU commands (pulsed power) | | | HGA is in wrong position | Switch to redundant ECU | No effect. | N/A | 4 | | Yes | Potentiometer telemetry, step count | | | | | ME-1.3 Pc | otentiometers | 2 per actuator, each connected
to a single ECU. Telemetry
decribes actual motor position. | | | | | | | | | | | com | | | | | ME-1.3.a | | | Open up (expected temporarily due to signal drop-out and reconnected after movement complete) | | | Powered potentiometer stops sending telemetry temporarily. | Can utilize step count for confirmation of motion, or power redundant ECU to check redundant potentiometer. | No effect. | N/A | 4 | Active | Yes | Lose potentiometer telemetry | Potentiometer telemetry ;
redundant ECU telemetry | ECU to REM | ? | | ME-1.3.b | | | Open up (permanent) | | | Powered potentiometer stops sending telemetry permanently. | Switch to redundant
ECU/potentiometer. Still have
2nd vote from step count. | No effect. | N/A | 4 | Active | Yes | Lose potentiometer telemetry | Potentiometer telemetry ;
redundant ECU telemetry | ECU to REM | ? | | ME-1.3.c | | - | Crack in substrate causes loss of both potentiometers | | | Both potentiometers fail. | Still have step count from motor (this is a relative motion measurement, not actual position, and only counts commands actually received by motor). | Loss of confidence in position of actuator. | N/A | 4 | Active | Yes | Lose potentiometer telemetry | Potentiometer telemetry ;
redundant ECU telemetry | ECU to REM | ? | | ME-1.3.d | | | Wrong value | | | Powered potentiometer indicates incorrect value. | Compare against step count, if
they don't match, then power
the redundant ECU to check
against redundant
potentiometer - 2 of 3 voting.
May need to switch ECUs to
avoid faulty potentiometer. | | N/A | 4 | Active | Yes | Potentiometer telemetry, step
count | Potentiometer telemetry ;
redundant ECU telemetry | ECU to REM | ? | | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Time to
Detect
(System) | |------------|------|---|---|-------------------------------| | ME-1.2.1.d | | | Mechanical bias of actuator | ? | | ME-1.2.1.e | | | Moves when not commanded | ? | | ME-1.2.1.f | | | Launch locks fail to release | | | ME-1.2.1.g | | | Launch locks fail to release | | | ME-1.2.1.h | | | Launch locks premature release | | | Inputs | | | ECU commands (pulsed power) | | | ME-1.3 | | 2 per actuator, each connected
to a single ECU. Telemetry
decribes actual motor position. | | | | ME-1.3.a | | | Open up (expected temporarily due to
signal drop-out and reconnected after
movement complete) | ? | | ME-1.3.b | | | Open up (permanent) | ? | | ME-1.3.c | | | Crack in substrate causes loss of both potentiometers | ? | | ME-1.3.d | | | Wrong value | ? | Solar Probe Plus (SPP) Failure Modes and Effects Analysis (FMEA) Mech - 88 of 317 | | | | | | | | | Resp | onse | | | | | | Quick Look | | 1 | | | | |------------|----------------|---|---|----------------|--|---------------------------------|------------------------|------|-----------------|-------------------------------------|--------------------|----------------------------|----------------------------------|-----------------------|---------------------|-----------|--|---------------------------------|---|---------| | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Response Level | Desired Local Response | Allocation of
Local Response | Time to fix
locally | | Desired System | Allocation of
System
Response | Time to fix system | Time to
Transmit Signal | Ground Response /
Contingency | System Side
Switch | Processor
Switch | Safe Mode | Remediation/ notes | Autonomy? | Comments | Revisit | | ME-1.2.1.d | | | Mechanical bias of actuator | Local | If potentiometer and step
count are mismatched, turn
on redundant ECU for 3rd
vote; If third vote is correct
power off primary ECU
otherwise system side
switch??? | Autonomy | ? | ? | umbra violation | Autonomy | ? | ? | None | |
| | | | | | | ME-1.2.1.e | | | Moves when not commanded | Local | Recommand? If potentiometer and step count are mismatched, turn on redundant ECU for 3rd vote; If third vote is correct power off primary ECU otherwise system side switch??? | | ? | ? | umbra violation | Autonomy | ? | ? | None | | | | re-command, slew | command to a "safe"
position | | | | ME-1.2.1.f | | | Launch locks fail to release | | | | | | | | | | | | | | slew to Sun,
oversized motor can
bust through,
recommand
frangibolt | | Are redundant pyro commands sent as part of deployment? | | | ME-1.2.1.g | | | Launch locks fail to release | | | | | | | | | | | | | | | | | | | ME-1.2.1.h | | | Launch locks premature release | | | | | | | | | | | | | | If HGA and fan
beams are
permanently off-
pointed (boresight
no longer aligns),
would be able to
compensate with
more DSN time. | | | | | Inputs | | | ECU commands (pulsed power) | | | | | | | | | | | | | | re-command, slew | command to a "safe" | | | | ME-1.3 | Potentiometers | 2 per actuator, each connected
to a single ECU. Telemetry
decribes actual motor position. | | | | | | | | | | | | | | | | position | | | | ME-1.3.a | | | Open up (expected temporarily due to
signal drop-out and reconnected after
movement complete) | Local | If potentiometer and step count are mismatched, turn on redundant ECU for 3rd vote; If third vote is correct power off primary ECU otherwise system side switch??? | Autonomy | ? | ? | ? | ? | ? | ? | None | | | | | | | | | ME-1.3.b | | | Open up (permanent) | | If potentiometer and step count are mismatched, turn on redundant ECU for 3rd vote; If third vote is correct power off primary ECU otherwise system side switch??? | | ? | ? | ? | ? | ? | ? | None | | | | | | | | | ME-1.3.c | | | Crack in substrate causes loss of both potentiometers | Local | if potentiometer and step
count are mismatched, turr
on redundant ECU for 3rd
vote; If third vote is correct
power off primary ECU
otherwise system side
switch???
Not sure what to do when
redundant pot also shows | Autonomy | ? | 7 | ? | ? | ? | ? | None | | | | | | | | | ME-1.3.d | | | Wrong value | Local | mistmatch? If potentiometer and step count are mismatched, turn on redundant ECU for 3rd vote; If third vote is correct power off primary ECU otherwise system side switch??? | | ? | ? | ? | ? | ? | ? | None | | | | | | | | | | _ | | | | Ef | fect | | | | | | Detection Method | | | |--------------------------------|----------|--------------------------------------|---|---|--|---|--|--|---------------|------------|---|--|------------------------|---------------------------| | FMEA ID Name | Function | Failure Mode / Limit / Constraint | Possible Causes Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of
FM | Observable | How Observed? | Tlm for Diagnosis | Tlm Path for Diagnosis | Time to
Detect (Local) | | ME-1.3.e | | Life-limiting # of cycles | | Both potentiometers fail. | Still have step count from motor (this is a relative motion measurement, not actual position, and only counts commands actually received by motor). | Loss of confidence in position of actuator. | N/A | 4 | Active | Yes | Lose potentiometer telemetry | Potentiometer telemetry ;
redundant ECU telemetry | ECU to REM | ? | | ME-2 Instruments ME-2.1 FIELDS | | | | | | | | | | | | | | | | ME-2.1.1 Magnetometer Boom | | | | | | | | | | | | | | | | ME-2.1.1.a | | Doesn't deploy (detail to come) | 1) Launch lock doesn't release
2) Hinge jams/locks
3) Damper freezes | MAG boom is stowed | Degradation of science (loss of
Magnetic field measurements,
loss of redundant
measurements for Electric
Field and Plasma Waves) | Degraded science, but loss of | N/A (not with boom still
stowed, loss of individual joint
could cause violation) | 3 | | Yes | MAG would see s/c noise and
no change in MAG levels
(expected as boom deploys) | | | | | ME-2.1.1.b | | Deploys prematurely (detail to come) | 1) launch lock released prematurely 2) inadvertent command (safety-inhibited load - safety bus relay can't be uninhibited by SW) | Boom would deploy | depending on orientation of fold, could hit s/c, shroud, damage an instrument, might block thruster or instrument FOV; could affect flight path or thermal environment | potential damage to s/c, loss of sensors, etc.; unless failure corrects itself with release of shroud. Loss of MAG sensor is not enough to be a loss of science. | No | 2 - if enough critical
components/
instruments are
damaged
3 - if only loss of MAG
sensor | | Yes | When instruments powered,
might see damage caused by
premature deployment | | | | | ME-2.1.1.c | | Partial deployment | One or more hinges jams or locks One potential design has one launch lock, one potential design has two launch locks. Revisit after decision has been made. | Boom would only partially
deploy | Loss of MAG boom | If outside umbra, will outgas, melt, bring thermal load into s/c. Paticulate matter, thermal load, outgassing, etc., are potentially mission-ending. Loss of the MAG sensor does not equal loss of science. | Yes | 2 | | | GNC might be able to tell from
mass properties, torque from
solar pressure, etc. Science
team may see thermal effects. | | | | | Inputs | | Electrical fault | | Command sent by both sides.
No single electrical failure
should prevent deployment. | If entire command fails, ground can re-send. A-side PDU drivers may have failured, so an avionics (PDU) side switch could allow command to be resent. | None | N/A | 2 | | | | | | | | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Time to
Detect
(System) | |--------------------|-----------------------------|----------|--------------------------------------|-------------------------------| | ME-1.3.e | | | Life-limiting # of cycles | ? | | ME-2 | Instruments | | | | | | | | | | | ME-2.1
ME-2.1.1 | FIELDS
Magnetometer Boom | | | | | ME-2.1.1.a | | | Doesn't deploy (detail to come) | | | ME-2.1.1.b | | | Deploys prematurely (detail to come) | | | ME-2.1.1.c | | | Partial deployment | | | Inputs | | | Electrical fault | | Solar Probe Plus (SPP) Failure Modes and Effects Analysis (FMEA) Mech - 91 of 317 | | | | | | | | | Resp | onse | | | | | | Quick Look | | | | | | |------------|-------------------|----------|--------------------------------------|----------------|--------------------------------|----------------|-------------|-----------------|----------------|---------------|-------------|-----------------|------------------------|-------------|------------|-----------|--------------------|-----------|----------|----------| | | | | | | | Allegation of | Time to fix | | | Allocation of | Time to fin | Thurs he | Constant Description / | System Side | Processor | Safe Mode | | | | | | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Response Level | Desired Local Response | Allocation of | | | Desired System | System | Time to fix | Time to | Ground Response / | Switch | Switch | | Remediation/ notes | Autonomy? | Comments | Revisit | | | | | | | | Local Response | locally | Transmit Signal | Response | Response | system | Transmit Signal | Contingency | | | | | | | <u> </u> | | | | | | .] | 1 | If potentiometer and step | count are mismatched, turn | l l | on redundant ECU for 3rd |] | vote; If third vote is correct | 1 | power off primary ECU |] | | | I | | | | | | | | | | | | | | | | | | otherwise system side | l l | switch??? | | | | | | | | | | | | | | | | | ME-1.3.e | | | Life-limiting # of cycles | Local | | Autonomy | ? | ? | ? | ? | ? | ? | None | | | | | | | | | | | | | | Not sure what to do when |] | redundant pot also shows | mistmatch? | l l | Would not help in this case, | but detection/response | would look the same | i i | | | | | | | | | | | | | | | | | <u> </u> | | | | | <u> </u> | | | | | | | | | | ļ | | | ļ | ļ | | ME-2 | Instruments | | | | | ļ | | | | | | | | | | ļ | | | ļ | | | ME-2.1 | FIELDS | | | | | ļ | | | | | | | | | | ļ | | | ļ | | | ME-2.1.1 | Magnetometer Boom | | | . . | | ļ | | | | | | | | | | ļ | ļļ | I | | | | | | | | | | | | | ME-2.1.1.a | | | Doesn't deploy (detail to come) | | |] | | | l | | | | | | | | re-command, slew | | | х | I | | | | | | | | | | | | | | | | | ·• | | ļ |
| | ····· | | | | | · | | · | · | | · | l l | | | İ | ME-2.1.1.b | | | Deploys prematurely (detail to come) | | | | | | | | | | | | | | | | | Х | | | | | | 1 | |] | | | I | | | | | | | | | | | | | | | | | | | l l | 1 | l l | | | | | | | | | | | | | | | | ME-2.1.1.c | | | Partial deployment | i i | ļI | I | I | | | | | | | | | | | | | Innute | | | Floateigal foult | | | 1 | | | | | | | | | | | | | | | | Inputs | | | Electrical fault | | | | | | I | 1 | 1 | <u> </u> | • | 1 | | | • | | | . | | | 1 | | i | 1 | | 1 | i | Stewart Bushman (Propulsion) Notes: Yellow highlighted blocks are redundant Matter Robin Vaughan (Effects to S/C and/or G&C) components. Components are listed for completeness but failure mode and FMEA information is only displayed Expert(s): Type of FM Tlm for Diagnosis Tlm Path for FMEA ID Failure Mode / Limit / Constraint Possible Causes Phase Severity Time to Time to Detect Detect (Local) (System) Service Valves PR-1.1 Service Valve 1 (SV1) (Pressurant) ssion-ending with Over time will decrease Pressure decrease, wheels might Check presssure omplete loss of External leak (three seals would have to fail PR-1.1.a 1) Physical damage system pressure, may torque pressurant or if amount of torque see an unexpected torque (long- from P3 against for this to occur) ith 3 seals s/c (depends on size of leak) enough torque is and timing term trending) evious reading? pplied PR-1.2 Service Valve 2 (SV2) (Liquid) Depends on Pressure decrease, wheels might Check presssure External leak (three seals would have to fail mount of fuel, could omplete loss of fuel amount of fuel, could complete loss of fuel amount of torque damage if it impacted the s/c, or if enough torque is fuel loss annolied and timing 1) Physical damage see an unexpected torque (long-Leaking hydrazine for this to occur) ith 3 seals term trending) applied fuel loss PR-2 1) Physical damage Unusable propellan PR-2.a nternal leak (liquid into gas) that can't be pushed Less fuel overall You'd run out of fuel early (pinhole leak in ns out of usable fuel out of usable fuel diaphragm) out of the tank ver time will decrease mplete loss of Pressure decrease, wheels might 1) Physical damage PR-2.b External leak (pressurant) Leaking helium 2 system pressure, may torque pressurant or if amount of torque see an unexpected torque (long- from P3 against s/c (depends on size of leak) nough torque is and timing term trending) Over time will decrease sion-ending with Depends on Pressure decrease, wheels might Check presssure mount of fuel, could omplete loss of fuel PR-2.c External leak (fuel) L) Physical damage Leaking hydrazine damage if it impacted the s/c, or if enough torque is and timing amount of torque 2 see an unexpected torque (long- from P3 against term trending) vious reading applied PR-3 Pressure Transducers Pressure Transducer A (PTA Draw too much See high current draw in PDU current tlm for PTA nrush current issue use would blow o effect current telemetry PR-3.1.a nvalid output Check other transducer Output invalid Lack of knowledge of at least for every TCM), might No effect No current draw, if current is 1) Physical damage PDU current tlm PR-3.1.b Hard failure fine, but data is bad, might be in require switching avionics narness/sampling electronics sides (TBD) Over time will decrease Aission-ending with Depends on Pressure decrease, wheels might heck presssure mount of fuel, could External leakage (two seals would have to mplete loss of fuel PR-3.1.c L) Physical damage Leaking hydrazine damage if it impacted the s/c, or if enough torque is and timing amount of torque see an unexpected torque (longrom P3 against leak in order for this to occur) term trending) No power to r PTA; PDU transducer wer state for Filter 1 (F1) Yes if it happene 1) FOD in line at the wrong tim Blocked prevents all thruster PR-4.a Clogged or blocked 2) Contaminated rusters stopped working opellant done at that poir nyway PR-5 Orifice 1 (O1) Yes if it happene L) FOD in line at the wrong time Blocked prevents all thruster PR-5.a Heavy contamination blockage 2) Contaminated No fuel to thrusters but mission is Thrusters stopped working opellant done at that poin anyway Propulsion Diode Box (PDB es if it happene at the wrong time Could lose one PR-6.a tem is 1-fault tolerant Would this affect manuever? Any failure of any diode or resistor but mission is thruster or LV edundancy? done at that poin anyway Latch Valve A (LVA) Subject Stewart Bushman (Propulsion) Notes: Yellow highlighted blocks are redundant Matter Robin Vaughan (Effects to S/C and/or G&C) Expert(s): Notes: Yellow highlighted blocks are redundant components are listed for completeness, but failure mode and FMEA information is only displayed | Expert(s). | | Dut famale into | ac and TWEA mornation is only displayed | | | | | | Response | | | | | Quick Look | | | | | | |--------------------|--|-----------------|--|----------------|---------------------------|---------------------------------|------------------------|---|----------------------------|----------------------------------|-----------------------|----------------------------|--|------------------|-----------|--|-------------|--------------------------|----------| | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Response Level | Desired Local
Response | Allocation of
Local Response | Time to fix
locally | Time to
Transmit
Signal | Desired System
Response | Allocation of System
Response | Time to fix
system | Time to Transmit
Signal | Ground Response / Contingency System Side Switch | Processor Switch | Safe Mode | KAF Comments | Remediation | Autonomy? | Revisit | | | Service Valves | PR-1.1
PR-1.1.a | Service Valve 1 (SV1) (Pressurant) | | External leak (three seals would have to fail for this to occur) | None | | P3 and P4 are not powered at the same time, need to understand how to determine pressure | Nope | | | | | | ļ | | | | | | | | | | | | ļ | | decrease | | | <u>i</u> | | PR-1.2
PR-1.2.a | Service Valve 2 (SV2) (Liquid) | | External leak (three seals would have to fail for this to occur) | None | | | Nope | | | | PR-2 | Tank | ļ | | | | | | · • • • • • • • • • • • • • • • • • • • | | | | | | | | | | | <u></u> | | PR-2.a | | | Internal leak (liquid into gas) | None | | | Nope | | | | PR-2.b | | | External leak (pressurant) | None | | | Nope | | | | PR-2.c | | | External leak (fuel) | None | | | Nope | | | | PR-3 | Pressure Transducers | | | | | | | | | | | | | | | | | In-rush current
issue | i | | PR-3.1 | Pressure Transducer A (PTA) | | | | | | | | · | | | | | | | | | issue | | | | | | Inrush current issue | Local | Pwr off PTA | Autonomy | | | None | None | None | None | Yes - Ground/Prop will need to assess tlm
associated with PTA and determine
whether they want to power it back on or
do a side switch to use PTB | | | No CB on this
load; probably
want to just
power off PT and
not do side
switch | | | | | PR-3.1.a | | | Invalid output | None Will need to be contingency procedure for this? PT's are not powered at same time, if PT data is required would need to side switch; would power cycling/hard reset of PT be worth trying? | | | | | | | | PR-3.1.b | | | Hard failure | None Will need to be contingency procedure for this? PT's are not powered at same time, if PT data is required would need to side switch | | | | Hard reset | | х | | PR-3.1.c | | | External leakage (two seals would have to leak in order for this to occur) | None | | | Nope | | | | Input | | | Bus voltage | None Will need ground contingency? Power cycle/hard reset PT; if PT data is required would need side switch | | | | | | х | | | Pressure Transducer B (PTB)
Filter 1 (F1) | | | | | | | | | | | | | | | | | | ····· | | PR-4.a | | | Clogged or blocked | None | | | None | | | | PR-5 | Orifice 1 (O1) | | | | | | | | | | | | | | | | | | <u></u> | | PR-5.a | | | Heavy contamination blockage | None | | | None | | | | PR-6 | Propulsion Diode Box (PDB) | PR-6.a | | | Any failure of any diode or resistor | | | | | | | | | | | | | | None | | | | | Latch Valves
Latch Valve A (LVA) | | | | | | | | | | | | | | | | | | ······ | | | tamananinainahaihidamananananananananan | .i | | | | | ····· | | · | i | · i | i | iiiii | | ā | | | | | | Section Sect | | | | | | | | Effect | | | | | | | Detection Method | | | |
--|--------------------------|-------------------------------------|----------|---|-----------------------|-------------|-----------------------|---|---------------------------------|-----------------|------------------------|--------------|------------|----------------------------------|---------------------|----------|----------|--------------------------| | March Marc | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Possible Causes | Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Tlm for Diagnosis | | | Time to Dete
(System) | | Marie Mari | | | | | | | | | | | | | | | | | (Local) | | | Property | | | | | 1) Particulate, FOD | | | | | , | _ | | | | | | | | | Marie Mari | | | | Internal leakage | | | closed, opened | None | None | N/a | 4 | None | No | No | N/A | N/A | N/A | N/A | | Second Property | | | ļ | | | ļ | nominally | Over time will decrease | Mission anding with | ļ | | ļ | ļ | | | ļ | ļ | ļ | | Second S | DD 71h | | | External leakage (multiple seals would have | 1) Physical damago | | Loaking bydrazino | | | | , | Passive - | Voc | | | N/A | NI/A | N/A | | Registration of the second process se | PK-7.1.U | | | to fail in order for this to happen) | 1) Physical damage | | Leaking nyurazine | | | | 2 | redundancy? | res | | | IN/A | N/A | N/A | | Part | | | ļ | | | | | 1003 | аррпец | | | | | | | | | | | State Stat | | | | | | | | | | | | | | | N/A : LV | | | | | State Stat | PR-7.1.c | | | Fails open | | | closed, opened | None | None | N/a | 4 | None | No | No | | N/A | N/A | N/A | | | | | | | , | | nominally | | | | | | | | | | | | | Second S | | | | | 1) Particulate, FOD | | No effect, assuming | | | | | | | | | | | | | Companies Comp | PR-7.1.d | | | Fails closed | | | | None | None | N/a | 4 | | No | No | | N/A | N/A | N/A | | Part | | | ļ | | | ļ | орен | | | | | ļ | ļ | | | ļ | ļ
 | ļ | | State Stat | | | | | 2) Constant "ON" | | 1) Couldn't cycle | 1) None assuming 2nd LV | 1) None | | 1) 4 | | | Current draw temperature | 1) PDU LV current | | | | | Market M | nputs | | | Bus voltage | | | | | | N/a | | | Yes | | | | N/A | N/A | | Market M | | | ļ | | | Ļ | -, · · · · | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | ļ | | | | | low side tlm | | | ļ | | March Marc | PR-7.2
PR-8 | | | | | ļ | <u> </u> | | | | | <u> </u> | ļ | | | ļ | ļ | | | Registration of the second | R-8.01 | | | | | | | | | | | | | | | | | | | See Language and the property of the control | K-8.U1.1 | Catbed Heater-Primary | | | | ļ | | | | | | | | | | | | | | See Language and the property of the control | PDU current tlm | | | | | | R-8.01.1.a | | | Fails on | | | No effect | Power drain on s/c | Probably not mission-
ending | N/A | 4 | | Yes | | | | | N/A | | Series of the se | | | | | apstream | | | | chang | | | , aconomy, m | | | | | | | | Series of the se | Series of the se | | | | | | ļ | ¢ | | ç | | | | | | | | | | | Significant properties of the | | | | | | | Switch to redundant | | | | | | | | | | | | | AD IN THE PROPERTY OF PROP | PR-8.01.1.b | | | Fails off | | | | None | None | N/A | 4 | | Yes | | : | | N/A | N/A | | The state of the control cont | | | | | 2) Pilysical dalilage | | | | | | | Autonomy | | current/voitage uraw | thrusters active? | | | | | The state of the control cont | | | <u> </u> | | | <u> </u> | <u> </u>
 | <u> </u> | <u> </u> | | | <u> </u> | <u> </u> | | | <u> </u> | <u> </u> | <u> </u> | | The state of the control cont | | | | | | | Reduced heating | | | | | | | | | | | | | The second of th | PR-8.01.1.c | | | Heater debonds from Cathed | 1) Physical damage | | (depends on | | None | N/A | 4 | None | Yes | | IMU tlm? | | N/A | N/A | | The second of th | | | | | -, , | | | | | | | | | | | | ,,,, | ,,,, | | State of the control | | | | | | | · | | | | | | | | | | | | | 10.1.2 Filtration Filtratio | nput | | | Bus voltage | | | No power to heater | | None | N/A | 4 | | | | | | N/A | N/A | | 18.52 Section of the federal from Crited Final Processing of F | | Catbed Heater-Secondary | | | | <u>.</u> | <u> </u> | WUIKS | | <u> </u> | | Reduildancy | <u> </u> | | current um | | | <u>.</u> | | Mode: Assumpting for Collected Valvers) And 1, 1 extract claims and the control to | R-8.01.2.a
R-8.01.2.b | | | | | ļ |]
 | | | | | | | | | | ļ | | | 20.1.3.8 Under NSZ. 20.1.4 Under NSZ. 20.1.4 Under NSZ. 20.1.4 Under Not suith to exponsive for interest to find effect on which is not such as under volution by control of suite in the surface of | R-8.01.2.c | | ļ | ······································ | | | \$
 | | | | | ·•• | | | | } | | ļ | | 8.01.3.1 Water would continue to fire unless text to whe close of the failed open or both leak | R-8.01.3 | Valve Assembly (NC Solenoid Valves) | | | | ļ | | | | | | | | | | | | | | 8.01.3.2 Both failed open or both leak 21 FOD 1 leak middle open or both leak 21 FOD 2 lea | 8.01.3.b Roth failed open or both leak 2 FOD | SOLIA De la Bus voltage vo | D 0 01 2 5 | | | Dath failed open or both look | 1) electrical failure | | Valves wouldn't | Thruster would continue to | | Voc | significantly depleted | Passive - | Mauha | Thruster continues to fire after | | | | NI/A | | 8.01.3.b | N-0.U1.3.a | | | Both falled open of both leak | 2) FOD | | close | fire unless latch valve closed | AU). Probably mission | res | changeu | redundancy | iviaybe | commanded to stop | tlm | | | N/A | | 8.01.3.b | 8.01.3.b long or both failed closed 2) Popular and the set of thrusters, 4c might be set of thrusters, 5c might be set of thrusters, 5c might be set of thrusters, 5c might be set of thrusters, 5c might be set of thrusters are surmountable under the set of thrusters are surmountable under the set of thrusters are surmountable under the set of thrusters are surmountable under the set of thrusters are surmountable under the set of thrusters are surmountable under the set of thrusters, 5c might be detectable through current/voltage sensing under the set of thrusters available, but TCMs would probably need to be aborted. Couldn't use thrusters, 5c might be detectable through current/voltage sensing under the sepected vs. actual under the set of thrusters, 5c might be detectable through current/voltage sensing under the set of thrusters, 5c might be sepected,
an electrical issue might be detectable through current/voltage sensing under the | | | | | | | | | would curtain it. | | | 3 | | | | | | | | 8.01.3.b long or both failed closed 2) Popular and the set of thrusters, 4c might be set of thrusters, 5c might be set of thrusters, 5c might be set of thrusters, 5c might be set of thrusters, 5c might be set of thrusters are surmountable under the set of thrusters are surmountable under the set of thrusters are surmountable under the set of thrusters are surmountable under the set of thrusters are surmountable under the set of thrusters are surmountable under the set of thrusters, 5c might be detectable through current/voltage sensing under the set of thrusters available, but TCMs would probably need to be aborted. Couldn't use thrusters, 5c might be detectable through current/voltage sensing under the sepected vs. actual under the set of thrusters, 5c might be detectable through current/voltage sensing under the set of thrusters, 5c might be sepected, an electrical issue might be detectable through current/voltage sensing under the | | | | | | ļ | | | | | | | | | | | | | | 8.01.3.b | 8.01.3.b One or both failed closed closed One or both failed closed One or both failed closed One or both failed closed One or both closed One or both failed closed One or both | | | | | 1) plactrical failure | | | | timing). Momentum | | | | | Post-burn attitude isn't as | | | | | | switch-over and momentum but TCMs would probably need to be aborted. **Description** **De | R-8.01.3.b | | | One or both failed closed | | | Couldn't use thruster | | | Yes | 2 | None | Maybe | | | | | | | probably need to be aborted. Bus voltage Bus voltage Couldn't use thruster ob, depending on speed of switch or another steef of thrusters, syc might be distributed for switch-over and momentum issues are surmountable probably need to be aborted. Couldn't use thruster ob, depending on speed of switch-over and momentum issues are surmountable probably need to be aborted. Couldn't use thruster ob, depending on speed of switch-over and momentum issues are surmountable probably need to be aborted. None Maybe Post-burn attitude isn't as expected, an electrical issue emight be detectable through current/voltage sensing Attitude tim-expected vs. actual probably need to be aborted. | | | | | 3) Physical issue | | | | | | | | | | expected vs. actual | | | | | Bus voltage Couldn't use thruster of could switch to another set of thrusters, syc might be oble, ok, depending on speed of switch-over and momentum issues are surmountable but TCMs would probably need to be aborted. Bus voltage Post-burn attitude isn't as expected, an electrical issue might be detectable through current/voltage sensing Attitude tIm - expected vs. actual current/voltage sensing Bus voltage Rottinde tim - expected vs. actual current/voltage sensing Bus voltage Attitude tim - expected vs. actual current/voltage sensing Bus voltage Attitude tim - expected vs. actual current/voltage sensing Bus voltage Attitude tim - expected vs. actual current/voltage sensing Bus voltage Attitude tim - expected vs. actual current/voltage sensing Bus voltage Attitude tim - expected vs. actual current/voltage sensing Bus voltage Attitude tim - expected vs. actual current/voltage sensing Bus voltage Bus voltage Attitude tim - expected vs. actual current/voltage sensing Bus voltage Attitude tim - expected vs. actual current/voltage sensing Bus voltage Attitude tim - expected vs. actual current/voltage sensing Bus voltage Attitude tim - expected vs. actual current/voltage sensing Bus voltage Attitude tim - expected vs. actual current/voltage sensing Bus voltage Attitude tim - expected vs. actual current/voltage sensing Bus voltage Attitude tim - expected vs. actual current/voltage sensing Bus voltage Attitude tim - expected vs. actual current/voltage sensing Bus voltage Attitude tim - expected vs. actual current/voltage sensing Bus voltage Attitude tim - expected vs. actual current/voltage sensing Bus voltage Attitude tim - expected vs. actual current/voltage sensing Bus voltage Attitude tim - expected vs. actual current/voltage sensing Bus voltage Attitude | | | | | | | | | probably need to be | | | | | | | | | | | ending (depending on things). Momentum that a large service of thrusters, s/c might be severed year and such as the sum of the sex of thrusters, s/c might be sex of thrusters, s/c might be sex of thrusters, s/c might be sex of thrusters, s/c might be sex of thrusters, s/c might be sex of thrusters, s/c might be sex of thrusters available, but TCMs would probably need to be abovred. 8.02 Thruster A2 8.02 Thruster A2 8.02 To be dieater-Primary 8.03 To be dieater-Primary 8.04 Thruster A2 8.05 Thruster A2 8.06 Thruster A2 8.07 Thruster A2 8.08 Thruster A2 8.09 Thruster A2 8.00 8. | | | | | | ļ | ļ | | aborted. | ļ | | ļ | ļ | | | ļ | | ļ | | Bus voltage Couldn't use thruster of couldn't use thruster on the county of | Bus voltage v | | | | | | | | If s/c could switch to another | | | | | | Dark house and the first | | | | | | Bus Voltage Coulon't use through switch-over and momentum intrusters available probably need to be aborted. 8.02 Thruster AZ Subsequence Coulon't use through of the probably need to be aborted. | nout | | | Rus voltago | | | Couldn't use the | set of thrusters, s/c might be | dumps would be ok | Voc | 2 | None | Maybo | | Attitude tlm - | | | | | 8.02 Thruster A2 8.02 Catbod Healer-Primary | nput | | | ous voltage | | | Coulan t use thruster | | | res | 2 | ivone | iviaybe | might be detectable through | | | | | | 8.02 Truster AZ | | | | | | | | issues are surmountable | | | | | | carreing voitage sensing | | | | | | 8.02.1 Catbed Heater-Primary | R-8.02 | | | | | <u> </u> | (| | | <u> </u> | | | | | | | | ļ | | | | | | | | ļ | <u> </u> | | <u> </u> | <u> </u> | | <u> </u> | <u> </u> | | | <u> </u> | <u> </u> | <u> </u> | | | _ | | | | | | | Respons | | | | | | Quick Look | | | | | _ | |----------------------------|--|--|----------------|--|---------------------------------|------------------------|-------------------------------|----------------------------|----------------------------------|-----------------------|----------------------------|--|-----------------------|------------------|-----------|--|--|-----------|----------| | MEA ID | Name | Function Failure Mode / Limit / Constraint | Response Level | Desired Local
Response | Allocation of
Local Response | Time to fix
locally | Time to
Transmit
Signal | Desired System
Response | Allocation of System
Response | Time to fix
system | Time to Transmit
Signal | Ground Response / Contingency | System Side
Switch | Processor Switch | Safe Mode | KAF Comments | Remediation | Autonomy? | Revisi | | '.1.a | (redundant, in parallel, opened during
launch countdown or directly after launch,
not closed again during nominal mission) | Internal leakage | None - Cycle valve? But if this isn't observable how would we know to cycle? | | | | | Cycle valve | | | | .1.b | | External leakage (multiple seals would have to fail in order for this to happen) | e None | | | | | Nope | | ļ | | '.1.c | | Fails open | None - Cycle valve? But if this isn't observable how would we know to cycle? | | | | Leaky thruster in
combo with
open/leaky latch
valve would
cause loss of fuel | Cycle valve | | | | '.1.d | | Fails closed | None - Cycle valve? But if this isn't observable how would we know to cycle? | | | | If both fail
closed, thrusters
won't work | Cycle valve | | ļ | | ts | | Bus voltage | None | | | | | | | | 7.2
3
3.01
3.01.1 | Latch Valve B (LVB) Thrusters Thruster A1 Catbed Heater-Primary | -8.01.1.a | | Fails on | Local | 1) Power off
Catbed heater
2) CB trips | 1) Autonomy
2) HW | | | | None | None | None | | | | | Is there a CB for this load? | Cycle power,
circuit breaker
would take
down primary
heater power
to several
thrusters | | | | .01.1.b | | Fails off | Local | If primary catbed
heater off &
thrusters active,
switch to
redundant
heater | Autonomy | | | None | None | None | None | Cycle power to primary catbed heater during next ground contact? | | | | | Cycle power | | | | 8.01.1.c | | Heater debonds from Catbed | None | | | W/Aerojet
thruster, both
heaters are in a
single cartridge
and would
debond at the
same time | | | | | ıt | | Bus voltage | None | | | Same time | | | | | .01.2
.01.2.a | Catbed Heater-Secondary | Fails on | | | | | | | | | | | | | | | | | ļ | | 3.01.2.b
3.01.2.c | | Fails off
Heater debonds from Catbed | | | | | | | | | | | | | d | | | | ļ | | | Valve Assembly (NC Solenoid Valves) | ·8.01.3.a | | Both failed open or both leak | Local? | If thrusters firing
when maneuver
not active, close
latch valves | Autonomy | | | None | None | None | None | None | | | | | Close latch
valves | | | | -8.01.3.b | | One or both failed closed | | | | | | | | | | | | | | | Cycle power
to valves | | | | ut | | Bus voltage | | | | | | | | | | | | | | | Cycle power
to valves | | | | 8.02 | Thruster A2 | | | | | | | | | <u></u> | | | | | | | | | <u> </u> | | |
Catbed Heater-Primary | | 1 | | | i | 1 | | i | : | | i | ; | : | • | | : | | | | | | | | | | | Effect | | | | | | | Detection Method | | | | |----------------------|--|--------------|--|-----------------|----------------|---------------|-------------|---|-----------------|----------|------------|------------|---------------------|-------------------------|---------------------------|------------------------------|--| | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Possible Causes | Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Tlm for Diagnosis | Tlm Path for
Diagnosis | Time to
Detect
(Local) | Time to Detect
(System) | | | Valve Assembly | | | | | | | | | | | | | | | (2000) | | | PR-8.03
PR-8.03.1 | Thruster A3 | - | | <u> </u> | . | | | | ļ | | | | | | | | [| | | Catbed Heater-Primary
Catbed Heater-Secondary | | | | | | | | | | | | | - | | | f | | | Valve Assembly | | | | ······ | | | | ļ | | | | | | | | <u>!</u> | | PR-8.04 | Thruster A4 | | | | ······ | | | | | | | | | | | |
! | | | Catbed Heater-Primary | | | | | | D | | ð | | | | | |) | | :: | | PR-8.04.2 | Catbed Heater-Secondary | | | | | | | | | | | | | | | | å | | | Valve Assembly | | | | | | | | | | | | | | | | <u> </u> | | PR-8.05 | Thruster B1 | <u>.</u> | | | | | | | | | | | | | | | <u> </u> | | | Catbed Heater-Primary | | | | | | | | ļ | | | | | | | | ;····· | | | Catbed Heater-Secondary
Valve Assembly | | | | | | | | ļ | | | | | | | | [| | PR-8.06 | Thruster B2 | | | | ······ | | | | | | | | | | | | | | | Catbed Heater-Primary | | | | | | | *************************************** | | | | | | | | | ······ | | | Catbed Heater-Secondary | | | | į | | | | | | | | | | | | | | | Valve Assembly | | | | | | | | ļ | | | | | | | | <u> </u> | | PR-8.07 | Thruster B3 | | | | | | | | | | | | | | | | · | | | Catbed Heater-Primary
Catbed Heater-Secondary | | | | ····· | | | | ļ | | | | | | | | <u>:</u> | | | Valve Assembly | | | | | | | | | | | | | | | | i | | PR-8.08 | Thruster B4 | | | | ······ | | | | | | | | | | | |
 | | PR-8.08.1 | Catbed Heater-Primary | | | į | ĺ | | | | | | | | | | | | į | | | Catbed Heater-Secondary | | | | <u>į</u> | | | | ļ | | | | | | | | j | | PR-8.08.3 | Valve Assembly | | | | <u></u> | | | | | | | | | | | | } | | PR-8.09
PR-8.09.1 | Thruster C1 | | | | . | | | | | | | | | | | | } ^j | | PR-8.09.2 | Catbed Heater-Primary
Catbed Heater-Secondary | | | - | | | | | ļ | | | | | | | | | | | Valve Assembly | | | | | | | | <u> </u> | | | | | · | | | | | PR-8.10 | Thruster C2 | | | i | ì | | | | | | | | | | | | i | | | Catbed Heater-Primary | | | | | | | | | | | | | | | | į | | | Catbed Heater-Secondary | | | | ļ. | | | | ļ | | | | | | | | j [†] | | PR-8.10.3
PR-8.11 | Valve Assembly | | | | | | | | ļ | | | | | | | | ; | | | Thruster C3
Catbed Heater-Primary | | | | | | | | ļ | | | | | | | | i | | | Catbed Heater-Secondary | | | | ·····- | | | | | | | | | | | | | | | Valve Assembly | | | | | | | | | | | | | | | | | | PR-8.12 | Thruster C4 | | | | | | | | | | | | | | | | | | | Catbed Heater-Primary | | | | | | | | | | | | | | | | } []] | | | Catbed Heater-Secondary | | | | | | | | ļ | | | | | · | | | r | | | Valve Assembly
Temperature Sensors | | | | <u> </u> | | | | · | | | | | · | | | / <i>[</i> | | | Temperature Sensor (generic - still deciding | | | | <u>-</u> | | | | 1 | | | | | · | | | | | | locations) | | | | i | | | | | | | | | | | | į | | | Platinum RTDs | | No output | | Į | ack telemetry | No effect | No effect | | 4 | | Yes | Lack temp telemetry | | | | j | | PR-9.1.b | | | Incorrect output | | | | | | | | | | | | | | <u>}</u> | | Inputs
PR-9.2 | Temperature Sensor Ghe | | Bus voltage | | | | | | | | | | | | | | ;·····; | | PR-9.2.a | remperature sensor dire | | No output | | | | | | ļ | | | | | · | | | / <i>[</i> | | PR-9.2.b | | | Incorrect output | | | | | | | | | | | - | | | | | PR-9.3 | Temperature Sensor N2H2 | | | | | | | | | | | | | | | | i | | PR-9.3.a | | | No output | | | | | | ļ | | | | | | | | } | | PR-9.3.b | T | | Incorrect output | | | | | | ļ | | | | | | | | } | | PR-9.4
PR-9.4.a | Temperature Sensor F1 | | No output | | | | | | ļ | | | | | ļ | | | <i>[</i> | | PR-9.4.b | | | No output
Incorrect output | | | | | | ļ | | | | | | | | | | | Temperature Sensor LV Manifold | 1 | | | | | | | İ | | | | | | | | | | PR-9.5.a | | | No output | | | | | | | | | | | | | |
 | | PR-9.5.b | | | Incorrect output | | | | | | ļ | | | | | | | | } | | | Temperature Sensor Thruster Manifold | | | | | | | | ļ | | | | | | | | } | | PR-9.6.a
PR-9.6.b | | | No output
Incorrect output | ļ | ļ. | | | | | | | | | - | | | <i>[</i> | | | Temperature Sensor A4 | | meorrect output | | | | | | <u> </u> | | | | | | | | [| | PR-9.7.a | | | No output | | ······ | | | | | | | | | | | | ······································ | | PR-9.7.b | | | Incorrect output | | ······ | | | | 1 | | | | | | | | i | | PR-9.8 | Temperature Sensor B4 | | | | Ì | | | | | | | | | | | | \$ | | PR-9.8.a | | | No output | | | | | | ļ | | | | | | | | } | | PR-9.8.b | T | | Incorrect output | | | | | | ļ | | | | | ļ | | | } | | PR-9.9
PR-9.9.a | Temperature Sensor C4 | | No output | | | | | | ļ | | | | | - | | | ········ | | PR-9.9.a
PR-9.9.b | | | No output
Incorrect output | | | | | | <u> </u> | | | | | | | | | | | | | in the second se | | | | ā | ····· | å | i | ` | i | | | ······ | | | | | | | | | | | | Response | | | | | | Quick Look | | | | | | |----------------------|---|--
----------------|----------------|--|-------------|--|----------------|----------------------|-------------|------------------|---------------------------------|-------------|--|-------------|--------------|--|-----------|---------| | FMEA ID | Name | Function Failure Mode / Limit / Constraint | Response Level | Desired Local | Allocation of | Time to fix | Time to | Desired System | Allocation of System | Time to fix | Time to Transmit | t Ground Response / Contingency | System Side | Processor Switch | 1 Safe Mode | KAF Comments | Remediation | Autonomy? | Revisit | | | | | | Response | Local Response | locally | Transmit | Response | Response | system | Signal | , | Switch | | | | i ' | | | | | | | | | | | Signal | | | | | | | | | | ' | | | | R-8.02.3 | Valve Assembly | PR-8.03 | Thruster A3 | | | | | | | | | | | | | | | | i | | | | | Catbed Heater-Primary | | | | | | | | | | | | | | | | į | | | | | Catbed Heater-Secondary | | <u>.</u> | | <u>.</u> | | Ĭ | | | i | <u>.</u> | | <u>.</u> | <u>.</u>
 | | | | <u>.</u> | | | | Valve Assembly | | | | <u>.</u> | | į |) | | | <u>.</u> | | | <u>.</u>
 | | | į | <u>.</u> | | | PR-8.04 | Thruster A4 | | | | <u>.</u> | | į |) | | | <u> </u> | | | <u>.</u>
 | | | į | <u>.</u> | | | | Catbed Heater-Primary | | | | ļ | | į | | | <u></u> | <u> </u> | | | į | | | | <u> </u> | | | | Catbed Heater-Secondary | | | | ļ | | Į | | | ļ | ļ | | | į
 | | | į | <u> </u> | | | | Valve Assembly | | | | ļ | | | | | ļ | | | | | | | j | ļ | | | PR-8.05 | Thruster B1 | | | | ļ | | | | | | | | | | | | ļ' | | | | | Catbed Heater-Primary | | | | | | ļ | | | ļ | | | | | | | ļ | | | | | Catbed Heater-Secondary | | | | | | ļ | | | ļ | | | | | | | ļ | ļ | | | PR-8.05.3 | Valve Assembly | ļ | | | ļ | | ā | | | ļ | ļ | | | ļ
 | | | <u> </u> | ļ | | | PR-8.06 | Thruster B2
Catbed Heater-Primary | · | | | ļ | | ļ | | | ļ | | | | ļ | | | <u> </u> | ļ | | | | Catbed Heater-Primary Catbed Heater-Secondary | | | - | ļ | | <u> </u> | | | ļ | ļ | | | | | | <u> </u> | ļ | | | PR-8.06.3 | Valve Assembly | | | | | | ļ | | | ! | ļ | | | ļ | | | į ['] | ļ | | | PR-8.07 | Thruster B3 | <u> </u> | | | ł | | <u> </u> | | | ! | ļ | | | ļ | | | · | † | | | | Catbed Heater-Primary | 1 | | 1 | † | | i | | | į
Į | ļ | 1 | |
! | 1 | | <i>[</i> | <u> </u> | | | | Catbed Heater-Secondary | | | · | 1 | | ······································ | | |
[| ļ | | | | 1 | | [| | | | PR-8.07.3 | Valve Assembly | | | | | | | | | ļ | | | | | | | | | | | PR-8.08 | Thruster B4 | | | | | |
! | | | | | | | | | | :
: | | | | | Catbed Heater-Primary | | | | | | Ĭ | | | İ | | | | | | | i | | | | PR-8.08.2 | Catbed Heater-Secondary | | | | | | Ĭ | | | | | | | | | | i | | | | PR-8.08.3 | Valve Assembly | | | | [| | I | | | | | | | | | | i | | | | PR-8.09 | Thruster C1 | | | | <u> </u> | | | | | | | | | | | | į | | | | | Catbed Heater-Primary | | | | j | | | | | | | | | <u></u> | | | | <u></u> | | | PR-8.09.2 | Catbed Heater-Secondary | | | | ļ | | Į | | | ļ | | | | | | | į | <u> </u> | | | | Valve Assembly | | | | ļ | , | Į | , | | ļ | ļ | | | , | | | ļ | ļ | | | PR-8.10 | Thruster C2 | | | | ļ | | | | | ļ | | | | | | | ļ | | | | | Catbed Heater-Primary | | | | | | | | | | | | | | | | ļ' | <u> </u> | | | | Catbed Heater-Secondary | | | | | | ļ | | | | | | | ļ | | | ļ | ļ | | | | Valve Assembly | | | | | | ļ | | | . | | | | | | | ļ | ļ | | | PR-8.11
PR-8.11.1 | Thruster C3
Catbed Heater-Primary | · | | | ļ | | | | | ļ | ļ | | | ļ | | | ! ['] | ļ | | | | Catbed Heater-Secondary | | | | | | ļ | | | | ļ | | | | | | į ['] | } | | | PR-8.11.3 | Valve Assembly | | | | ······································ | | ····· | | | | | | | | | | į | <u> </u> | | | PR-8.12 | Thruster C4 | | | · | ······ | | ····· | | | | ļ | | | | | | f | <u> </u> | | | | Catbed Heater-Primary | | | | · | | ō
Ī |) | | ₫ | | | | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | | |
Í | | | | PR-8.12.2 | Catbed Heater-Secondary | | | | | | •····································· | | |] | | | | ; | | | ······································ |)
 | | | R-8.12.3 | Valve Assembly | | | | | | | | | | | | | | | | i | | | | PR-9 | Temperature Sensors | | <u></u> | | <u> </u> | | <u> </u> | | | <u> </u> | <u> </u> | | <u></u> | <u> </u> | <u>.]</u> | | <u> </u> | <u> </u> | | | PR-9.1 | Temperature Sensor (generic - still deciding | | | | | | | | | | | | | | | | ' | | | | | locations) | | | | | | ļ | | | | | | | | | | ļ | <u> </u> | | | PR-9.1.a | Platinum RTDs | No output | | | | | Į | | | | | | | | | | ļ | ļ | Х | | PR-9.1.b | | Incorrect output | | | , | | ļ |) | | ļ | | | | | | | j | ļ | X | | nputs | Tomporatura Sansar Cha | Bus voltage | | | ļ | | <u> </u> |) | | ļ | ļ | | | ·
· | ·• | | <u> </u> | ļ | Х | | PR-9.2
PR-9.2.a | Temperature Sensor Ghe | No output | | - | † | | | | | | | | | | | | ļ | | | | PR-9.2.b | | Incorrect output | | · | } | | | | | <u></u> | ļ | | | | | | i | ļ | | | PR-9.3 | Temperature Sensor N2H2 | полес окри | | | 1 | | 1 | | | 1 | | | | | 1 | | · | 1 | | | PR-9.3.a | | No output | | 1 | † | | 1 | | | İ | | | | | 1 | | (| <u> </u> | 1 | | PR-9.3.b | | Incorrect output | | | | | Ī | | | Ī | | | | | 1 | |
! | | | | PR-9.4 | Temperature Sensor F1 | | | | I | | I | | | İ | | | | | 1 | | i | | | | PR-9.4.a | | No output | | | | | Ĭ | | | İ | | | | | | | i | <u></u> | | | PR-9.4.b | | Incorrect output | | | | | | | | <u></u> | | | | | | | | | | | PR-9.5 | Temperature Sensor LV Manifold | | | | <u></u> | | Į | | | <u></u> | | | | | | | į | | | | PR-9.5.a | | No output | | | <u> </u> | | Į | | | | | | | | .[| | | | | | PR-9.5.b | | Incorrect output | | | <u> </u> | | Į | | | ļ | <u> </u> | | | ļ | .] | | i | <u> </u> | | | PR-9.6 | Temperature Sensor Thruster Manifold | <u> </u> | | | ļ | | | | | ļ | ļ | | | | | | j | | | | PR-9.6.a | | No output | | . | ļļ | ļ | | | | ļ | ļ | | | ļ | | | į | | | | PR-9.6.b | - | Incorrect output | | | ļ | | | | | | ļ | | | | | | ļ' | | | | | Temperature Sensor A4 | No. and and an annual a | | | ļ | | ļ | | | ļ | ļ | | | ļ | | | ļ | ļ | | | PR-9.7.a | | No output | | | ļ | | <u> </u> | | | ļ | ļ | | | ļ | | | ļ | ļ | | | PR-9.7.b | Tomporatura Cancar B4 | Incorrect output | | - | ļ | | | | | | | | | | | | ļ | <u></u> | | | D O O | Temperature Sensor B4 | No output | | - | } | | | | | | | | | | | | · | <u></u> | | | PR-9.8 | | | | i | | | | | | ļ | ļ | | | } | | | ł | } | | | PR-9.8.a | | Incorrect output | | 1 | | | | | | | | | | | | | | | | | PR-9.8.a
PR-9.8.b | Temperature Sensor C4 | Incorrect output | | | | | | | | | | | | | | | ļ | ļ | | | R-9.8.a | Temperature Sensor C4 | Incorrect output No output | | | | | | | | | | | | | | | | | | Subject Liz Abel (Thermal) Matter Jack Ercol (Active Cooling) Expert(s): Notes: Yellow highlighted blocks are redundant components. Components are listed for completeness, but failure mode | Expert(s): | | listed for completen | ess, but failure mode | | | • | - | Host | | : | | | | Detection Metho | al . | | | |--------------------|-----------------------|---|--------------------------------------|---|-------|--|---|--|---|----------|---------------------|------------|---------------------------------|-------------------|------------------------|------------------------|-------------------------------| | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Possible Causes | Phase | Local | Next Higher | ffect
Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | TIm for Diagnosis | Tlm Path for Diagnosis | Time to Detect (Local) | Time to
Detect
(System) | | | MLI
Spacecraft MLI | Insulate spacecraft | | | | | | | | | | | | | | | | | TH-1.1.a | | bus | Degraded/damaged | 1) Dust
2) Optical properties | | MLI
degraded/damaged. | Depends on amount of damage, but would increase/decrease local temperatures. | Depends on area
affected by
degradation/damage. | Depends on area
affected by
degradation/damage -
critical system
damaged by high
temperature could
lead to an umbra
violation. | 2 | None | | Component temperature change | | | N/A | | | TH-1.2 | High-temperature MLI | Insulate exposed portions of spacecraft (solar arrays, radiators, etc.) | | | | | | | | | | | | | | | | | TH-1.2.a | | | Degraded/damaged | 1) Dust
2) Optical properties | | MLI
degraded/damaged. | Depends on amount
of damage, but would
increase/decrease
local temperatures. | Depends on area
affected by
degradation/damage. | High-temp MLI is not covering equipment that could lead to an umbra violation. | 2 | None | | Component temperature change | | | N/A | | | | Louvers 20-blade #1 | Regulate
temperature of
spacecraft bus | | | | | | | | | | | | | | | | | TH-2.1.a | | | Doesn't open/close | 1) Bi-metalic spring failure
2) bearing/bushing bound iup [3] Louver has been overheated, so spring has a new set-point - would require additional failure causing overheating] | | Increase/decrease
temperature slightly. | No effect. Thermal
system includes
margin to account for
loss of one blade. | system includes margin | No effect. Thermal
system includes
margin to account for
loss of one blade. | 2R/4 | Passive -
Design | | Temperature change over
time | | | N/A | | | TH-2.1.b | | | Blade breaks | 1) Dust | | Increase/decrease
temperature slightly. | No effect. Thermal
system includes
margin to account for
loss of one blade. | No effect. Thermal
system includes margin
to account for loss of
one blade. | No effect. Thermal
system includes
margin to account for
loss of one blade. | 2R/4 | Passive -
Design | Yes | Temperature change over
time | | | N/A | | | TH-2.2
TH-2.2.a | 20-blade #2 | | Doesn't open/close | 1) Bi-metalic spring failure 2) bearing/bushing bound up [3] Louver has been overheated, so spring has a new set-point - would require additional failure causing overheating] | | Increase/decrease
temperature slightly. | No effect. Thermal
system includes
margin to account for
loss of one blade. | No effect. Thermal
system includes margin
to account for loss of
one blade. | No effect. Thermal
system includes
margin to account for
loss of one blade. | 2R/4 | Passive -
Design | res | Temperature change over
time | | | N/A | | | TH-2.2.b | | | Blade breaks | 1) Dust | | Increase/decrease
temperature slightly. | system includes | system includes margin | No effect. Thermal
system includes
margin to account for
loss of one blade. | 2R/4 | Passive -
Design | | Temperature change over time | | | N/A | | | TH-2.3
TH-2.3.a | 14-blade | | Doesn't open/close | 1) Bi-metalic spring failure 2) bearing/bushing bound up [3) Louver has been overheated, so spring has a new set-point - would require additional failure causing overheating) | | Increase/decrease
temperature slightly. | No effect. Thermal
system includes
margin to account for
loss of one blade. | No effect. Thermal
system includes margin
to account for loss of
one blade. | No effect. Thermal
system includes
margin to account for
loss of one blade. | 2R/4 | Passive -
Design | | Temperature change over
time | | | N/A | | | TH-2.3.b | | | Blade breaks | 1) Dust | | Increase/decrease
temperature slightly. | system includes | No effect. Thermal
system includes margin
to account for loss of
one blade. | No effect. Thermal
system includes
margin to account for
loss of one blade. | 2R/4 | Passive -
Design | Yes | Temperature change over time | | | N/A | | Subject Liz Abel (Thermal) Matter Jack Ercol (Active Cooling) Expert(s): Notes: Yellow highlighted blocks are redundant components. Components are listed for completeness, but failure mode | Expert(s): | | listed for completen | iess, but failure mode | | | | | | Response | | | | | E | Quick Look | | l . | | |--------------------|-----------------------|---|--------------------------------------|----------------|---------------------------|---------------------------------|---------------------|--|----------|----------------------------------|-----------------------|-------------------------------|----------------------------------|---|------------------|--------------|----------------|---------| | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | Response Level | Desired Local
Response | Allocation of
Local Response | Time to fix locally | Time to
Transmit
Signal | | Allocation of System
Response | Time to fix
System | Time to
Transmit
Signal | Ground Response /
Contingency | | Processor Switch | Safe
Mode | Comments - KAF | Revisit | | | MLI
Spacecraft MLI | Insulate spacecraft | | | | | | | | | | | | | | | | | | TH-1.1.a | | | Degraded/damaged | | | | N/A | Depends on
severity of
degradation/d
amage (time
required to see
temperature
change in
component) | | | | | | | | | | | | TH-1.2 | High-temperature MU | Insulate exposed portions of spacecraft (solar arrays, radiators, etc.) | | | | | | | | | | | | | | | | | | TH-1.2.a | | | Degraded/damaged | | | | N/A | Depends on severity of degradation/d amage (time required to see temperature change in component) | | | | | | | | | | | | | Louvers 20-blade #1 | Regulate
temperature of
spacecraft bus | | | | | | | | | | | | | | | | | | TH-2.1.a | | | Doesn't open/close | | | | N/A | Time required
to see
temperature
change in
component | | | | | | | | | | х | | TH-2.1.b | | | Blade breaks | | | | N/A | Time required
to see
temperature
change in
component | | | | ō | | | | | | х | | TH-2.2 | 20-blade #2 | | Doesn't open/close | | | | N/A | Time required
to see
temperature
change in
component | | | | | | | | | | х | | TH-2.2.b | | | Blade breaks | | | | N/A | Time required
to see
temperature
change in
component | | | | | | | | | | х | | TH-2.3
TH-2.3.a | 14-DIAGE | | Doesn't open/close | | | | N/A | Time required
to see
temperature
change in
component | | | | | | | | | | х | | TH-2.3.b | | | Blade breaks | | | | N/A | Time required
to see
temperature
change in
component | | | | 8 | | | | | | х | | FMEA ID | Name | Function | Failure Mode / Limit /
Constraint | ' Possible Causes Phase | Local | Next Higher | ffect
Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Detection Metho
TIm for Diagnosis | Tlm Path for Diagnosis | Time to Detect (Local) | Time to Detect (System) | |--|--------------------------------|----------|--------------------------------------|--|---|--|--|--|----------|---------------------|------------|---------------------------------|---|--------------------------|------------------------|-------------------------| | TH-2.4.a | | | Doesn't open/close | 1) Bi-metalic spring failure 2) bearing/bushing bound up (3) Louver has been overheated, so spring has a new set-point - would require additional failure causing overheating) | Increase/decrease
temperature slightly. | No effect. Thermal
system includes
margin to account for
loss of one blade. | No effect. Thermal
system includes margir
to account for loss of
one blade. | No effect. Thermal system includes margin to account for loss of one blade. | 2R/4 | Passive -
Design | Yes | Temperature change over
time | | | N/A | | | TH-2.4.b | | | Blade breaks | 1) Dust | Increase/decrease
temperature slightly. | No effect. Thermal
system includes
margin to account for
loss of one blade. | No effect. Thermal
system includes margir
to account for loss of
one blade. | No effect. Thermal
system includes
margin to account for
loss of one blade. | 2R/4 | Passive -
Design | Yes | Temperature change over time | | | N/A | | | TH-2.5 7-blade #1 TH-2.5.a | | | Doesn't open/close | 1) Bi-metalic spring failure 2) bearing/bushing bound up [3) Louver has been overheated, so spring has a new set-point - would require additional failure causing overheating] | increase/decrease
temperature slightly. | No effect. Thermal system includes margin to account for loss of one blade. | No effect. Thermal system includes margir to account for loss of one blade. | No effect. Thermal
system includes
margin to account for
loss of one blade. | 2R/4 | Passive -
Design | Yes | Temperature change over
time | | | N/A | | | TH-2.5.b | | | Blade breaks | 1) Dust | Increase/decrease
temperature slightly. | No effect. Thermal
system includes
margin to account for
loss of one blade. | No effect. Thermal
system includes margir
to account for loss of
one blade. | No effect. Thermal
system includes
margin to account for
loss of one blade. | 2R/4 | Passive -
Design | Yes | Temperature change over | | | N/A | | | TH-2.6 | | | Doesn't open/close | 1) Bi-metalic spring failure 2) bearing/bushing bound up (3) Louver has been overheated, so spring has a new set-point - would require additional failure causing overheating] | Increase/decrease
temperature slightly. | No effect. Thermal
system includes
margin to account for
loss of one blade. | No effect. Thermal
system includes margir
to account for loss of
one blade. | No effect. Thermal
system includes
margin to account for
loss of one blade. | 2R/4 | Passive -
Design | Yes | Temperature change over
time | | | N/A | | | TH-2.6.b | | | Blade breaks | 1) Dust | Increase/decrease
temperature slightly. | No effect. Thermal
system includes
margin to account for
loss of one blade. | No effect. Thermal
system includes margir
to account for loss of
one blade. | No effect. Thermal
system includes
margin to account for
loss of one blade. | 2R/4 | Passive -
Design | Yes | Temperature change over | | | N/A | | | TH-3 Heaters | | | | | | | | | | | | | | | | | | TH-3.1. Propulsion Tank Heaters TH-3.1.a | A&B (22 Ω switched)
| | Fails on | 1) Thermostat failure
2) Failure of switch
3) Failure in heater | Autonomy will detect
tank temperature and
switch off power to
that heater and switch
to other side. | No effect. | No effect. | N/A | 2R | Active | Yes | Tank temperature
telemetry | Heater current; tank
temperature | PDU to REM
RIU to REM | N/A | | | TH-3.1.b | | | Fails off | 1) Thermostat failure
2) Failure of switch
3) Failure in heater | Autonomy will detect
low temperature and
switch to other side. | No effect. | No effect. | N/A | 2R | Active | Yes | Tank temperature
telemetry | Heater current; tank
temperature | PDU to REM
RIU to REM | N/A | | | TH-3.1.c | | | Debonds from surface | 1) Assembly/ installation
failure
2) adhesive failure/defect | Autonomy will detect low temperature and switch to other side. | No effect. | No effect. | N/A | 2R | Active | Yes | Tank temperature
telemetry | Heater current; tank
temperature | PDU to REM
RIU to REM | N/A | | | Inputs | | | Switched Power | | Autonomy will detect
low temperature and
switch to other side. | No effect. | No effect. | N/A | 4 | Active | Yes | Tank temperature
telemetry | Heater current; tank
temperature | PDU to REM
RIU to REM | N/A | | | TH-3.2 Propulsion Line and Valv | re Heaters A&B (37 Ω switched) | | | | | | | | | | | | | | | | | TH-3.2.a | | | Fails on | 1) Thermostat failure
2) Failure of switch
3) Failure in heater | S/C will detect high
temperature and
switch off power to
that heater and switch
to othe side. | No effect. | No effect. | N/A | 2R | Active | Yes | Temperature sensor
telemetry | Heater current; line & valve temperatures | PDU to REM
RIU to REM | N/A | | | TH-3.2.b | | | Fails off | 1) Thermostat failure
2) Failure of switch
3) Failure in heater | S/C will detect low
temperature and
switch to other side. | No effect. | No effect. | N/A | 2R | Active | Yes | Temperature sensor
telemetry | Heater current; line & valve temperatures | PDU to REM
RIU to REM | N/A | | | TH-3.2.c | | | Debonds from surface | 1) Assembly/ installation
failure
2) adhesive failure/defect | S/C will detect low
temperature and
switch to other side. | No effect. | No effect. | N/A | 2R | Active | Yes | Temperature sensor
telemetry | Heater current; line & valve temperatures | PDU to REM
RIU to REM | N/A | | | Inputs | | | Switched Power | | Autonomy will detect
low temperature and
switch to other side. | No effect. | No effect. | N/A | 4 | Active | Yes | Tank temperature
telemetry | Heater current; line & valve temperatures | PDU to REM
RIU to REM | N/A | | | FMEA ID | Name Funct | tion Failure Mode / Limit /
Constraint | Response Level | Desired Local
Response | Allocation of
Local Response | Time to fix locally | Time to
Transmit | Response Desired System Response | Allocation of System
Response | Time to fix
System | Time to Transmit | Ground Response / Contingency | Quick Look
Processor Switch | Safe
Mode | Comments - KAF | Revisit | |-----------|--|---|----------------|-----------------------------|---------------------------------|---------------------|--------------------------|------------------------------------|----------------------------------|-----------------------|------------------|-------------------------------|--------------------------------|--------------|--|--| | | | | | | | | Signal | | | | Signal | Į. | | | | | | | | | Time required
to see | | | | | | | | | į | | TH-2.4.a | | Doesn't open/close | | | | | temperature
change in | | | | | | | | | Х | | | | | | | | | component | | | | | | | | | į | | | | | | | | | | | | | | | | | | I | | | | | | | | | Time required | | | | | | | ļ | | | | TH-2.4.b | | Blade breaks | | | | | to see
temperature | | | | | | | | | x | | 111-2.4.0 | | Diage Dieaks | | | | | change in | | | | | | | | | ^ | | TH-2.5 7 | 7 blada #1 | | | | | ļ | component | | | | | |
 | | | <i></i> | | 111-2.3 / | -Diade #1 | | | | | ļ
Ī | | | | | | |
 | | |
! | | | | | | | | | Time a service of | | | | | | | | | <u>!</u> | | | | | | | | | Time required to see | | | | | | | | | ! | | TH-2.5.a | | Doesn't open/close | | | | | temperature
change in | | | | | | | | | Х | | | | | | | | | component | | | | | | | | | ! | | | | | | | | | | | | | | | | | | ! | | | | | | | | | Time required | | | | | | | | | | | TH-2.5.b | | Blade breaks | | | | • | to see
temperature | | | | | | | | | х | | | | | | | | | change in | | | | | | | | |
I | | TH-2.6 7 | 7-blade #7 | | | | | | component | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | |
! | | | | | | | | | Time required | | | | | | | | | İ | | | | | | | | | to see | | | | | | | | | į | | TH-2.6.a | | Doesn't open/close | | | | | temperature
change in | | | | | | | | | Х | | | | | | | | | component | | | | | | | | | <u>!</u> | | | | | | | | | | | | | | | | | | <u>!</u> | | | | | | | | | Time required | | | | | | | | | | | TH-2.6.b | | Blade breaks | | | | | to see
temperature | | | | | | | | | х | | | | | | | | | change in component | | | | | | | | | İ | | TH-3 F | -leaters | | | | | <u> </u> | <u> </u> | | | | | | | | |
! | | | Propulsion Tank Heaters A&B (22 Ω switched) | | | | | | | | | | | | | | | ······································ | | | | | | Switch heater | | | | | | | | | | | | <u>!</u> | | TH-3.1.a | | Fails on | Local | power off,
power on | Autonomy | N/A | TBD time | None | | | | | | | No CB for switched heater; prop heaters
were different than what Stewart expected | <u>!</u> | | | | | | redundant | | | | | | | | | | | | İ | | | | | | Switch heater | | | | | | | | | | | | •••••••••••••••••••••••••••••••••••••• | | TH-3.1.b | | Fails off | Local | power on | Autonomy | N/A | TBD time | | | | | | | | | <u>!</u> | | | | | | redundant
Switch heater | | | <u> </u> | | | | | | | | | | | TH-3.1.c | | Debonds from surface | Local | power off,
power on | Autonomy | N/A | TBD time | | | | | | | | | İ | | | | | | redundant | | | | | | | | |
 | | | j | | Inpute | | Switched Power | Local | Switch heater
power off, | Autonomy | N/A | TBD time | | | | | | | | | i | | Inputs | | Switched POWEI | Local | power on redundant | Autonomy | 14/15 | 100 title | | | | | | | | | i | | TH-3.2 P | Propulsion Line and Valve Heaters A&B (37 Ω switched) | | | | | | | | | | | | | | | ······ | | | | | | Switch heater | | j | | | | | | | | | | | | TH-3.2.a | | Fails on | Local | power off, | Autonomy | N/A | TBD time | | | | | | | | No CB for switched heater; prop heaters | i | | | | | | power on
redundant | | | | | | | | | | | were different than what Stewart expected | i | | | | | | Switch heater | | | 1 | | | | | | | | |
! | | TH-3.2.b | | Fails off | Local | power off,
power on | Autonomy | N/A | TBD time | | | | | | | | | i | | | | | | redundant
Switch heater | | | | | | | | |
 | | | ······ | | TH-3.2.c | | Debonds from surface | Local | power off,
power on | Autonomy | N/A | TBD time | | | | | | | | | į | | | | | | redundant | | ļ | ļ | | | | | | | | | ; | | Innuts | | Switched Power | local | Switch heater
power off, | Autonomy | N/A | TRD time | | | | | | | | | i | | Inputs | | owitched Power | Local | power on redundant | Autonomy | N/A | TBD time | | | | | | | | | i | | ТН-3.3 р | Propulsion Internal Heaters A&B (28 Ω switched) | | | | | İ | <u> </u> | | | | | | | <u></u> | FMEA ID Name | Function | Failure Mode / Limit /
Constraint | Possible Causes Phase | Local | E
Next Higher | ffect
Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Detection Metho
TIm for Diagnosis | od
TIm Path for Diagnosis | Time to
Detect
(Local) | Time to Detect (System) | |---|----------|--------------------------------------|---|---|------------------|------------------|-----------------|----------|------------|------------|---------------------------------|---|------------------------------|------------------------------|-------------------------| | TH-3.3.a | | Fails on | 1) Thermostat failure
2) Failure of switch
3) Failure in heater | S/C will detect high
temperature and
switch off power to
that heater and switch
to othe side. | No effect. | No effect. | N/A | 2R | Active | Yes | Temperature sensor telemetry | Heater current; internal prop temperature | PDU to REM
RIU to REM | N/A | | | TH-3.3.b | | Fails off | 1) Thermostat failure
2) Failure of switch
3) Failure in heater | S/C will detect low temperature and switch to other side. | No effect. | No effect. | N/A | 2R | Active | Yes | Temperature sensor
telemetry | Heater current; internal prop temperature | PDU to REM
RIU to REM | N/A | | | TH-3.3.c | | Debonds from surface | 1) Assembly/installation
failure
2) adhesive failure/defect | S/C will detect low
temperature and
switch to other side. | No effect. | No effect. | N/A | 2R | Active | Yes | Temperature sensor
telemetry | Heater current; internal prop temperature | PDU to REM
RIU to REM | N/A | | | Inputs | | Switched Power | | Autonomy will detect
low temperature and
switch to other side. | No effect. | No effect. | N/A | 4 | Active | Yes | Tank temperature
telemetry | Heater current; internal prop temperature | PDU to REM
RIU to REM |
N/A | | | TH-3.4. S/C Panel Survival Heaters A&B (16 Ω switched) TH-3.4.a | | Fails on | 1) Thermostat failure
2) Failure of switch
3) Failure in heater | S/C will detect high
temperature and
switch off power to
that heater and switch
to othe side. | No effect. | No effect. | N/A | 2R | Active | Yes | Temperature sensor
telemetry | Heater current; various temperatures? | PDU to REM
RIU to REM | N/A | | | TH-3.4.b | | Fails off | 1) Thermostat failure
2) Failure of switch
3) Failure in heater | S/C will detect low
temperature and
switch to other side. | No effect. | No effect. | N/A | 2R | Active | Yes | Temperature sensor
telemetry | Heater current; various temperatures? | PDU to REM
RIU to REM | N/A | | | TH-3.4.c | | Debonds from surface | 1) Assembly/installation
failure
2) adhesive failure/defect | S/C will detect low
temperature and
switch to other side. | No effect. | No effect. | N/A | 2R | Active | Yes | Temperature sensor
telemetry | Heater current; various temperatures? | PDU to REM
RIU to REM | N/A | | | Inputs | | Switched Power | | Autonomy will detect
low temperature and
switch to other side. | No effect. | No effect. | N/A | 4 | Active | Yes | Tank temperature
telemetry | Heater current; various temperatures? | PDU to REM
RIU to REM | N/A | | | TH-3.5 CSPR Manifold 1&4 Heaters A&B (16 Ω switched) TH-3.5.a | | Fails on | 1) Thermostat failure
2) Failure of switch
3) Failure in heater | S/C will detect high
temperature and
switch off power to
that heater and switch
to othe side. | No effect. | No effect. | N/A | 2R | Active | Yes | Temperature sensor
telemetry | Heater current; CSPR
manifold temp | PDU to REM
RIU to REM | N/A | | | TH-3.5.b | | Fails off | 1) Thermostat failure
2) Failure of switch
3) Failure in heater | S/C will detect low temperature and switch to other side. | No effect. | No effect. | N/A | 2R | Active | Yes | Temperature sensor
telemetry | Heater current; CSPR
manifold temp | PDU to REM
RIU to REM | N/A | | | TH-3.5.c | | Debonds from surface | 1) Assembly/installation
failure
2) adhesive failure/defect | S/C will detect low
temperature and
switch to other side. | No effect. | No effect. | N/A | 2R | Active | Yes | Temperature sensor
telemetry | Heater current; CSPR
manifold temp | PDU to REM
RIU to REM | N/A | | | Inputs | | Switched Power | | Autonomy will detect
low temperature and
switch to other side. | No effect. | No effect. | N/A | 4 | Active | Yes | Tank temperature
telemetry | Heater current; CSPR
manifold temp | PDU to REM
RIU to REM | N/A | | | TH-3.6. CSPR Manifold 2&3 Heaters A&B (14 Ω switched) TH-3.6.a | | Fails on | 1) Thermostat failure
2) Failure of switch
3) Failure in heater | S/C will detect high
temperature and
switch off power to
that heater and switch
to othe side. | No effect. | No effect. | N/A | 2R | Active | Yes | Temperature sensor
telemetry | Heater current; CSPR
manifold temp | PDU to REM
RIU to REM | N/A | | | TH-3.6.b | | Fails off | 1) Thermostat failure
2) Failure of switch
3) Failure in heater | S/C will detect low
temperature and
switch to other side. | No effect. | No effect. | N/A | 2R | Active | Yes | Temperature sensor
telemetry | Heater current; CSPR
manifold temp | PDU to REM
RIU to REM | N/A | | | TH-3.6.c | | Debonds from surface | 1) Assembly/installation
failure
2) adhesive failure/defect | S/C will detect low
temperature and
switch to other side. | No effect. | No effect. | N/A | 2R | Active | Yes | Temperature sensor
telemetry | Heater current; CSPR
manifold temp | PDU to REM
RIU to REM | N/A | | | Inputs | | Switched Power | | Autonomy will detect
low temperature and
switch to other side. | No effect. | No effect. | N/A | 4 | Active | Yes | Tank temperature
telemetry | Heater current; CSPR
manifold temp | PDU to REM
RIU to REM | N/A | | | TH-3.7 Battery Heater A & Solar Array Drive Heater A (unswitched) | | | | Dual thermostats at | | | | | | | | | | | | | TH-3.7.a | | Fails on | | different set points will
cause heater to turn
off, switch to other
side | | No effect. | N/A | 2R | None | Yes | Thermostats | | | N/A | | | ТН-3.7.b | | Fails off | | Dual thermostats at
different set points will
cause heater to turn
on, switch to other
side | No effect. | No effect. | N/A | 2R | None | Yes | Thermostats | | | N/A | | | TH-3.7.c | | Debonds from surface | | 2nd side thermostats
would detect low
temp and would turn
on | No effect. | No effect. | N/A | 2R | None | Yes | Thermostats | | | N/A | | | Inputs | | Unswitched power | | Dual thermostats at
different set points will
cause heater to turn
on, switch to other | No effect. | No effect. | N/A | 4 | None | Yes | Thermostats | | | N/A | | | TH-3.8 Battery Heater B & Solar Array Drive Heater B (unswitched) | | | | side | | | | | | | | | | | | | FMEA ID | Name Function | Failure Mode / Limit /
Constraint | Response Level | Desired Local
Response | Allocation of
Local Response | Time to fix locally | Time to
Transmit
Signal | Response Desired System Response | Allocation of System
Response | Time to fix
System | Time to
Transmit
Signal | Ground Response /
Contingency | Quick Look
Processor Switch | Safe
Mode | Comments - KAF | Revisit | |------------------|---|--------------------------------------|----------------|---|---------------------------------|---------------------|-------------------------------|------------------------------------|----------------------------------|-----------------------|-------------------------------|----------------------------------|--------------------------------|--------------|--|---------| | TH-3.3.a | | Fails on | Local | Switch heater
power off,
power on
redundant | Autonomy | N/A | TBD time | | | | | | | | No CB for switched heater; prop heaters
were different than what Stewart expected | | | TH-3.3.b | | Fails off | Local | Switch heater
power off,
power on
redundant
Switch heater | Autonomy | N/A | TBD time | | | | | | | | | | | TH-3.3.c | | Debonds from surface | Local | power off,
power on
redundant
Switch heater | Autonomy | N/A | TBD time | | | | , | |
g | | | | | Inputs TH-3.4 S | /C Panel Survival Heaters A&B (16 Ω switched) | Switched Power | Local | power off,
power on
redundant | Autonomy | N/A | TBD time | | | | | | | | | | | TH-3.4.a | | Fails on | Local | Switch heater
power off,
power on
redundant | Autonomy | N/A | TBD time | | | | | | | | No CB for switched heater; prop heaters
were different than what Stewart expected | | | TH-3.4.b | | Fails off | Local | Switch heater
power off,
power on
redundant | Autonomy | N/A | TBD time | | | | | | | | | | | TH-3.4.c | | Debonds from surface | Local | Switch heater
power off,
power on
redundant
Switch heater | Autonomy | N/A | TBD time | | | | | | | | | | | Inputs TH-3.5 C | SPR Manifold 1&4 Heaters A&B (16 Ω switched) | Switched Power | Local | power off,
power on
redundant | Autonomy | N/A | TBD time | | | | | | | | | | | TH-3.5.a | | Fails on | Local | Switch heater
power off,
power on
redundant | Autonomy | N/A | TBD time | | | | | | | | No CB for switched heater; prop heaters
were different than what Stewart expected | | | TH-3.5.b | | Fails off | Local | Switch heater
power off,
power on
redundant
Switch heater | Autonomy | N/A | TBD time | | | | | | | | | | | TH-3.5.c | | Debonds from surface | Local | power off,
power on
redundant
Switch heater | Autonomy | N/A | TBD time | | | | | | | | | | | Inputs TH-3.6 C | SPR Manifold 2&3 Heaters A&B (14 Ω switched) | Switched Power | Local | power off,
power on
redundant | Autonomy | N/A | TBD time | Single thermostat | | | | | | | | | | TH-3.6.a | | Fails on | Local | Switch heater
power off,
power on
redundant | Autonomy | N/A | TBD time | | | | | | | | No CB for switched heater; prop heaters
were different than what Stewart expected | | | TH-3.6.b | | Fails off | Local | Switch heater
power off,
power on
redundant
Switch heater | Autonomy | N/A | TBD time | | | | | | | | | | | TH-3.6.c | | Debonds from surface | Local | power off,
power on
redundant
Switch heater | Autonomy | N/A | TBD time | | | | | | | | | | | Inputs TH-3.7 Bi | attery Heater A & Solar Array Drive Heater A (unswitched) | Switched Power | Local | power off,
power on
redundant | Autonomy | N/A | TBD time | | | | | | | | | | | TH-3.7.a | | Fails on | | | | N/A | TBD time | dual thermostats | | | | | | | No FM since these are unswitched loads | | | TH-3.7.b | | Fails off | | | | N/A | TBD time | | | | | | | | | | | TH-3.7.c | | Debonds from surface | | | | N/A | TBD time | | | | | | | | | | | Inputs | | Unswitched power | | | | N/A | TBD time | | | | | | | | | | | TH-3.8 B | attery Heater B & Solar Array Drive Heater B (unswitched) | Ef | fect | | | | | | Detection Method | d | | | |----------|---------------------|----------|------------------------|---|-------|--|----------------------|------------|-----------------|----------|------------|------------|----------------|-------------------|------------------------|-------------------|--------------------| | FMEA ID | Name | Function | Failure Mode / Limit / | Possible Causes | Phase | Local | Next Higher | Mission | Umbra Violation |
Severity | Type of FM | Observable | How Observed? | Tlm for Diagnosis | Tlm Path for Diagnosis | Time to | Time to | | | | | Constraint | | | | | | | | | | | | | Detect
(Local) | Detect
(System) | | TH-3.8.a | | | Fails on | 1) Thermostat failure
2) Failure of switch
3) Failure in heater | | Dual thermostats at
different set points will
cause heater to turn
off, switch to other
side | | No effect. | N/A | 2R | None | Yes | Thermostats | | | N/A | | | TH-3.8.b | | | Fails off | 1) Thermostat failure
2) Failure of switch
3) Failure in heater | | Dual thermostats at
different set points will
cause heater to turn
on, switch to other
side | | No effect. | N/A | 2R | None | Yes | Thermostats | | | N/A | | | TH-3.8.c | | | Debonds from surface | 1) Assembly/installation
failure
2) adhesive failure/defect | | 2nd side thermostats
would detect low
temp and would turn
on | No effect. | No effect. | N/A | 2R | None | Yes | Thermostats | | | N/A | | | Inputs | | | Unswitched power | | | Dual thermostats at
different set points will
cause heater to turn
on, switch to other
side | | No effect. | N/A | 4 | None | Yes | Thermostats | | | N/A | | | TH-4 1 | Femperature Sensors | | | | | | | | | <u> </u> | | | | | <u> </u> | | | | TH-4.a | | | | 1) mechanical break
2) RIO failure | | Bad reading at sensor | redundant sensor | No effect. | N/A | 4 | ? | Yes | Component temp | | | N/A | | | TH-4.b | | | Incorrect output | 1) debond | | Bad reading at sensor | Determine whether or | | N/A | 4 | ? | yes | Component temp | | | N/A | | | | | | | | | | | | Response | | | | | | Quick Look | | | | |----------|--------------------|----------|---------------------------------------|----------------|---------------|----------------|----------|----------------|---|----------------------|-------------|----------|-------------------|-------------|------------------|------|--|----------| | FMEA ID | Name | Function | Failure Mode / Limit / | Response Level | Desired Local | Allocation of | | Time to | Desired System | Allocation of System | Time to fix | Time to | Ground Response / | System Side | Processor Switch | Safe | Comments - KAF | Revisit | | | | | Constraint | | Response | Local Response | locally | Transmit | Response | Response | System | Transmit | Contingency | Switch | | Mode | | | | | | | <u> </u> | | | | | Signal | | | | Signal | | | | | | <u> </u> | | | | | ļ | | | | | | | | | | | | | | | | | TH-3.8.a | | | F-II | | | | A1 / A | TDD time | dual thermostats | | | | | | | | No FM since these are unswitched loads | | | 1H-3.8.a | | | Fails on | | | | N/A | TBD time | duai thermostats | | | | | | | | NO FIXI SINCE these are unswitched loads | <u> </u> | | | 1 | ļ
! | 1 | ! | | |
! | 1 | | | | | !
! | TH-3.8.b | | | Fails off | | | | N/A | TBD time | | | | | | | | | | | | - | ļ | | | ļ | ļ | . | ļ | ļ | | ļ | - | | | | | ļ | TH-3.8.c | | | Debonds from surface | | | | N/A | TBD time | | | | | | | | | | | | | | | | | | <u> </u> | | <u> </u> | N/A | T00 .: | | | | | | | | | | | | Inputs | | | Unswitched power | | | 1 | N/A | TBD time | | ! | | | | | | | | | | - | TH-4 T | emperature Sensors | | | | | 1 | <u> </u> | 1 | | | | | | | | | | <u> </u> | | | | | | | | | | Time required | to see | all components will | | | | | | | | Not sure that all components do have | | | TH-4.a | | | No output | | | | N/A | tomporatura | have redundant temp
sensors (current | | | | | | | | redundant temp sensors? Would we want to do a side switch for critical components if the | | | | | | | | | | | | baseline) | | | | | | | | temp info was not available/stale? | | | | | | | | | | | component | baselille) | | | | | | | | terrip into was not available; state: | | | | | | · · · · · · · · · · · · · · · · · · · | | | <u> </u> | | Time required | d | ō | | | · | | | | | | | | | | | | | | | to see | | | | | | | | | | | | TH-4.b | | | Incorrect output | | | | N/A | temperature | | | | | | | | | | | | | | | | | | | · | change in | component | | | | | | | | | | | | i | | | | .i | i | i | i | | ā | ā | t | ă | | | | | | å | | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Possible Causes | Phase | Local | Effect
Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Detection Method TIm for Diagnosis | Tlm Path for
Diagnosis | Time to Detect
(Local) | Time to Detect (System) | |-------------------------|---|----------|--|---|---------|--|---|---|--|---|--|------------|--|--|---------------------------|---------------------------|-------------------------| | Severity 1s Avionics | | | | | | | | | | | | | | | | | (System) | | AV-4.1.2.2.a | PRIO | | Hard failure (could take out one
or both PRIOs - need both on a | | L | If hard failure occurs prior to safety bus relay on, couldn't turn on safety bus. | Not able to power safety-
inhibited loads. | LOM | N/A | 1 | Passive -
Redundancy?? | yes | Safety buses wouldn't turn on | | | | | | | Rxn Wheel 1 | | Higher friction in a wheel happens in combination with a side switch (for other reasons) | | | Wheel spins down due to side switch. Only a single wheel is affected by the friction, but all wheels are affected by the side switch. | Spacecraft turns (direction and speed depends on conditions a time of side switch). | | Possible, depending on where in orbit, how fast, and which direction it's turning. | 1 | | No | | | | | | | Propulsion
Inputs | Latch Valve A | | Bus voltage | No voltage Constant "ON" from PDU high side and low side (instead of pulses) | | 1) Couldn't cycle valve
2) LV heats up | 1) None assuming 2nd LV work
2) Propellant heats up | s 1) None
2) S/C explodes | N/a | 1) 4
2) 1 | 1) Passive -
redundancy?
2) None | Yes | Current draw, temperature readings | 1) PDU LV current
tlm?
2) PDU high and
low side tlm | | N/A | N/A | | PR-8.01.3.a | Valve Assembly
(NC Solenoid
Valves) | | Both failed open or both leak | 1) electrical failure
2) FOD | | Valves wouldn't close | Thruster would continue to fire unless latch valve closed | Depends on when in orbit it
happens and how quickly
it's caught (especially withir
0.7 AU). Probably mission-
ending or at least would
curtail it. | | 1 - if causes an umbra
violation 2 - if fuel is significantly
depleted or orbit
significantly changed 3 - if mission is impacted by
fuel loss or orbit change | Passive -
redundancy | Maybe | Thruster continues to fire after commanded to stop | Thruster fire tlm;
maneuver active
tlm | | | N/A | | Severity 2s
Avionics | SCIF A | | Component/ Instrument telemetry | | | Lose telemetry from component or instrument | Depends on
component/instrument lost -
worst case would cause a side
switch | None | Depends on side switch and reconfig time | 2 - if FIELDS is lost 2R - if a critical component is lost 3 - if another instrument is lost 4 - for other (non-critical) | Active | Yes | Prime via SpW | | | | | | AV-4.1.2.a | Relay Cap A | | Fails to provide function #1 (main
bus voltage for critical and non-
critical loads) | 1) Incoming power wire
breaks/bad connection
2) Short to ground (double-
insulated wires) | | 1) Multiple pairs (6) of incoming power wires (power & return) per RC slice. The loss of a single wire/pair would be within margin for s/c. The loss of more than one (multiple failures) would cause there to be too little power available to the s/c. 2) An unconstrained short would melt the wires and discharge the battery. | | 1) No effect (assuming a
single failure)
2) LOM | N/A | 1) 4
2) 2 | Active | | | State of charge | | | | | AV-4.1.2.b | Relay Cap A | | Fails to provide function #2 (load current telemetry) | | | PSE also supplies total current telemetry.
Non-critical failure. | Worst case, switch off a single
load. | Worst case would switch
off one of the instruments,
degrading (but
not failing)
science. | | 2 - If FIELDS is lost 2R - if a critical component is lost 3 - if another instrument is lost 4 - for other (non-critical) components | Active | | | | | | | | AV-4.1.2.1.b | Relay Cap A - Fuse
Module | | Blows too soon | 1) Design
2) Transient voltage
3) "Smart" short (high current
setting that is not detected) | E, M, C | Lose power to a load. | Switch to side B | No effect. | N/A | 2 - If load is FIELDS 2A - If load is critical component 3 - If load is another instrument 4 - If load is non-critical component | Active | yes | current telemetry would be zero.
Would be indistinguishable from
an ARC switch failure. Would
probably have ground
recommand, but wouldn't fix
problem. | Load current | PDU to REM | | | | AV-4.1.3.c | FET Slice 1 | | FET stuck off | FET failure | | Load stuck powered off. | Switching sides of avionics would not fix problem (FET itself is common to both PDUs) | Loss of load. | N/A | 2 - if load is FIELDS 2R - if load is critical component 3 - if load is another instrument 4 - if load is non-critical | Active | yes | Load continues to be powered off after power on command. | Load current | PDU to REM | | | | AV-4.1.3.d | FET Slice 1 | | Hard failure | Electronics failure Connector/cable failure Common electronics (redundant within FET slice) | E, M, C | Some or all slice functions fail | Possible loss of power to any o
all loads powered through FET
slice 1. With redundancy of
components and effective
placement of loads on FET
cards, the loss of a single FET
card should not fail the mission | Possibly degraded mission. | N/A | 2 - if load is FIELDS 2R - if load is critical component 3 - if load is another instrument 4 - if load is non-critical component | Active | yes | Loss of power to load(s) | Load current | PDU to REM | | | | AV-4.1.3.1.a | FET Slice 1 - Circuit
Breaker | | Unable to reset | 1) Part Failure | Е, М, С | Assuming load has tripped circuit breaker, loss of switched load If load has not tripped circuit breaker, then no effect | Potential loss of a single instrument suite. Cycling power to load may reset circuit breaker. Ground would probably investigate problem at next ground contact. | Degraded or LOM depending on which switched load. | | 2 - if load is PIELDS 2R - if load is critical component 3 - if load is another instrument 4 - if load is non-critical component 2 - if load is PIELDS | Active | yes | Load continues to be powered off after power on command. | Load current | PDU to REM | | | | AV-4.1.3.1.b | FET Slice 1 - Circuit
Breaker | | Opens without stimuli | 1) Part Failure | E, M, C | 1) Loss of switched load | 1) MOPs sends commands to reset circuit breaker | Degraded science or loss
of redundancy if breaker
continually trips for critical
switched loads | | 2 - if load is PIELDS 2R - if load is critical component 3 - if load is another instrument 4 - if load is non-critical component | Active | yes | Load switches off unexpectedly | Load current | PDU to REM | | | | AV-4.1.3.1.c | FET Slice 1 - Circuit
Breaker | | Trips too soon | 1) Trip Value Set Too Low | E, M, C | 1) Load constantly trips circuit breaker | 1) Ground command to disable
or override the CB | 1) None | | 2 - if load is FIELDS 2R - if load is critical component 3 - if load is another instrument 4 - if load is non-critical | None | yes | Load switches off unexpectedly | | | | | | AV-4.1.3.1.d | FET Slice 1 - Circuit
Breaker | | Failure to trip (assumes load is drawing too high of a current) | 1) Sense value incorrect (should
be caught in testing) | | Fuse would blow if current high enough. | Loss of load. Autonomy would
turn off load permanently. | Degraded science or loss of redundancy, depending on load. | | component 2 - If load is PIELDS 2R - If load is critical component 3 - If load is another instrument 4 - If load is non-critical component | Active | yes | Power drain higher than expected.
Load switches off when fuse
blows. | Load current | PDU to REM | | | | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | t Response Level | Desired Local Response | Allocation of Local | Time to fix locally | | Desired System | | | Time to | Ground Response / | | Quick Look
Processor Switch | Safe Mode | Remediation | Helpful Autonomy | Revisit | Comments - KAF | |----------------------------|---|----------|--|------------------|---|----------------------------|---------------------|--------|----------------|----------|--------|--------------------|-------------------|--------|--------------------------------|-----------|---|--------------------|---------|--| | Severity 1s | | | | | | Response | | Signal | Response | Response | system | Transmit
Signal | Contingency | Switch | | | | Rule | | <u> </u> | | Avionics AV-4.1.2.2.a | PRIO | | Hard failure (could take out one or both PRIOs - need both on a side) | | | | | | | | | | | | | | | | | | | G&C
GC-4.1.k | Rxn Wheel 1 | | Higher friction in a wheel happens in combination with a side switch (for other reasons) | | | | | | | | | | | | | | | | | | | Propulsion | | | | | | | | ! | !
! | | | | I | | | | | | | · | | Inputs | Latch Valve A | | Bus voltage | None | | | | | | | | PR-8.01.3.a | Valve Assembly
(NC Solenoid
Valves) | | Both failed open or both leak | Local? | if thrusters firing when
maneuver not active,
close latch valves | Autonomy | | | None | None | None | None | None | | | | | Close latch valves | | | | Severity 2s Avionics | | | | | | | | | | <u> </u> | | | | | | | | | | | | Inputs | SCIF A | | Component/ Instrument
telemetry | Local | Depends on component
affected: 1)Prime
requests ARC side switch
2)Switch to redundant
component | 1) HW - ARC
2) Autonomy | Side switchover | | | | | | | X | | | Power cycle during ground contact & perform REM
check out | | х | | | AV-4.1.2.a | Relay Cap A | | Fails to provide function #1 (main
bus voltage for critical and non-
critical loads) | System | LBSOC Safing | Autonomy | | | | | | | | | | | None | | | Relay Cap A & B on same
card? So nothing we can
do?
Would look like unexpected
battery discharge fault, but
not fixable?? | | AV-4.1.2.b | Relay Cap A | | Fails to provide function #2 (load current telemetry) | Local | For some loads, may want to re-enforce that one is always on? | Autonomy | | | | | | | | | | | | | х | | | | Relay Cap A - Fuse
Module | | Blows too soon | Local | Consider having an over-
current rule for each
witched load with out a
CB in order to protect the
fuse? In some cases this
might be a complete
system side switch or just
component switch for
those loads that are cross
strapped | Autonomy | | | | | | | | | | | Critical loads are redundant, so a single fuse blowing would not cause a critical load to fail | | х | | | AV-4.1.3.c | FET Slice 1 | | FET stuck off | Local | TBD which loads, but
monitor for one of two
always on? | Autonomy | | | | | | | | | | | | | х | | | AV-4.1.3.d | FET Slice 1 | | Hard failure | Local | TBD which loads, but
monitor for one of two
always on? | Autonomy | | | | | | | | | | | 1) MOPs tries to command load(s) on/off
2) Cycle power | | х | | | | FET Slice 1 - Circuit
Breaker | | Unable to reset | Local | TBD which loads, but
monitor for one of two
always on?
Would not help with
instruments | Autonomy | | | | | | | | | | | 1) Send commands to turn load on
2) Send commands to turn load on and override CB
3) Cycle power | | х | | | | FET Slice 1 - Circuit
Breaker | | Opens without stimuli | Local | TBD which loads, but
monitor for one of two
always on?
Would not help with
instruments | Autonomy | | | | | | | | | | | 1) If CB continually trips, can override CB and rely solely
on autonomy rule for over-current protection | | х | | | | FET Slice 1 - Circuit
Breaker | | Trips too soon | | | | | | | | | | | | | | 1) Turn load on
2) If CB continually trips, can override CB and rely solely
on autonomy rule | | х | | | | FET Slice 1 - Circuit
Breaker | | Failure to trip (assumes load is
drawing too high of a current) | Local | Consider having an over-
current rule for each
switched load with CB in
order to protect the fuse? | Autonomy | | | | | | | | | | | 1) Autonomy rules also protect against over-current
2) LVS protection if both CB and autonomy rule fail | | х | | | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Possible Causes | Phase | Local | Effect
Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Detection Method
Tlm for Diagnosis | Tim Path for
Diagnosis | Time to Detect
(Local) | Time to
Detect
(System) | |---------------|----------------------------------|----------
---|--|---------|---|---|--|---|--|-----------------------------------|--------------|--|---|---|--|-------------------------------| | Inputs | FET Slice 1 - Circuit
Breaker | | Power from Fuse Module | | | Loss of load | Potential loss of entire instrument suite. | Degraded science or loss of redundancy, depending on load. | | 2 - if load is FIELDS 2R - if load is critical component 3 - if load is another instrument 4 - if load is non-critical component | Active | yes | Load not powered. | Load current | PDU to REM | | | | AV-4.1.3.2.a | FET Slice 1 - Fuse
Module | | Blows below rated current | 1) Design 2) Transient voltage 3) "Smart" short (high current setting that is not detected - multiple failures) | Е, М, С | Loss of load | Potential loss of entire instrument suite. | Degraded science or loss of
redundancy, depending on
load. | | 2 - if load is FIEEDS 2R - if load is critical component 3 - if load is another instrument 4 - if load is non-critical component | Active | yes | Load not powered. | Load current | PDU to REM | | | | AV-4.1.3.2.0 | FET Slice 1 - Fuse
Module | | Failure to blow (assumes a failure
in the load, causing it to draw a
high current) | 1) Design | | Loss of load | Anything other than a short to chassis, autonomy would see and turn off load. Also will have circuit breakers for non-redundant loads like instruments and some other critical loads. | Degraded science or loss of redundancy, depending on load. | | 2 - if load is FIELDS 2R - if load is critical component 3 - if load is another instrument 4 - if load is non-critical component | Active | yes | Not short to chassis: excess
current draw by load.
Short to chassis: difficult to
diagnose. Eventually would load
shed and side switch. Would
probably see problem when
switching loads back on one-by-
one. | Load current | PDU to REM | | | | EPS
Inputs | Bus Junction Slice | | Relay command (only changes
when a fault occurs and it needs
to change state) | No command when necessary
(2nd failure) | | No effect to card. | Buck converter would draw too
much power. Battery would
discharge. | Loss of mission | | 2 | None | Yes. | With current sensors on buck converter slice | Buck Converter
Current | PSE to CDH | ? | None | | Inputs
G&C | Solar Array
Junction Card 1 | | Solar array power | | | Slice is ok. | S/c not receiving power. | Loss of mission. | N/a | 2 | None | Yes | Current might not be correct, but
long-term, battery voltage
decreases | Battery voltage | PSE to CDH | ? | ? | | GC-2.1.a | Solar Limb Sensor
A | | Input message not received or processed. (The solar limb sensors may need some information from the avionics/FSW to set gains or parameters that are used in computing Sun offset angle from cell intensity readings. A fault on the s/c side or inside the solar limb sensor that causes this information to not be available will cause problems for the solar limb sensor in that the angle solutions coming out will be degraded. (cases where angle solutions coming out will be included in another section below)) | | | Sun geometry when first detected is
unchanged so time of detection is
unaffected; solar limb sensor uses old or
incorrect information to generate Sun
offset angle; angle accuracy is degraded
and time when first angle is output may
be delayed | based on SLS data. | parameter values before
we have another attitude
anomaly where SLS would | taken soon enougn. | 2 | 1) None
2) Active
3) Active | Probably not | Don't think there is a way to detect this. If we are using the wrong parameters in the SLS signal processing, we won't have any way to conclude that we are getting wrong answers. (This assumes that target attitude is +2/TPS to Sun.) | 1) None
2) SLS heartbeat?
3) SLS heartbeat? | 1) None
2) SLS to CDH to
Autonomy
3) SLS to CDH to
Autonomy | 1) None
2) ?
3) ? | None | | GC-4.1.b | Rxn Wheel 1 | | Case 1: Incorrect force/torque
exerted on spacecraft | Frozen torque command -
direction and magnitude stay at
some fixed value; include both
max and below max magnitude
values. | | with how long that takes depending on
the speed magnitude when command firs | impact depends on what level the command was when frozen - if large we get in trouble faster. The momentum will be higher, but may or may not be at the dump limit when the wheel reaches max speed. The other wheels will try to fight the one wheel but will likely saturate and once 2 of them are saturated, we lose controllability, if the system can do a momentum dump before 2 of the wheels reach saturation, we may survive longer but dumps will be done more frequently (if allowed) since the failed wheel has reached its mom storage limit. | Loss of mission in the worst
case - even if solar limb
sensors detect the umbra
violation it may not be | Possible if failed wheel is still considered available, but depends on momentum state of system when wheel failure occurs and timing of momentum dump logic and wheel fault logic (to turn off misbehaving wheel) | 2 | | Yes | compare wheel speed/torque to commanded wheel speed/torque (most wheels have feedback telemetry with actual torque and all have some means of measuring wheel speed). G&C software will be monitoring wheel speeds and other health status telemetry (if any) from the wheels and will request action from autonomy if needed. | | | TBD - probably
will wait for a
few control cycles
to declare a
wheel
unresponsive | | | GC-4.1.c | Rxn Wheel 1 | | Case 2: Incorrect force/torque
exerted on spacecraft | Direction stuck at + or -,
magnitude correct responding
only to magnitude part of
command. | | The "stuck" wheel will eventually reach saturation (max speed) with how long that takes depending on the speed magnitude when direction first got stuck. | The controller will mistakenly keep sending commands to all the wheels. The one that's only responding to torque magnitude will eventually saturate at max speed. The momentum will be higher, but may or may not be at the dump limit when the wheel reaches max speed. The other wheels will try to fight the one wheel but will likely saturate and once 2 of them are saturated, we lose controllability. If the system can do a momentum dump before 2 of the wheels reach saturation, we may survive longer but dumps will be done more frequently (if allowed) since the failed wheel has reached its mom storage limit. | Loss of mission in the worst
case - even if solar limb
sensors detect the umbra | Possible if too many wheels
reach saturation before a
momentum dump can be | 2 | | | | | | | | | FMEA ID | Name | Function | Failure Mode / Limit / Constrain | t Response Level | Desired Local Response | Allocation of Local
Response | Time to fix locally | Response Time to Transmit Signal | Desired System
Response | Allocation of System
Response | Time to fix
system | Time to
Transmit
Signal | Ground Response /
Contingency | System Side
Switch | Quick Look
Processor Switch | Safe Mode | Remediation | Helpful Autonomy
Rule | Revisit | Comments - KAF | |---------------|----------------------------------|----------
--|---------------------------------|---|---------------------------------------|---------------------|----------------------------------|----------------------------|----------------------------------|-----------------------|-------------------------------|----------------------------------|--|--------------------------------|-----------|---|---|---------|----------------| | Inputs | FET Slice 1 - Circuit
Breaker | | Power from Fuse Module | Local | TBD which loads, but
monitor for one of two
always on?
Would not help with
instruments | Autonomy | | | | | | | | | | | | | х | | | AV-4.1.3.2.a | FET Slice 1 - Fuse
Module | | Blows below rated current | Local | TBD which loads, but
monitor for one of two
always on?
Would not help with
instruments | Autonomy | | | | | | | | | | | 1) Circuit breakers are used to prevent fuses from
blowing
2) Critical loads have redundant power paths, so a
single fuse blowing would not cause a critical load to
fail | | х | | | AV-4.1.3.2.b | FET Slice 1 - Fuse
Module | | Failure to blow (assumes a failure
in the load, causing it to draw a
high current) | | Consider having an over-
current rule for each
switched load with CB in
order to protect the fuse? | Autonomy | | | | | | | | | | | 1) Circuit breakers are used to prevent fuses from blowing 2) Critical loads have redundant power paths, so a single fuse blowing would not cause a critical load to fail | | х | | | EPS
Inputs | Bus Junction Slice | | Relay command (only changes
when a fault occurs and it needs
to change state) | None | None | Ground | ? | ? | ? | None | None | None | None | None - loss of
mission, but
double fault | | | | | | | | Inputs
G&C | Solar Array
Junction Card 1 | | Solar array power | None | | | Solar arrays would extend to increase voltage | | | | GC-2.1.a | Solar Limb Sensor
A | | input message not received or processed. (The solar limb sensors may need some information from the avionics/FSW to set gains or parameters that are used in computing Sun offset angle from cell intensity readings. A fault on the s/c side or inside the solar limb sensor that causes this information to not be available will cause problems for the solar limb sensor in that the angle solutions coming out will be degraded. (cases where angle solutions are grossly incorrect are included in another section below!) | 1) None
2) Local
3) Local | 1) None
2) Power cycle SLS
3) Power cycle SLS | 1) None
2) Autonomy
3) Autonomy | None | 1) None
2) ?
3) ? | None | None | None | None | None | | | | Redundant heads may not help because the parameter are probably the same for both sides of the head. Redundant electronics might help if the other side of the electronics doesn't have the internal problem that causes it to miss getting updated parameters. But then we have to figure out how to pick the "right" data from the two readings from each side. Might be able to do in-flight calibration at larger solar distances, but unlikely since will be at the saturation limit for low intensity most of the time where we could attempt calibration. Trying to calibrate at small solar distances would require intentionally going far enough off sun for the SLS head to see the Sun and generate angle data - assuming that the star tracker and ephemeris models would hold us at an attitude that was still outside the s/c packaging umbra and using the attitude and ephemeris info to get the "true" offset angle to compare against the SLS offset angle. | | | | | GC-4.1.b | Rxn Wheel 1 | | Case 1: Incorrect force/torque
exerted on spacecraft | | | | | | | | | | | | | | For this case, we are assuming that the failed wheel is still actively rotating and not in the way the controller commanded it to. The best first action may depend on how the wheel is not responding. If we see that a whee is ramping up to max speed, it might be better just to turn it off than to try switching sides. Some wheels have a built-in feature to turn off when a max speed is reached (which is over the max possible command). As des switch might fix a problem with direction or magnitude part of the torque command being frozen. I don't think the wheel itself will have internally redundant command interfaces that could be switch, power off the wheel and set it unavailable to the control system. In theory we can take one wheel out of the loop and still control with 3 wheels only. May need a momentum dump sooner when down to 3 wheels. If 2 or more wheels fail, we switch to thrusters for attitude control. If we are able to reliably detect that the wheel persists in not responding to toqrue commands, we should shut it down. We may take other actions first to be sure it's really not able to respond normally. | | | | | GC-4.1.c | Rxn Wheel 1 | | Case 2: Incorrect force/torque
exerted on spacecraft | Effect | | | | | | | Detection Method | | | | |------------|--------------------------------|---|---|--|--------|---|--|---|---|----------|------------|------------|--|-------------------|--|---------------------------|-------------------| | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Possible Causes | Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Tlm for Diagnosis | Tlm Path for
Diagnosis | Time to Detect
(Local) | Time to
Detect | | GC-4.1.d | Rxn Wheel 1 | | Case 3: incorrect force/torque
exerted on spacecraft | Direction reversed, magnitude correct - error in wheel interface electronics; most wheels have separate inputs for the direction and magnitude of the commanded torque that are probably processed separately in the wheel electronics. | | wheel will spin in opposite direction from
commanded direction and exert a
torque
that fights against the desired control.
Won't necessarily reach saturation (max
speed) since direction sign can still change
with time. | will try to counter the effect of
the wheel that's outputting its
torque in the wrong direction.
They will probably succeed if
they aren't close to saturation | sensors detect the umbra
violation it may not be
correctable in the time
available depending on how
we design the auto dump
logic and fault checks for | Probably not in this case.
w | 2 | | | | | | | (System) | | GC-4.1.e | Rxn Wheel 1 | | Case 4: Incorrect force/torque
exerted on spacecraft | Magnitude stuck, direction correct; responding only to direction part of command, but non-zero magnitude; include both max and below max magnitude values. | | commanded direction but torque
magnitude will be larger or smaller than
commanded. Won't necessarily reach
saturation (max speed) since direction
sign can still change with time. It's
essentially adding in some disturbance
torque that can work with the system or | momentum aump isn t | sensors detect the umbra
violation it may not be
correctable in the time
available depending on how
we design the auto dump
logic and fault checks for | Possible, but less likely if torque
magnitude is lower. | 2 | | | | | | | | | GC-4.1.f | Rxn Wheel 1 | | Case 5: Incorrect force/torque
exerted on spacecraft | Wheel responding significantly out-of-spec - magnitude and direction of torque command are correct, but torque output to spacecraft deviates from it a) Localized increase in friction in parts of flywheel rotation; general increase in friction causing wheel to be sluggish bot not enough to completely stop it from moving. b) Imbalance causing very irrecular rotation of flywheel. c) Electric motor failure - intermittent glitch in motor configuration causes very erratic resopnse to the wheel torque commands. | | consume more power as the motor works to overcome bigger loss effects. b) If wheel is "energetic", it puts out more torque than commanded. (unlikely - usually it's the losses that are bigger than expected). c) If wheel is erratic, it essentially acts as a frandom disturbance torque on the | from target attitude than
desired as remaining wheels
work to pick up the slack from
the one sluggish wheel.
b) Turns may complete faster.
c) Hard to predict without | case - even if solar limb
sensors detect the umbra
violation it may not be
correctable in the time
available depending on how
we design the auto dump | a) Possible if failed wheel is still considered available, but depends on momentum state of system when wheel failure occurs and timing of momentum dump logic and wheel failt logic (to turn off misbehaving wheel) b) Possible if failed wheel is still with state of system when wheel failure occurs and timing of system when wheel failure occurs and timing of momentum dump logic and wheel fault logic (to turn off misbehaving wheel) | 2 | | | | | | | | | Cooling | <u>}</u> | | Y | 1 | ······ | · | ļ | ·,········ | ·,···································· | | | | · | ·,····· | ······································ | .i | | | TCS-ACCU-1 | | Stores coolant water prior to system charge;
Provides thermal expansion and loop leakage
compensation. Coolant is internal to the
accumulator tank bellows and the fluid is
expelled using a fixed N2 gas charge that is
applied between the bellows and the tank
shell. Holds TBD in 3 min. of coolant; TBD psig
MDP; Bellows neutral position is TBD. | Cross-bellows Internal Leakage | 1) Over stress (ext induced); 2) Contaminants induced; 3) Corrosion; 4) Fatigue; 5) Material/process (weld) flaw. | All | The bellows will extend to its neutral no-
load position; Interchanging and mixing of
fluids between N2 and coolant cavities
due to temperature excursions. | (items PM1/PM2); Decrease or | cause would lead to loss
TCS and mission. | N/A | 2 | | | Pump delta-p sensor and/or current and temp sensors detect cavitation; loop temp sensors detect degraded cooling | | | | | | TCS-ACCU-2 | Accumulator | Stores coolant water prior to system charge;
Provides thermal expansion and loop leakage
compensation. Coolant is internal to the
accumulator tank bellows and the fluid is
expelled using a fixed N2 gas charge that is
applied between the bellows and the tank
shell. Holdst BD in Bin in. of coolant; TBD psig
MDP; Bellows neutral position is TBD. | External Coolant Leakage | Over stress (ext induced); Corrosion; Fatigue; Material/process (weld) flaw. | All | Coolant leaks to external from the accumulator. | Potential pump cavitation and
eventual loss of cooling
capability. | Redundant pump failures
due to cavitation common
cause and loss of coolant
would lead to loss TCS and
mission. | N/A | 2 | | | Tank pressure and temperature
sensors detect loss of coolant; Pump delta-p sensor and/or
current and temp sensors detect
cavitation; 19 2 detects loss of main loop
pressure. 4) Loop temp sensors detect loss
of cooling | | | | | | TCS-ACCU-3 | Accumulator | Stores coolant water prior to system charge;
Provides thermal expansion and loop leakage
compensation. Coolant is internal to the
accumulator tank bellows and the fluid is
expelled using a fixed N2 gas charge that is
applied between the bellows and the tank
shell. Holds TBD in Min. of coolant; TBD psig
MDP; Bellows neutral position is TBD. | External Gas Leakage | 1) Over stress (ext induced); 2) Corrosion; 3) Fatigue; 4) Material/process (weld) flaw. | | Gas leaks to external from the accumulator, resulting in loss of pressure. | Unable to maintain a net positive pump input pressure resulting in pump cavitation. Inability to provide thermal for expansion could result in bellows rupture. | Redundant pump failures
due to cavitation common
cause or loss of coolant due
to rupture would lead to
loss TCS and mission. | | 2 | | | Tank pressure sensor detects loss of pressurization; Pump delta-p sensor and/or current and temp sensors detect cavitation; 19 2 detects loss of main loop pressurization; 41 Loop temp sensors detect loss of cooling | | | | | | TCS-ACCU-4 | Accumulator | Stores coolant water prior to system charge;
Provides thermal expansion and loop leakage
compensation. Coolant is internal to the
accumulator tank bellows and the fluid is
expelled using a fixed NZ gas charge that is
applied between the bellows and the tank
shell. Holds TBD in3 min. of coolant; TBD psig
MDP; Bellows neutral position is TBD. | Fails to Expand/Contract | Jammed bellows (interference
of moving parts); Contamination. | All | Inability to expand during high temp
operation could cause bellows over
pressure and potential rupture.
Inability to contract during low temp
operation could cause pump cavitation. | Potential pump cavitation and eventual loss of cooling capability. | Redundant pump failures
due to cavitation common
cause or loss of coolant due
to rupture would lead to
loss TCS and mission. | | 2 | | | Tank pressure and temperature sensors may detect pressure fluctuations due to temperature excursions; Temp delta-p sensor and/or current and temp sensors detect cavitation; Loop temp sensors detect loss of cooling | | | | | | TCS-LV1-1 | Accumulator isolation valve | Valve is launched closed and isolates the coolant in the accumulator from the rest of the system. Opens following launch to allow coolant into radiators 1 and 4 and solar arrays. | Fails open | 1) Contamination; 2) Seal failure;
3) FSW Failure; 4) Electrical/
Electronics failure; 5) Autonomy
failure; 6) Failed sequence | All | Coolant would be allowed into the main loop before it is desired. | Coolant would freeze, potentially leading to rupture. | Rupture due to freezing results in loss of TCS and mission. | N/A | 2 | | | 1) Tank pressure and temperature
sensors may detect loss of coolant
into the main loop; 2) Pump delta-p sensor and systen
pressure and temp sensors will all
detect rupture resulting in loss of
TCs. | n | | | | | TCS-LV1-2 | Accumulator isolation valve | Valve is launched closed and isolates the coolant in the accumulator from the rest of the system. Opens following launch to allow coolant into radiators 1 and 4 and solar arrays. | internal leakage (large leak) | 1) Contamination; 2) Seal failure | All | Coolant would be allowed into the main loop before it is desired. | Sufficient coolant leaks into
system to cause a blockage
when it freezes, potentially
leading to rupture. | Rupture due to freezing results in loss of TCS and mission. | N/A | 2 | | | Tank pressure and temperature
sensors may detect loss of coolant
into the main loop; Pump delta-p sensor and systen
pressure and temp sensors will all
detect rupture resulting in loss of
TCs. | n | | | | | TCS-LV1-4 | Accumulator
isolation valve | Valve is launched closed and isolates the coolant in the accumulator from the rest of the system. Opens following launch to allow coolant into radiators 1 and 4 and solar arrays. | Valve stays closed when
commanded to open | 1) Contamination; 2) Jamming; 3)
Binding; 4) Seal failure; 5) FSW
Failure; 6) Electrical/ Electronics
failure; 7) Autonomy failure; 8)
Failed sequence | | Valve stays closed. | Re-send command to open
valve, but if failure persists, no
coolant is available to the TCS. | Loss of TCS. Loss of
mission. | N/A | 2 | | | Pump delta-p sensor detects loss of flow; Loop temp sensors detect loss of cooling | | | | | | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | t Response Level Desired Local Response | Allocation of Local
Response | Time to fix locally | Response Time to Transmit Signal | Desired System
Response | Allocation of System
Response | Time to fix
system |
Time to
Transmit
Signal | Ground Response /
Contingency | System Side
Switch | Quick Look
Processor Switch Safe Mode | Remediation | Helpful Autonomy
Rule | Revisit | Comments - KAF | |------------|--------------------------------|--|---|---|---------------------------------|---------------------|----------------------------------|----------------------------|----------------------------------|-----------------------|-------------------------------|----------------------------------|-----------------------|--|--|--------------------------|---------|----------------| | GC-4.1.d | Rxn Wheel 1 | | Case 3: Incorrect force/torque
exerted on spacecraft | | | | | | | | | | | | Will do polarity tests pre-launch that should detect mis wiring or miscommunication between control software and wheels, but I guess it's possible that something can break or be affected by environment to introduce errors in the command chain. These are really errors in how we wire up the command interface to the wheels. The vendors would not give us a wheel that responded in the reverse direction to the interface in their ICDs and other documentation. I suppose something in the electronics could spontaneously flip that might cause this, but a miswiring on our side is more likely. | | | | | GC-4.1.e | Rxn Wheel 1 | | Case 4: Incorrect force/torque
exerted on spacecraft | | | | | | | | | | | | | | | | | GC-4.1.f | Rxn Wheel 1 | | Case 5: Incorrect force/torque
exerted on spacecraft | | | | | | | | | | | | | | | | | Cooling | <u> </u> | · | λ
Υ | | | | λγ | ۸
پرستان | .3 |
ү | i | | λ
γ | i | · | λ | i | | | TCS-ACCU-1 | Accumulator | Stores coolant water prior to system charge;
Provides thermal expansion and loop leakage
compensation. Coolant is internal to the
accumulator tank bellows and the fluid is
expelled using a fixed NZ gas charge that is
applied between the bellows and the tank
shell. Holds TBD in3 min. of coolant; TBD psig
MDP; Bellows neutral position is TBD. | Cross-bellows Internal Leakage | Seconds/minutes | | | | N/A | None | | | | | | Historically this has been an accepted risk in similar
spaceflight applications, based on it's a highly reliable
all welded pressure barrier metal bellow assembly
design, rigourous design stress analyses, manufacturing
process controls, mandatory hardware inspection
points, and qual/accept tests. | | | | | TCS-ACCU-2 | Accumulator | Stores coolant water prior to system charge;
Provides thermal expansion and loop leakage
compensation. Coolant is internal to the
accumulator tank bellows and the fluid is
expelled using a fixed NZ gas charge that is
applied between the bellows and the tank
shell. HoldS TB0 in3 min. of coolant; TBD psig
MDP; Bellows neutral position is TBD. | External Coolant Leakage | Seconds/minutes | | | | N/A | None | | | | | | | | | | | TCS-ACCU-3 | Accumulator | Stores coolant water prior to system charge;
Provides thermal expansion and loop leakage
compensation. Coolant is internal to the
accumulator tank bellows and the fluid is
expelled using a fixed NZ gas charge that is
applied between the bellows and the tank
shell. HoldS TBD in3 min. of coolant; TBD psig
MDP; Bellows neutral position is TBD. | External Gas Leakage | Seconds/minutes | | | | N/A | None | | | | | | | | | | | TCS-ACCU-4 | Accumulator | Stores coolant water prior to system charge;
Provides thermal expansion and loop leakage
compensation. Coolant is internal to the
accumulator tank bellows and the fluid is
expelled using a fixed NZ gas charge that is
applied between the bellows and the tank
shell. Holds TBD in 3 min. of coolant; TBD psig
MDP; Bellows neutral position is TBD. | Fails to Expand/Contract | Seconds/minutes | | | | N/A | None | | | | | | | | | | | TCS-LV1-1 | Accumulator
isolation valve | Valve is launched closed and isolates the coolant in the accumulator from the rest of the system. Opens following launch to allow coolant into radiators 1 and 4 and solar arrays. | Fails open | Minutes | | | | N/A | None | | | | | | | | | | | TCS-LV1-2 | Accumulator
isolation valve | Valve is launched closed and isolates the coolant in the accumulator from the rest of the system. Opens following launch to allow coolant into radiators 1 and 4 and solar arrays. | internal leakage (large leak) | Minutes | | | | N/A | None | | | | | | | | | | | TCS-LV1-4 | Accumulator isolation valve | Valve is launched closed and isolates the coolant in the accumulator from the rest of the system. Opens following launch to allow coolant into radiators 1 and 4 and solar arrays. | Valve stays closed when
commanded to open | Minutes | | | | N/A | None | | | | | | Redundant, independent opening electronics. This would require two failures. | | | | | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Possible Causes | Phase | Local | Effect
Next Higher | Mission | Umbra Violation | | Type of FM | Observable | How Observed? | Detection Method Tlm for Diagnosis | Tlm Path for | Time to Detect | Time to | |-----------|---|--|--|---|--|---|--|---|-----------------|----------|------------|------------|--|------------------------------------|--------------|----------------|--------------------| | | | | | | | | | Donatora dona An bish | , | Severity | | | | | Diagnosis | (Local) | Detect
(System) | | TCS-LV1-5 | Accumulator isolation valve | Valve is launched closed and isolates the coolant in the accumulator from the rest of the system. Opens following launch to allow coolant into radiators 1 and 4 and solar arrays. | Valve closes when not commanded to close | Mechanical failure (cannot be
commanded to close after
ground testing is completed) | All | Valve closes. | The system loses access to the
accumulator, resulting in
potential rupture or pump
cavitation as a result of
high/low temperature
excursions, respectively. | Rupture due to high
temperatures leads to loss
of coolant, loss of TCS, and
loss of mission. Pump cavitation due to low
temperatures leads to
pump failures, loss of TCS,
and loss of mission. | N/A | 2 | | | Tank pressure and temperature sensors detect loss of coolant due to rupture; Pump delta-p sensor detects loss of flow; Loop temp sensors detect loss of cooling | | | | | | TCS-LV1-6 | Accumulator
isolation valve | Valve is launched closed and isolates the coolant in the accumulator from the rest of the system. Opens following launch to allow coolant into radiators 1 and 4 and solar arrays. | External leakage | 1) Over-stress; 2) Corrosion; 3)
Fatigue; 4) Material/process or
weld flaw; 5) Seal failure | All | Coolant leaks to space. | Potential pump cavitation and eventual loss of cooling capability. | Redundant pump failures
due to cavitation common
cause and loss of coolant
would lead to loss TCS and
vehicle. | N/A | 2 | | | 1) Tank pressure and temperature
sensors detect loss of coolant;
2) Pump deltap- sensor and/or
current and temp sensors detect
cavitation;
3) P2 detects loss of main loop
pressure;
4) Loop temp sensors detect loss
of cooling | | | | | | TCS-LV2-1 | Upstream radiator
isolation valve | Valve is launched closed and isolates radiators
2 and 3 on the upstream side. Opens about 1
month into the mission to allow coolant into
radiators 2 and 3. | Fails open | 1) Contamination; 2) Seal failure;
3) FSW Failure; 4) Electrical/
Electronics failure; 5) Autonomy
failure; 6) Failed sequence | (radiators 1 & 4) | Coolant would be allowed into the loop
containing Radiators 2&3 before it is desired. | Potential coolant freezing,
potentially leading to rupture
and subsequent leakage. | Rupture due to freezing results in loss of TCS and vehicle | N/A | 2 | | | Pump delta-p sensor and system
pressure and temp sensors will all
detect rupture resulting in loss of
TCs. | | | | | | TCS-LV2-2 | Upstream radiator
isolation valve | Valve is launched closed and isolates radiators 2 and 3 on the upstream side. Opens about 1 month into the mission to allow coolant into radiators 2 and 3. | Internal leakage (large leak) | 1) Contamination; 2) Seal failure | From initial cooling system activation (radiators 1 & 4) through final cooling system activation (radiators 2 & 3) | Coolant would be allowed into the loop
containing Radiators 2&3 before it is
desired. | Sufficient coolant leaks into
system to cause a blockage
when it freezes, potentially
leading to rupture. | Rupture due to freezing results in loss of TCS and mission. | N/A | 2 | | | Tank pressure and temperature sensors may detect loss of coolant into the main loop; Pump delta-p sensor and system pressure and temp sensors will all detect rupture resulting in loss of TCs. | | | | | | TCS-LV2-4 | Upstream radiator
isolation valve | Valve is launched closed and isolates radiators
2 and 3 on the upstream side. Opens about 1
month into the mission to allow coolant into
radiators 2 and 3. | | 1) Contamination; 2) Jamming; 3
Binding; 4) Seal failure; 5) FSW
Failure; 6) Electrical/ Electronics
failure; 7) Autonomy failure; 8)
Failed sequence | From final cooling
system activation | Valve stays closed. | Re-send command to open
valve, but if failure persists, no
coolant is available to radiator
2 & 3. | | N/A | 2 | | | Pump delta-p sensor detects loss of flow; Loop temp sensors detect loss of cooling Spooling Indicates closed state | | | | | | TCS-LV2-5 | Upstream radiator
isolation valve | Valve is launched closed and isolates radiators
2 and 3 on the upstream side. Opens about 1
month into the mission to allow coolant into
radiators 2 and 3. | | Mechanical failure (cannot be commanded to close after ground testing is completed) | From final cooling system activation (radiators 2 & 3) on. | Valve closes. | The system loses access to
Radiators 2 & 3. | Loss of TCS. Loss of mission. | N/A | 2 | | | Pump delta-p sensor detects loss of flow; Dos temp sensors detect loss of cooling Position indicator on LV indicates closed state | | | | | | TCS-LV2-6 | Upstream radiator
isolation valve | Valve is launched closed and isolates radiators
2 and 3 on the upstream side. Opens about 1
month into the mission to allow coolant into
radiators 2 and 3. | External leakage | 1) Over-stress; 2) Corrosion; 3)
Fatigue; 4) Material/process or
weld flaw; 5) Seal failure | From initial cooling system activation (radiators 1 & 4) on. | Coolant leaks to space. | Potential pump cavitation and eventual loss of cooling capability. | Redundant pump failures
due to cavitation common
cause and loss of coolant
would lead to loss TCS and
vehicle. | Ν/A | 2 | | | Tank pressure and temperature sensors detect loss of coolant; Pump delta-p sensor and/or current and temp sensors detect cavitation; 3) P2 detects loss of main loop pressure; 4) Loop temp sensors detect loss of cooling | | | | | | TCS-LV3-1 | Downstream
radiator isolation
valve | Valve is launched closed and isolates radiators
2 and 3 on the downstream side. Opens about
1 month into the mission to allow coolant into
radiators 2 and 3. | Fails open/Internal leakage | 1) Contamination; 2) Seal failure;
3) Software Failure; 4) Electrical/
Electronics failure | | Coolant may be allowed into the radiator 2/3 segment of the cooling loop before it is desired. | | Rupture due to freezing
results in loss of TCS and
vehicle | N/A | 2 | | | P3 detects pressure rise as coolant
leaks in | | | | | | TCS-LV3-2 | Downstream
radiator isolation
valve | Valve is launched closed and isolates radiators
2 and 3 on the downstream side. Opens about
1 month into the mission to allow coolant into
radiators 2 and 3. | Fails closed | 1) Contamination; 2) Jamming; 3
Binding; 4) Seal failure; 5)
Software Failure; 6) Electrical/
Electronics failure | All | Valve doesn't open when commanded, or valve closes inadvertently. | Loss of flow to radiators 2 and
3. | inability to supply coolant
to radiators 2 and 3 results
in inability to handle
nominal heat loads, which
eventually leads to loss of
vehicle when the TCS can
no longer keep up. | N/A | 2 | | | Loop temp sensors detect failure
to supply flow to radiators 2 and 3. | | | | | | TCS-LV3-3 | Downstream
radiator isolation
valve | Valve is launched closed and isolates radiators
2 and 3 on the downstream side. Opens about
1 month into the mission to allow coolant into
radiators 2 and 3. | External leakage, upstream side | 1) Over-stress; 2) Corrosion; 3)
Fatigue; 4) Material/process or
weld flaw; 5) Seal failure | All | Coolant leaks to external from the downstream side of the valve beginning when LV2 and LV3 are opened. | Potential pump cavitation and eventual loss of cooling capability. | Redundant pump failures
due to cavitation common
cause and loss of coolant
would lead to loss TCS and
vehicle. | N/A | 2 | | | 1) Tank pressure and temperature sensors detect loss of coolant after LV2 has been opened; 2) Pump delta-p sensor and/or current and temp sensors detect cavitation; 3) P2 detects loss of main loop pressure. 4) Loop temp sensors detect loss of cooling | | | | | | TCS-LV3-4 | Downstream
radiator isolation
valve | Valve is launched closed and isolates radiators
2 and 3 on the downstream side. Opens about
1 month into the mission to allow coolant into
radiators 2 and 3. | | 1) Over-stress; 2) Corrosion; 3)
Fatigue; 4) Material/process or
weld flaw; 5) Seal failure | АШ | Coolant leaks to external from the downstream side of the valve beginning when LV1 is opened post launch. | Potential pump cavitation and
eventual loss of coolling
capability. | Redundant pump failures
due to cavitation common
cause and loss of coolant
would lead to loss TCS and
vehicle. | N/A | 2 | | | 1) Tank pressure and temperature sensors detect loss of coolant after LV1 has been opened; 2) Pump delta-p sensor and/or current and temp sensors detect cavilation; 3) P2 detects loss of main loop pressure. 4) Loop temp sensors detect loss of cooling | | | | | | TCS-CV1-1 | Pump check valve | Check valve prevents back flow through the inactive pump leg | Internal Leakage | 1) Ball/seat deformation; 2)
Contamination | All | Some coolant recirculation flow is allowed through the check valve. | Degraded flow performance
through the solar arrays and
radiators. | If the leakage is severe
enough, then inability to
handle nominal heat loads
is possible, leading to loss
of vehicle when the TCS car
no longer keep up. | N/A | 2 | | | 1) Pump delta-p sensor detects flow degradation; 2) Loop temperature sensors detect degraded cooling performance | | | | | | TCS-CV1-4 | Pump check valve | Check valve prevents back flow through the inactive pump leg | External Leakage | 1) Over-stress; 2) Corrosion; 3)
Fatigue; 4) Material/process or
weld flaw; 5) Seal failure | All | Coolant leaks to external beginning when LVI is opened post launch. | Potential pump cavitation and eventual loss of cooling capability. | Redundant pump failures
due to cavitation common
cause and loss of coolant
would lead to loss TCS and
vehicle. | N/A | 2 | | | 1) Tank pressure and temperature sensors detect loss of coolant after LV1 has been opened; 2) Pump delta-p sensor and/or current and temp sensors detect cavitation; 3) P2 detects loss of main loop pressure. 4) Loop temp sensors detect loss of cooling | | | | | | The content of co | FAMEA ID | . N | i s | ir-il Mada / Limit / Country int | Daniel I was | Desired Level Description | Allersking of Level | Time to find a seller | Response | | Allowation of Contam | Time to five Time to | Converd Donoscon / | Contant Cida | Quick Look | C-f- Ba-d- | David disting | lusted a second | n | Community WAF |
--|-----------|--------------------------------|--|-----------------------------------|-----------------|---------------------------|---------------------|-----------------------|----------|----------------------------|----------------------|----------------------|--------------------|--------------|------------------|------------|--|--------------------------|---------|----------------| | Series of the se | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Response Level | Desired Local Response | | Time to fix locally | | Desired System
Response | | system Transmit | | | Processor Switch | Safe Mode | Remediation | Helpful Autonomy
Rule | Revisit | Comments - KAF | | Service of the servic | TCS-LV1-5 | | coolant in the accumulator from the rest of the
system. Opens following launch to allow | commanded to close | Minutes | | | | | N/A | None | | | | | | | | | | | Secure Se | TCS-LV1-6 | Accumulator
isolation valve | coolant in the accumulator from the rest of the
system. Opens following launch to allow | • | Seconds/minutes | | | | | N/A | None | | | | | | | | | | | Section Sect | TCS-LV2-1 | isolation valve | 2 and 3 on the upstream side. Opens about 1 month into the mission to allow coolant into | : | Minutes | | | | | N/A | None | | | | | | Can adjust vehicle orientation to prevent freezing | | | | | Secretary Secretary and Control Contro | TCS-LV2-2 | | 2 and 3 on the upstream side. Opens about 1 month into the mission to allow coolant into | internal leakage (large leak) | Minutes | | | | | N/A | None | | | | | | Can adjust vehicle orientation to prevent freezing | | | | | Fig. 10-2 Sections and the control of o | TCS-LV2-4 | isolation valve | 2 and 3 on the upstream side. Opens about 1 month into the mission to allow coolant into | | Minutes | | | | | | | | | | | | | | | | | State of the second process pr | TCS-LV2-5 | | 2 and 3 on the upstream side. Opens about 1 month into the mission to allow coolant into | | Minutes | | | | | | | | | | | | | | | | | TCS-LV3-1 For the formatter and the formatter and the mission is allow content in a fine open/internal lockage from the formatter and the mission is allow content in a fine open free in and the formatter th | TCS-LV2-6 | isolation valve | 2 and 3 on the upstream side. Opens about 1 month into the mission to allow coolant into | : | Seconds/minutes | | | | | | | | | | | | | | | | | TCS-LV3-2 and 3 on the downstream Substruction 2 and 3. The contraction 3 | TCS-LV3-1 | radiator isolation | 2 and 3 on the downstream side. Opens about 1 month into the mission to allow coolant into | | Minutes | | | | | N/A | None | | | | | | Can adjust vehicle orientation to prevent freezing | | | | | TCS-1V3-3 realistor solution in the mission to allow coolant into realistors 2 and 3. TCS-1V3-4 Powerstream radiator solution when the mission to allow coolant into radiators 2 and 3. TCS-1V3-4 Powerstream radiator solution radiators 2 and 3. TCS-1V3-4 Powerstream radiator solution radiators 2 and 3. TCS-1V3-4 Powerstream radiator solution radiators 2 and 3. TCS-1V3-4 Powerstream radiator solution radiators 2 and 3. TCS-1V3-4 Powerstream radiator solution radiators 2 and 3. TCS-1V3-4 Powerstream radiator solution radiators 2 and 3. TCS-1V3-4 Powerstream radiators 2 and 3. TCS-1V3-4 Powerstream radiators solution radiators 2 and 3. | TCS-LV3-2 | radiator isolation | 2 and 3 on the downstream side. Opens about 1 month into the mission to allow coolant into | | Minutes | | | | | N/A | None | | | | | | | | | | | TCS-LV3-4 radiators isolation valve 2 and 3 on the downstream side. Opens about 1 month into the mission to allow coolant into iside 5 conds/minutes 5 conds/minutes 5 conds/minutes 5 conds/minutes 6 conds/minutes 6 conds/minutes 6 conds/minutes 6 conds/minutes 6 conds/minutes 6 conds/minutes 7 conds/m | TCS-LV3-3 | radiator isolation | 2 and 3 on the downstream side. Opens about 1 month into the mission to allow coolant into | External leakage, upstream side | Seconds/minutes | | | | | N/A | None | | | | | | | | | | | TCS-CV1-1 Pump check value Check valve prevents back flow through the internal Leakage Minutes N/A None | TCS-LV3-4 | radiator isolation | 2 and 3 on the downstream side. Opens about 1 month into the mission to allow coolant into | External leakage, downstream | Seconds/minutes | | | | | N/A | None | | | | | | | | | | | | TCS-CV1-1 | Pump check valve | Check valve prevents back flow through the inactive pump leg | Internal Leakage | Minutes | | | | | N/A | None | | | | | | | | | | | TCS-CV1-4 Pump check valve Prevents back flow through the inactive pump leg Check valve prevents back flow through the inactive pump leg N/A None | TCS-CV1-4 | Pump check valve | Check valve prevents back flow through the inactive pump leg | External Leakage | Seconds/minutes | | | | | N/A | None | | | | | | | | | | | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Possible Causes | Phase | Local | Effect
Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Detection Method
Tlm for Diagnosis | Tlm Path for
Diagnosis | Time to Detect
(Local) | Time to Detect (System) | |--------------|------------------------------|--|------------------------------------|--|-------|---|--|--|---|--|------------|--|--|--|---------------------------|---------------------------|-------------------------| | TCS-PM1-4 | Pump 1 | Provides coolant flow through the solar arrays
and radiators | Pump/motor overheat | 1) Pump cavitations; 2) Flow
blockage; 3) High heat
load/environment; 4) High
coolant temp; 5) Bearing
degradation | All | Potential for a fire | If a fire occurs, potential
damage to pump and
surrounding equipment | Potential loss of TCS and vehicle | ?? | 2 | | | Loop temp sensors may provide an indirect indication that the pump is overheating | | | | | | TCS-PM1-5 | Pump 1 | Provides coolant flow through the solar arrays
and radiators | Overcurrent | 1) Electronics failure; 2) Bearing
drag | All | Local heating, potential for a fire | If a fire occurs, potential
damage to pump and
surrounding equipment | Potential loss of TCS and vehicle | ?? | 2 | | | Pump current sensor and vehicle
level overcurrent protection
features (TBD) will catch many
overcurrent scenarios in time to
allow for pump shutdown | | | | | | TCS-PM1-8 | Pump 1 | Provides coolant flow through the solar arrays and radiators | External leakage | 1) Over-stress; 2) Corrosion; 3)
Fatigue; 4) Material/process or
weld flaw; 5) Seal failure | | Coolant leaks to
external from the pump
beginning when LV1 is opened post
launch. | Potential pump cavitation and eventual loss of cooling capability. | Redundant pump failures
due to cavitation common
cause and loss of coolant
would lead to loss TCS and
vehicle. | N/A | 2 | | | 1) Tank pressure and temperature sensors detect loss of coolant after LV1 has been opened; 2) Pump delta-p sensor and/or current and temp sensors detect cavitation; 3) P2 detects loss of main loop pressure. 4) Loop temp sensors detect loss of cooling | | | | | | TCS-PM2-4 | Pump 2 | Provides coolant flow through the solar arrays and radiators | Pump/motor overheat | 1) Pump cavitations; 2) Flow
blockage; 3) High heat
load/environment; 4) High
coolant temp; 5) Bearing
degradation | All | Potential for a fire | If a fire occurs, potential
damage to pump and
surrounding equipment | Potential loss of TCS and vehicle | ?? | 2 | | | Loop temp sensors may provide an indirect indication that the pump is overheating | | | | | | TCS-PM2-5 | Pump 2 | Provides coolant flow through the solar arrays
and radiators | Overcurrent | 1) Electronics failure; 2) Bearing
drag | All | Local heating, potential for a fire | If a fire occurs, potential
damage to pump and
surrounding equipment | Potential loss of TCS and vehicle | ?? | 2 | | | Pump current sensor and vehicle
level overcurrent protection
features (TBD) will catch many
overcurrent scenarios in time to
allow for pump shutdown | | | | | | TCS-PM2-8 | Pump 2 | Provides coolant flow through the solar arrays
and radiators | External leakage | 1) Over-stress; 2) Corrosion; 3)
Fatigue; 4) Material/process or
iveld flaw; 5) Seal failure | All | Coolant leaks to external from the pump beginning when LV1 is opened post launch. | Potential pump cavitation and eventual loss of cooling capability. | Redundant pump failures
due to cavitation common
cause and loss of coolant
would lead to loss TCS and
vehicle. | N/A | 2 | | | 1) Tank pressure and temperature sensors detect loss of coolant after LV1 has been opened; 2) Pump delta-p sensor and/or current and temp sensors detect cavitation; 3) P2 detects loss of main loop pressure. 4) Loop temp sensors detect loss of cooling | | | | | | TCS-MV-3 | Manual fill valve | Open for tank charging. Closed for the rest of
the mission to provide a barrier against coolant
leakage to exterior. | External leakage, tank side | 1) Over-stress; 2) Corrosion; 3)
Fatigue; 4) Material/process or
weld flaw; 5) Seal failure | All | Coolant leaks to external from the manual
valve | Potential pump cavitation and eventual loss of cooling capability. | Redundant pump failures
due to cavitation common
cause and loss of coolant
would lead to loss TCS and
vehicle. | N/A | 2 | | | Tank pressure and temperature sensors detect loss of coolant; Pump delta-p sensor and/or current and temp sensors detect cavitation; P2 detects loss of main loop pressure. Uoop temp sensors detect loss of cooling | | | | | | TM-4.1.a | Ka-Band HYB-2 | | No output / incorrect output | 1) Mechanical failure in device
2) Failure at waveguide flange | | No output to expected device from
Hybrid. | No RF or degraded RF signal.
Ground would notice lack or
degradation of signal and
command RF to switch sides
and/or switch Ka-band TWTAs,
but degraded signal would
remain even after switch. | Eventually overwhelm SSRs
due to only having fanbeam
downlink. | | 2 | None | | Ground detects data errors,
incorrect power, or loses
downlink. Autonomy would not
react. | None - degraded
performance | None | None | None | | TM-9.1.a | HGA Antenna | | Mechanical failure | 1) Material defect
2) Dust strike | | Antenna fails to send/receive communications. | S/C unable to return data in a
timely fashion. Ground would
attempt to switch antenna
polarization, but would not
correct problem. | Mission success severely impacted by data rate loss. | N/A | 2 - if data return is too low
3 - if science requirements
can still be met | None | Yes. (After proces:
of elimination) | No more comm to/from HGA. | None
Loss of comm with
HGA | None | None | None | | TM-9.1.b | HGA Antenna | | Degraded performance | | | Poor perfomance (either less power or corrupted signal) | Run at lower data rates.
Ground would switch antenna
polarization. | Mission success severely impacted by data rate loss. | N/A | 2 - if data return is too low
3 - if science requirements
can still be met | None | | Ground would see lower power or corrupted signal | None
Loss of comm with
HGA | None | None | None | | ME-1.1.1.1.a | Solar Array Flap
Actuator | | Fails to actuate when commanded | 1) bad/bound
bearing/mechanical failure
2) stepper motor failure
3) loose/separated connector | E, C | Solar array stuck in position | if SA needs to move out, generates insufficient power 2) if SA needs to move in, generates too much power, potential overheating of wing (cells burned) | | If in encounter, and SAs stuck
out too far | 2 | Active | Yes | Potentiometer telemetry. Turn on
redundant ECU for 3rd vote. | Potentiometer
telemetry;
redundant ECU
telemetry
Battery state of
charge | ECU to REM | ? | ? | | ME-1.1.1.1.b | Solar Array Flap
Actuator | | Incorrect actuation when commanded | incorrect potentiometer reading residual torque (should have sufficient margin) Motor coil or winding is open | E, C | Solar array in incorrect position | 1) if SA needs to move out,
generates insufficient power
(different than required).
2) if SA needs to move in,
generates too much power
(different than expected),
potential overheating of wing
(cells burned) | eventually drain battery, may be able to slew s/c to retain partial power for a time lose mission | If in encounter, and SAs stuck
out too far | 2 | Active | Yes | Power level, step count,
(potentiometer telemetry). Turn
on redundant ECU for 3rd vote. | Potentiometer telemetry; redundant ECU telemetry Battery state of charge How do we detect power level? | ECU to REM | ? | ? | | ME-1.1.1.1.c | Solar Array Flap
Actuator | | Actuates when not commanded | Holding torque exceeded (need to have sufficient margin) | E, C | Solar array in incorrect position | I) if SA needs to move out, generates insufficient power (different than required) 2) if SA needs to move in, generates too much power (different than expected), potential overheating of wing (cells burned) | 1) eventually drain battery,
may be able to slew s/c to
retain partial power for a
time
2) lose mission | If in encounter, and SAs stuck
out too far | 2 | Active | Yes | Power level | Potentiometer telemetry; redundant ECU telemetry Battery state of charge How do we detect power level? | ECU to REM | ? | ? | | FMEA ID | Name | Function Failure Mode / Limit / Const | aint Response Leve | l Desired Local Response | Allocation of Local
Response | Time to fix locally | Response Time to Transmit Signal | Desired System
Response | Allocation of System
Response | Time to fix system | Time to
Transmit
Signal | Ground Response /
Contingency | System Side
Switch | Quick Look Processor Switch Safe Mode | Remediation | Helpful Autonomy
Rule | Revisit | Comments - KAF | |----------------------|------------------------------|--|-------------------------|--|---------------------------------|---------------------|----------------------------------|---|----------------------------------|--------------------|-------------------------------|--|-----------------------|---------------------------------------|--|---|---------|---| | TCS-PM1-4 | Pump 1 | Provides coolant flow through the solar arrays and radiators | Minutes | | | | | N/A | None | | | | | | | х | | | | TCS-PM1-5 | Pump 1 | Provides coolant flow through the solar arrays
and radiators | Seconds | | | | | N/A | None | | | | | | | х | | | | TCS-PM1-8 | Pump 1 | Provides coolant flow through the solar arrays and radiators | Seconds/minutes | | | | | N/A | None | | | | | | | | | | | TCS-PM2-4 | Pump 2 | Provides coolant flow through the solar arrays and radiators | Minutes | | | į | | N/A | None | | | | | | | х | | | | TCS-PM2-5 | Pump 2 | Provides coolant flow through the solar arrays
and radiators | Seconds | | | | | N/A | None | | | | | | | х | | | | TCS-PM2-8 | Pump 2 | Provides coolant flow through the solar arrays
and radiators | Seconds/minutes | | | | | N/A | None | | | | | | | | | | | TCS-MV-3 | Manual fill valve | Open for tank charging. Closed for the rest of the mission to provide a barrier against coolant External leakage, tank side leakage to exterior. | Seconds/minutes | | | | | N/A | None | | | | | | | | | | | Telecomm
TM-4.1.a | Ka-Band HYB-2 | No output / incorrect output | Local / Ground | RF side switch | Ground | ? | ? | None | None | None | None | Ground to monitor
performance; contingency
for RF side switch | | | | | | | | TM-9.1.a | HGA Antenna | Mechanical failure | Local / Ground | Contingency Procedure | Ground | ? | ? |
None | None | None | None | Need to talk through all the
combinations within RF
system that ground should
try when attempting to
reacquire | | | | | | | | TM-9.1.b | HGA Antenna | Degraded performance | Local / Ground | Contingency Procedure | Ground | ? | ? | None | None | None | None | Need to talk through all the
combinations within RF
system that ground should
try when attempting to
reacquire | | | | | | | | ME-1.1.1.1.a | Solar Array Flap
Actuator | Fails to actuate when comm | nded <mark>Local</mark> | if potentiometer and step
count are mismatched,
turn on redundant ECU fo
3rd vote; if third vote is
correct power off primary
ECU otherwise system
side switch??? | r
Autonomy | ? | ? | If problem persists,
umbra violation or
LBSOC | Autonomy | ? | ? | None | | | Power other ECU to compare potentiometer readings.
If necessary, switch ECUs.
re-command, slew, coolant system change | During encounter: if tip current sensors detect current, autonomously bring in solar arrays | | Discuss with FSW about making on ECU "active" | | ME-1.1.1.1.b | Solar Array Flap
Actuator | Incorrect actuation when commanded | Local | if potentiometer and step
count are mismatched,
turn on redundant ECU for
3rd vote; if third vote is
correct power off primary
ECU otherwise system
side switch??? | r
Autonomy | ? | ? | If problem persists,
umbra violation or
LBSOC | Autonomy | 7 | ? | None | | | Power other ECU to compare potentiometer readings.
If necessary, switch ECUs.
re-command, slew, coolant system change, go back to
"home position" then re-count/recalibrate | During encounter: if tip current sensors detect current, autonomously bring in solar arrays | | | | ME-1.1.1.1.c | Solar Array Flap
Actuator | Actuates when not command | ed Local | If potentiometer and step
count are mismatched,
turn on redundant ECU for
3rd vote; If third vote is
correct power off primary
ECU otherwise system
side switch??? | r
Autonomy | ? | 2 | If problem persists,
umbra violation or
LBSOC | Autonomy | ? | ? | None | | | Power other ECU to compare potentiometer readings. If necessary, switch ECUs. re-command, slew, coolant system change, go back to "home position" then re-count/recalibrate | During encounter:
if tip current
sensors detect
current,
autonomously
bring in solar
arrays | | This is designed to be non-
credible | | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Possible Causes | Phase | Local | Effect
Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Detection Method
TIm for Diagnosis | Tlm Path for
Diagnosis | Time to Detect
(Local) | Time to Detect (System) | |--------------|---------------------------------|----------|---|--|-------|---|--|---|---|---|------------|------------|---|--|---------------------------|---------------------------|-------------------------| | ME-1.1.1.1.d | Solar Array Flap
Actuator | | Launch locks fail to release | 1) Frangibolt fails to release completely (electrically redundant, so more concerned with a mechanical fault) 2) Separation interfaces fail to release completely (mechanical clearance issues/unexpected interferences) (probably adding a push-off spring to ensure deployment) | | Solar arrays are stuck stowed | No/limited power to s/c | Lost mission (insufficient
power/heat generated at 1
AU with only one solar
array) | N/A | 2 | Active | | Potentiometer telemetry, battery
fails to charge. Turn on redundant
ECU for 3rd vote. | Potentiometer
telemetry;
redundant ECU
telemetry
Battery state of
charge | ECU to REM | ? | ? | | ME-1.1.1.1.e | Solar Array Flap
Actuator | | Launch lock premature release
(two tie downs) | 1) Temperature exceeds ~65C
and frangibolt releases
2) inadvertent command (no
power to safety bus until after
s/c separation from 3rd stage)
3) Incorrect notch on frangibolt
(controlled by 100% inspection
of notch by vendor, will add a
double-check to notch in I&T) | | Array will not deploy, but will "chatter" | May damage cells and/or cooling system | With sufficient losses in
Solar Arrays and cooling
system, would lose mission | N/A | 2 | None | No | N/A | None | None | N/A | N/A | | ME-1.1.1.2.a | Solar Array
Feather Actuator | | Fails to actuate when commander | 1) bad/bound
bearing/mechanical failure
2) stepper motor failure
3) loose/separated connector | | Solar array stuck in position | generates insufficient power generates too much power gl geathering makes it impossible for array to retract sufficiently for encounter | retain partial power for a
time; cooling system might | 3) excessive feathering prevents
array from retracting
sufficiently for encounter | 2 | Active | Yes | Potentiometer telemetry. Turn on redundant ECU for 3rd vote. | Potentiometer
telemetry;
redundant ECU
telemetry
Battery state of
charge | ECU to REM | ? | ? | | ME-1.1.1.2.b | Solar Array
Feather Actuator | | Incorrect actuation when commanded | incorrect potentiometer reading residual torque (should have sufficient margin) Motor coil or winding is open | | Solar array in incorrect position | generates insufficient power generates too much power feathering makes it impossible for array to retract sufficiently for encounter | retain partial power for a time; cooling system might | 3) excessive feathering prevents
array from retracting
sufficiently for encounter | 2 | Active | Yes | Power level, step count,
(potentiometer telemetry). Turn
on redundant ECU for 3rd vote. | Potentiometer
telemetry;
redundant ECU
telemetry
Battery state of
charge
How do we detect
power level? | ECU to REM | ? | ? | | ME-1.1.1.2.c | Solar Array
Feather Actuator | | Actuates when not commanded | Holding torque exceeded (need to have sufficient margin) | | Solar array in incorrect position | generates insufficient power generates too much power gal feathering makes it impossible for array to retract sufficiently for encounter | retain partial power for a time; cooling system might | 3) excessive feathering prevents
array from retracting
sufficiently for encounter | 2 | Active | Yes | Power level | Potentiometer
telemetry;
redundant ECU
telemetry
Battery state of
charge
How do we detect
power level? | ECU to REM | 7 | ? | | Inputs | Solar Array
Feather Actuator | | ECU commands ("commands"
really are pulses of power to the
motor) | | | Solar array in incorrect position | if SA needs to move out, generates insufficient power (different than required) if SA needs to move in, generates too much power (different than expected), potential overheating of wing (cells burned) | 1) eventually drain battery,
may be able to slew s/c to
retain partial power for a
time
2) lose mission | If in encounter, and SAs stuck
out too far | 2 | Active | Yes | Power level, step count,
(potentiometer telemetry). Turn
on redundant ECU for 3rd vote. | Battery state of
charge | ECU to REM | ? | ? | | ME-1.2.1.a | HGA Gimbal | | Fails to actuate when commander
(mechanical failure) | bad/bound bearing/mechanical failure Exceeded life limit of bearing stepper motor failure d) loose/separated connector | | HGA stuck in position | in some cases, may be able to
slew spacecraft to point HGA to
Earth. | Would have difficulty
meeting minimum mission
science return
requirements. Worst case,
loss of science. | If stuck at large enough angle,
could be an umbra violation
(~90-102deg is safe) | 2 - if data return is too low
3 - if science requirements
can still be met | Active | | Potentiometer telemetry, step
count | Autonomy could power up the other ECU to check redundant potentiometer telemetry against primary potentiometer telemetry and motor step count (3rd vote) | ECU to REM | ? | ? | | ME-1.2.1.b | HGA Gimbal | | Fails to actuate when commanded (electrical failure) | Short in redundant windings within actuator (two failures) | | HGA stuck in position | In some cases, may be able to
slew spacecraft to point HGA to
Earth. | | If stuck at large enough angle,
could be an umbra violation
(~90-102deg is safe) | 2 - if data return is too low
3 - if science requirements
can still be met | Active | Yes | Potentiometer telemetry, step
count | Potentiometer
telemetry ;
redundant ECU
telemetry | ECU to REM | ? | ? | | ME-1.2.1.g | HGA Gimbal | | Launch locks fail to release | Frangibolt fails to release completely (mechanical failure of frangibolt) Sparation interfaces fail to crelease completely (mechanical clearance issues/unexpected
interferences) | | HGA stuck stowed | Could slew s/c to use HGA. | Difficulty in meeting
mission science data return
requirements. | Would exceed "safe" angle | 2 | | Yes | Potentiometer telemetry | | | | | | ME-1.2.1.h | HGA Gimbal | | Launch locks premature release | 1) Temperature exceeds ~65C
and frangibolt releases
2) inadvertent command
3) Incorrect notch on frangibolt | | Dish may vibrate more than expected
(causing damage), gimbal may degrade | Reduced ability to return science data. | Potential loss of science if
dish damaged, eventual loss
of science with premature
failure of gimbal | When bearing dies, if stuck in position outside of "safe" | 2 | | No | | | | | | | ME-2.1.1.b | MAG Boom | | Deploys prematurely (detail to come) | launch lock released prematurely 2) Inadvertent command (safety-inhibited load - safety bus relay can't be uninhibited by SW) | | Boom would deploy | depending on orientation of fold, could hit s/c, shroud, damage an instrument, might block thruster or instrument FOV; could affect flight path or thermal environment | release of shroud. Loss of | No | 2 - if enough critical
components/ instruments
are damaged
3 - if only loss of MAG
sensor | | Yes | When instruments powered, might
see damage caused by premature
deployment | | | | | | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | t Response Level | Desired Local Response | Allocation of Local
Response | Time to fix locally | Response Time to Transmit Signal | Desired System
Response | Allocation of System
Response | Time to fix system | Time to
Transmit
Signal | Ground Response /
Contingency | System Side
Switch | Quick Look
Processor Switch | Safe Mode | Remediation | Helpful Autonomy
Rule | Revisit | Comments - KAF | |--------------|---------------------------------|----------|--|--------------------|--|---------------------------------|---------------------|----------------------------------|---|----------------------------------|--------------------|-------------------------------|----------------------------------|-----------------------|--------------------------------|-----------|--|--|---------|--| | ME-1.1.1.1.d | Solar Array Flap
Actuator | | Launch locks fail to release | Local | If potentiometer and step
count are mismatched,
turn on redundant ECU for
3rd vote; if third vote is
correct power off primary
ECU otherwise system
side switch??? | Autonomy | ? | ? | If problem persists,
umbra violation or
LBSOC | | ? | | None | | | | slew to Sun, oversized motor can bust through,
recommand frangibolt | | ir | Could be mitigated by design
if push springs were added -
Wellun to consider | | ME-1.1.1.1.e | Solar Array Flap
Actuator | | Launch lock premature release
(two tie downs) | None | N/A | N/A | N/A | | None | N/A | N/A | N/A | N/A | | | | | | | | | ME-1.1.1.2.a | Solar Array
Feather Actuator | | Fails to actuate when commander | d Local | If potentiometer and step
count are mismatched,
turn on redundant ECU for
3rd vote; If third vote is
correct power off primary
ECU otherwise system
side switch??? | Autonomy | 7 | ? | If problem persists,
umbra violation or
LBSOC | | ? | ? | None | | | | re-command, slew, coolant system change | During encounter:
if tip current
sensors detect
current,
autonomously
bring in solar
arrays; go to "safe"
feathering position | | | | ME-1.1.1.2.b | Solar Array
Feather Actuator | | incorrect actuation when commanded | Local | If potentiometer and step
count are mismatched,
turn on redundant ECU for
3rd vote; If third vote is
correct power off primary
ECU otherwise system
side switch??? | Autonomy | ? | ? | If problem persists,
umbra violation or
LBSOC | Autonomy | ? | ? | None | | | | re-command, slew, coolant system change, go back to "home position" then re-count/recalibrate | During encounter: If tip current sensors detect current, autonomously bring in solar arrays | | | | ME-1.1.1.2.c | Solar Array
Feather Actuator | | Actuates when not commanded | Local | if potentiometer and step
count are mismatched,
turn on redundant ECU for
3rd vote; if third vote is
correct power off primary
ECU otherwise system
side switch??? | Autonomy | ? | ? | If problem persists,
umbra violation or
LBSOC | Autonomy | ? | ? | None | | | | | During encounter:
if tip current
sensors detect
current,
autonomously
bring in solar
arrays | | | | Inputs | Solar Array
Feather Actuator | | ECU commands ("commands"
really are pulses of power to the
imotor) | Local | If potentiometer and step
count are mismatched,
turn on redundant ECU for
3rd vote; if third vote is
correct power off primary
ECU otherwise system
side switch??? | Autonomy | ? | ? | If problem persists,
umbra violation or
LBSOC | Autonomy | ? | ? | None | | | | | During encounter: if tip current sensors detect current, autonomously bring in solar arrays | | | | ME-1.2.1.a | HGA Gimbal | | Fails to actuate when commander
(mechanical failure) | d _{Local} | If potentiometer and step. count are mismatched, turn on redundant ECU for 3rd vote; if third vote is correct power off primary ECU otherwise system side switch??? | Autonomy | ? | ? | umbra violation | Autonomy | ? | ? | None | | | | re-command, slew | command to a
"safe" position | | | | ME-1.2.1.b | HGA Gimbal | | Fails to actuate when commander
(electrical failure) | d Local | If potentiometer and step
count are mismatched,
turn on redundant ECU for
3rd vote; If third vote is
correct power off primary
ECU otherwise system
side switch??? | Autonomy | ? | ? | umbra violation | Autonomy | ? | ? | None | | | | Each motor winding goes to a different ECU. | | | | | ME-1.2.1.g | HGA Gimbal | | Launch locks fail to release | | | | | | | | | | | | | | | | | | | ME-1.2.1.h | HGA Gimbal | | Launch locks premature release | | | | | | | | | | | | | | If HGA and fan beams are permanently off-pointed
(boresight no longer aligns), would be able to
compensate with more DSN time. | | | | | ME-2.1.1.b | MAG Boom | | Deploys prematurely (detail to come) | | | | | | | | | | | | | | | | х | | | | | | | | 1 | | Effect | | | | | | | Detection Method | | | | |---------------------|---|----------|--|---|-------|-----------------------------------|--|---|--|----------|----------------------------------|------------|--|---|---------------------------|---------------------------|-------------------------------| | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Possible Causes | Phase | Local | Next Higher | Mission | Umbra Violation | Severity | Type of FM | Observable | How Observed? | Tlm for Diagnosis | Tlm Path for
Diagnosis | Time to Detect
(Local) | Time to
Detect
(System) | | ME-2.1.1.c | MAG Boom | | Partial deployment | One or more hinges jams or locks One potential design has one launch lock, one potential design has two launch locks. Revisit after decision has been made. | | Boom would only partially deploy | Loss of MAG boom | If outside umbra, will outgas, melt, bring thermal load into s/c. Paticulate matter, thermal load, outgassing, etc., are potentially mission-ending. Loss of the MAG sensor does not equal loss of science. | Yes | 2 | | | GNC might be able to tell from
mass properties, torque from sola
pressure, etc. Science team may
see thermal effects. | | | | | | Inputs | MAG Boom | | Electrical fault | | | electrical failure should prevent | If entire command fails, ground
can re-send. A-side PDU
drivers may have failured, so
an avionics (PDU) side switch
could allow command to be re-
sent. | None | N/A | 2 | | | | | | | | | Propulsion PR-1.1.a | Service Valve 1
(SV1) (Pressurant) | | External leak (three seals would have to fail for this to occur) | 1) Physical damage | | Leaking helium | Over time will decrease system
pressure, may torque s/c
(depends on size of leak) | | Depends on amount of torque and timing | 2 | Passive - design
with 3 seals | Yes | Pressure decrease, wheels might
see an unexpected torque (long-
term trending) | Check presssure
from P3 against
previous reading? | | N/A | N/A | | PR-1.2.a | Service Valve
2
(SV2) (Liquid) | | External leak (three seals would
have to fail for this to occur) | 1) Physical damage | | Leaking hydrazine | Over time will decrease
amount of fuel, could damage
if it impacted the s/c, fuel loss | enough torque is applied | Depends on amount of torque
and timing
N/A until s/c runs out of usable | 2 | Passive - design
with 3 seals | Yes | Pressure decrease, wheels might
see an unexpected torque (long-
term trending) | Check presssure
from P3 against
previous reading? | | N/A | N/A | | PR-2.a
PR-2.b | Tank
Tank | | Internal leak (liquid into gas)
External leak (pressurant) | in diaphragm) 1) Physical damage | | out of the tank | Less fuel overall Over time will decrease system pressure, may torque s/c (depends on size of leak) | of usable fuel
Mission-ending with
complete loss of pressurant
or if enough torque is | fuel Depends on amount of torque and timing | 2 | None
None | No
Yes | You'd run out of fuel early Pressure decrease, wheels might see an unexpected torque (long-
term trending) | No Check presssure from P3 against previous reading? | N/A | N/A
N/A | N/A
N/A | | PR-2.c | Tank | | External leak (fuel) | 1) Physical damage | | Leaking hydrazine | Over time will decrease
amount of fuel, could damage
if it impacted the s/c, fuel loss | applied
Mission-ending with
complete loss of fuel or if
enough torque is applied | Depends on amount of torque and timing | 2 | None | Yes | Pressure decrease, wheels might
see an unexpected torque (long-
term trending) | Check presssure
from P3 against
previous reading? | | N/A | N/A | | PR-3.1.c | Pressure
Transducer A | | External leakage (two seals would
have to leak in order for this to
occur) | 1) Physical damage | | Leaking hydrazine | Over time will decrease
amount of fuel, could damage
if it impacted the s/c, fuel loss | | Depends on amount of torque and timing | 2 | None | Yes | Pressure decrease, wheels might
see an unexpected torque (long-
term trending) | Check presssure
from P3 against
previous reading? | N/A | N/A | N/A | | PR-4.a | Filter 1 (F1) | | Clogged or blocked | 1) FOD in line
2) Contaminated propellant | | No fuel to thrusters | Blocked prevents all thruster
use | Mission ending | Yes if it happened at the wrong
time, but mission is done at that
point anyway | 2 | None | Yes | Thrusters stopped working | ? | N/A | N/A | N/A | | PR-5.a | Orifice 1 (O1) | | Heavy contamination blockage | 1) FOD in line
2) Contaminated propellant | | No fuel to thrusters | Blocked prevents all thruster
use | Mission ending | Yes if it happened at the wrong
time, but mission is done at that
point anyway | 2 | None | Yes | Thrusters stopped working | ? | N/A | N/A | N/A | | PR-7.1.b | Latch Valve A | | External leakage (multiple seals
would have to fail in order for this
to happen) | 1) Physical damage | | Leaking hydrazine | Over time will decrease
amount of fuel, could damage
if it impacted the s/c, fuel loss | Mission-ending with
complete loss of fuel or if
enough torque is applied | Depends on amount of torque and timing | 2 | Passive -
redundancy ? | Yes | Pressure decrease, wheels might
see an unexpected torque (long-
term trending) | Check presssure
from P3 against
previous reading? | N/A | N/A | N/A | | PR-8.01.3.b | Valve Assembly
(NC Solenoid
Valves) | | One or both failed closed | 1) electrical failure
2) FOD
3) Physical issue | | | If s/c could switch to another set of thrusters, s/c might be ok, depending on speed of switch-over and momentum issues are surmountable | Potentially mission-ending
(depending on timing).
Momentum dumps would
be ok with a 2nd set of
thrusters available, but
TCMs would probably need
to be aborted. | Yes | 2 | None | Maybe | Post-burn attitude isn't as
expected, an electrical issue might
be detectable through
current/voltage sensing | Attitude tlm -
expected vs. actual | | | | | Input | Valve Assembly
(NC Solenoid
Valves) | | Bus voltage | | | | If s/c could switch to another
set of thrusters, s/c might be
ok, depending on speed of
switch-over and momentum
issues are surmountable | Potentially mission-ending
(depending on timing).
Momentum dumps would
be ok with a 2nd set of
thrusters available, but
TCMs would probably need
to be aborted. | Yes | 2 | None | Maybe | Post-burn attitude isn't as
expected, an electrical issue might
be detectable through
current/voltage sensing | Attitude tlm -
expected vs. actual | | | | | Thermal TH-1.1.a | Spacecraft MLI | | Degraded/damaged | 1) Dust
2) Optical properties | | | Depends on amount of
damage, but would
increase/decrease local
temperatures. | Depends on area affected
by degradation/damage. | Depends on area affected by degradation/damage - critical system damaged by high temperature could lead to an umbra violation. | 2 | None | Yes | Component temperature change | | | N/A | | | TH-1.2.a | High-temperature
MLI | | Degraded/damaged | 1) Dust
2) Optical properties | | MILI dograded (damaged | Depends on amount of
damage, but would
increase/decrease local
temperatures. | Depends on area affected
by degradation/damage. | High-temp MLI is not covering equipment that could lead to an umbra violation. | 2 | None | Yes | Component temperature change | | | N/A | | | | | | | | | | | Response | | | | | | | Quick Look | | | | | | |-------------------|---|----------|--|----------------|------------------------|---------------------------------|---------------------|--|----------------------------|----------------------------------|--------------------|---------------------|----------------------------------|-----------------------|------------------|-----------|---|--------------------------|---------|----------------| | FMEA ID | Name | Function | Failure Mode / Limit / Constraint | Response Level | Desired Local Response | Allocation of Local
Response | Time to fix locally | Time to Transmit | Desired System
Response | Allocation of System
Response | Time to fix system | Time to
Transmit | Ground Response /
Contingency | System Side
Switch | Processor Switch | Safe Mode | Remediation | Helpful Autonomy
Rule | Revisit | Comments - KAF | | | | | | | | response | | Signal | kespolise | response | system | Signal | Contingency | Switch | | | | Rule | | | | ME-2.1.1.c | MAG Boom | | Partial deployment | | | | | | | | | | | | | | | | | | | Inputs Propulsion | MAG Boom | | Electrical fault | | | | | | | | | | | | | | | | | | | PR-1.1.a | Service Valve 1
(SV1) (Pressurant) | | External leak (three seals would have to fail for this to occur) | None | | | P3 and P4 are not powered at the same time, need to understand how to determine pressure decrease | Nope | | | | PR-1.2.a | Service Valve 2
(SV2) (Liquid) | | External leak (three seals would have to fail for this to occur) | None | | | | Nope | | | | PR-2.a | Tank | | Internal leak (liquid into gas) | None | | | | Nope | | | | PR-2.b | Tank | | External leak (pressurant) | None | | | | Nope | | | | PR-2.c | Tank | | External leak (fuel) | None | | | | Nope | | | | PR-3.1.c | Pressure
Transducer A | | External leakage (two seals would
have to leak in order for this to
occur) | | None | | | | Nope | | | | PR-4.a | Filter 1 (F1) | | Clogged or blocked | None | | | | None | | | | PR-5.a | Orifice 1 (O1) | | Heavy contamination blockage | None | | | | None | | | | PR-7.1.b | Latch Valve A | | External leakage (multiple seals
would have to fail in order for this
to happen) | None | | | | Nope | | | | PR-8.01.3.b | Valve Assembly
(NC Solenoid
Valves) | | One or both failed closed | | | | | | | | | | | | | | | Cycle power to valves | | | | | Valve Assembly
(NC Solenoid
Valves) | | Bus voltage | | | | | | | | | | | | | | | Cycle power to
valves | | | | Thermal | Spacecraft MLI | | Degraded/damaged | | | | N/A | Depends on severity of
degradation/damage
(time required to see
temperature change in
component) | | | | | | | | | | | | | | TH-1.2.a | High-temperature
MLI | | Degraded/damaged | | | | N/A | Depends on severity of
degradation/damage
(time required to see
temperature change in
component) | | | | | | | | | | | | |