Solar Probe Plus

A NASA Mission to Touch the Sun

Integrated Science Investigation of the Sun Energetic Particles

EPI-Lo Peer Review Event Board

Reid Gurnee

Suggested Outline

- Introduction & block diagram
- Driving requirements
- Design changes since PDR and rationale
- Detailed design description <this is the biggest section, of course>
- Resource requirements
- Design and analysis margins (performance, timing, derating, etc.)
- Peer review results
- EM testing and analysis
- Remaining EM work
- Status of special parts (e.g. ASICs)
- Plans for verification of design
- Development milestones and procurement status
- Known changes from EM to FM
- Drawing Status
- Summary

SPP Project Guidance for CDR (1/2)

- List major subsystem performance requirements
 - Include their parent requirement
 - May be best presented in a table as a compliance matrix
 - Describe any changes in requirements or implementation since I-PDR
- Block diagram(s)
- Subsystem design description and top level specifications
 - Electrical and thermal subsystem design
 - Software architecture and design (if applicable)
 - Mechanical design and analyses
 - Design and performance margins
 - Discuss any changes since I-PDR
- Major mechanical and electrical interface requirements with other subsystems/components and how these are captured (mechanical ICD, electrical ICD, other?)
- Resource requirements
 - Table of mass and power for the components
 - Commanding and housekeeping telemetry requirements
 - Power services required
 - Other
- Breadboard/Engineering Model Testing
 - Status of testing
 - Approach to subsystem testing
 - Summarize tests
 - Results
- Describe ground handling
- Results of special parts testing, as applicable
- Results of packaging studies, show shielding plans

SPP Project Guidance for CDR (2/2)

- Subsystem Verification
 - Plans for subsystem performance verification
 - Changes to plans for system verification since I-PDR
 - Status of any interface verification
- Subsystem Peer Reviews
 - Summary description of any subsystem peer reviews
 - Status of the action items (tabular format ok with list of actions items in backup)
- Discuss schedule for development/procurement
- Describe any changes planned from the EM to the FM
- Subsystem risks with mitigation plan and trigger dates per risk
- Describe any open work relative to design work yet incomplete
 - Include discussion of major component procurements
 - Include any major subcontracted fabrication activities
- Describe any special fabrication or test facility needs
- Drawing release status
- Parts/Materials PMPCB approval status
 - Include derating results
- Waivers sought against requirements
- Supporting the presentation (available hard copy in the room and electronically)
 - As-designed parts list with any parts requiring special screening identified
 - As-designed materials & processes list
 - Drawings (schematics, board artwork, assembly drawings)

Block Diagram

Event Board Driving Requirements

- Analog Performance
 - Timing resolution < 400 ps FWHM</p>
 - Energy resolution < 15 KeV FWHM</p>
- CFD dynamic range 35db
- Energy system dynamic range of 50 keV to 200+ MeV
 - Energies from 50 keV to 1.5 MeV use linear mode (ADC)
 - Energies from 1.5 MeV to 20 MeV use pulse width mode
 - Energies from 20 MeV to 50 MeV use absorber on particle detector
 - Energies >50MeV use extended energy range mode
- Temperature
 - Flight Survival: -45°C to +??°C
 - Flight Operational: -35°C to +25°C (35C with margin?)
 - Flight Board Level Testing (operational): -45C to +65C
- Radiation
 - TID: 25 kRad (based on FASTRad analysis)
 - SEL: 80 MeV-cm^2/mg

Design Changes Since PDR

- No board artwork changes
- Defined tailor values for all voltage reference control loop components
- At PDR, board parts placement and schematic were complete. That board has now been fabricated and tested.

PDR parts placement of EM board

EM board

Event Board Functionality (1/3)

- Instrument Processor
 - Embedded processor in RTAX2000
 - Execute flight code, accumulating and formatting telemetry, commanding, and alarm detection and action
 - Spacecraft Communication
 - Boot code in PROM, classification tables and application code in MRAM
 - Accumulate data into classification tables
- Event Processing
 - Communicate and handle timing with ADCs, TOF-Ds
 - Pre-process and accumulate event data
 - Accumulate rates

Event Board Functionality (2/3)

- Time-of-flight based on APL TOF-D and CFD-D ASICs
 - New ASICs developed for future programs
 - Improved size and performance from previous ASICs
 - 12 CFD-Ds and 4 TOF-Ds for timing system
- Solid-State Detector Energy Measurements
 - 8 Peak detect ASICs and A/D converters for energy system
 - Peak detect chips are APL ASICs flown on previous missions (PEPSSI, Jedi, RBSPICE)
- MCP pulse height comparators
- Pulsers
 - Independent pulsers for start and stop signals on each anode board
 - 2 pulsers for Energy system

Event Board Functionality (3/3)

- Control four opto-coupler generated HVPS outputs and bulk supply
- Provide high speed safing of HVPS in response to over current
- Read housekeeping telemetry
- Provide 400khz HVPS sync clock
- Provide programmable bulk clock
- Provide 50khz bias supply clock

Event Board Interfaces

- Solid-State Detector Interface
 - 8 ndsub 9P connectors to energy boards
 - ~10 mV to 1 V unipolar-shaped pulses, control, pulser, and power
- Anode Board Interface
 - 12 Time-of-Flight Coax connectors
 - ~10 mV to over 1 V fast-shaped pulses
 - 4 power and 8 pulser Coax connectors
- Test Port Interface
 - MDM 15S connector
 - 2 test inputs (to aid in end-to-end timing tests)
 - 5 test outputs
- Spacecraft Data Interface
 - MDM 15P connector
 - Redundant LVDS interface (2 drivers, 2 receivers)
- Power Board Connector
 - I ndsub 51P connector for power and communication

- Sensitive analog is separated from digital
 - FPGA, S/C communication, SRAM, PROM, MRAM, and oscillator on top of board
 - TOF electronics on left and right of board
 - Peak detect and ADC electronics on bottom of board
 - All critical routing isolated by ground planes from digital routing
- 14 layers, 2 ground planes, 2 power planes (split), 10 routing layers
- Actel located with SRAM directly adjacent
 - Reduce track-length to SRAM to reduce noise
 - Actel on Primary side, to allow the Development Tool access to the program pins

LAYER DETAIL CHART				
	FINISHED CU WT (OZ.)			
L1 - PRIMARY SIDE	172 MIN			
L2 - GND	1/2 NOM			
L3 - SIGNAL	1/2 NOM			
L4 - SIGANL	1/2 NOM			
L5 - +3.3V POWER	1/2 NOM			
L6 - SIGNAL	1/2 NOM			
L7 - SIGNAL	172 NOM			
L8 - SIGNAL	172 NOM			
L9 - SIGNAL	1/2 NOM			
L10 - +1.5V / +5V POWER	1/2 NOM			
L11 - SIGNAL	1/2 NOM			
L12 - SIGNAL	1/2 NOM			
L13 - GND	1/2 NOM			
L14 - SECONDARY SIDE	172 MIN			

EM Event Board in Frame EM Event Board Secondary Side

Resources

- Mass
 - 221g (measured) + 20g (coating) + 8g (Flight FPGA) = 250g
- Power (measured and FM predict)
 - EM Measurement (standby)
 - 1.5V 60mA (90mW)
 - 3.3V 178 mA (587mW)
 - 5V 39mA (195mW)
 - 15V 0mA (0mW)
 - Total: 872mW
 - Flight Predict (operational)
 - 1.5V 80mA (120mW)
 - 3.3V 169mA (557mW)
 - 5V 46mA (230mW)
 - 15V 3mA (45mW)
 - Total: 983mW
 - EM measurements are on par with flight predict power
 - Differences in FPGA, test port connected, event rates, pulsers active

De-rating analysis

- De-rating analysis
 - All components meet de-rating analysis

ISIS

Thermal Analysis Overview

- Thermal Analysis Process
 - Instrument External Temperatures
 - Controlled with blankets, radiators and heaters
 - Determines internal PWA Board-to-slice interface temperatures
 - Interface temperatures used for board-level model boundary conditions
 - PWA Modeling
 - ECAD files (emn/emp) with component layouts are imported from Mentor Graphics
 - Software converts ECAD data to finite difference elements: resistors, interface, brick, plate, etc.
 - Model results include EEE part temperatures (board, junction & case) for all components
- Analysis Result Summary
 - Instrument chassis controlled to 25°C (max operating temperature),
 - PWA analyses assume 35°C frame temps, added 10°C margin to account for modeling uncertainties
 - Power dissipation provided by board leads
 - Evaluate thermal design and part margin for the EPI-Lo PWAs
 - Event PWA → all parts operate with margin
 - Power PWA

 all parts operate with margin
 - Anode PWA → all parts operate with margin

Event PWA Thermal Analysis: Model Overview

Solar Probe Plus A NASA Mission to Touch the Sun

- 7464-4000 Event PWA
 - Detailed PWA model created using ECAD files
 - EEE parts mapped to thermal representations
 - PWB: modeled as 0.098" stackup with 4 (½ oz.) Cu planes
- Instrument level temps applied at PWA-to-frame mounting hardware
- EEE part maximum power dissipation in flight (1.532 W)
 - 1.432 W modeled on components
 - Component U54 has 560 mW, 3 sec. transient condition; steady state value of 36 mW used for analysis
 - Total of 100 mW spread on secondary side for passives

Thermal Analysis Results

- Part temps shown in contours
- Maximum junction temperature on U56 (UT54LVDS031) ~ 58.9°C
- Maximum board temperature is 48.7°C
- Dissipation based on worse case datasheet numbers (1.53W). 0.983W predicted.

ISIS

Event PWA Modeling: Power Dissipation

18

Ref	Part Number	PWR (mW)
U12	10946-CFD-D-03	16
U13	10946-CFD-D-03	16
U14	10946-CFD-D-03	16
U18	10946-CFD-D-03	16
U19	10946-CFD-D-03	16
U20	10946-CFD-D-03	16
U26	10946-CFD-D-03	16
U27	10946-CFD-D-03	16
U32	10946-CFD-D-03	16
U60	10946-CFD-D-03	16
U61	10946-CFD-D-03	16
U8	10946-CFD-D-03	16
U55	ADCMP600BKSZ	12
U58	ADCMP600BKSZ	12
U59	ADCMP600BKSZ	12
U62	ADCMP600BKSZ	12
U63	ADCMP600BKSZ	12
U66	ADCMP600BKSZ	12
U67	ADCMP600BKSZ	12
U70	ADCMP600BKSZ	12
U34	7425-4100-09	11.5

Ref	Part Number	PWR
		(mW)
U35	7425-4100-09	11.5
U36	7425-4100-09	11.5
U37	7425-4100-09	11.5
U38	7425-4100-09	11.5
U39	7425-4100-09	11.5
U40	7425-4100-09	11.5
U41	7425-4100-09	11.5
U43	ADC128S102QML	9
U44	ADC128S102QML	9
U45	ADC128S102QML	9
U47	ADC128S102QML	9
U48	ADC128S102QML	9
U49	ADC128S102QML	9
U50	ADC128S102QML	9
U51	ADC128S102QML	9
U68	10946-QDAC2B-03	5
U69	10946-QDAC2B-03	5
U7	10946-QDAC2B-03	5
U71	10946-QDAC2B-03	5
U72	10946-QDAC2B-03	5
U74	10946-QDAC2B-03	5

ADCMP600BKSZ

U29

Event PWA Modeling: Model Results (Cont'd)

Ref Des	Library Name	Pdiss (W)	Tjunc . (°C)	Tcase (°C)	Tboard (°C)	Ref Des	Library Name	Pdiss (W)	Tjunc. (°C)	Tcase (°C)	Tboard (°C)
U8	10946-CFD-D-03	0.016	45.7	44.9	44.9	U41	7425-4100-09	0.012	43.4	43.4	42.7
U55	ADCMP600_KS-5	0.012	51.1	48.4	45.2	U43	ADC128S102QML	0.009	43.1	43.0	42.4
U58	ADCMP600_KS-5	0.012	52.6	49.9	46.2	U44	ADC128S102QML	0.009	43.8	43.7	42.5
U59	ADCMP600_KS-5	0.012	51.0	48.3	45.5	U45	ADC128S102QML	0.009	43.9	43.8	42.5
U62	ADCMP600_KS-5	0.012	52.8	50.1	46.7	U47	ADC128S102QML	0.009	44.0	43.9	42.8
U63	ADCMP600_KS-5	0.012	51.5	48.8	45.7	U48	ADC128S102QML	0.009	44.1	44.0	42.7
U66	ADCMP600_KS-5	0.012	52.7	50.0	46.3	U49	ADC128S102QML	0.009	43.8	43.7	42.6
U67	ADCMP600_KS-5	0.012	51.4	48.7	44.9	U50	ADC128S102QML	0.009	43.4	43.3	42.3
U70	ADCMP600_KS-5	0.012	51.6	48.9	45.4	U51	ADC128S102QML	0.009	43.3	43.2	42.1
U34	7425-4100-09	0.012	43.7	43.7	43.0	U68	10946-QDAC2B-03	0.005	44.8	44.7	43.3
U35	7425-4100-09	0.012	43.6	43.6	42.7	U69	10946-QDAC2B-03	0.005	45.5	45.4	43.9
U36	7425-4100-09	0.012	43.9	43.9	43.2	U7	10946-QDAC2B-03	0.005	45.1	45.0	43.6
U37	7425-4100-09	0.012	44.1	44.1	43.5	U71	10946-QDAC2B-03	0.005	43.6	43.5	42.0
U38	7425-4100-09	0.012	44.1	44.1	43.5	U72	10946-QDAC2B-03	0.005	44.0	43.9	42.5
U39	7425-4100-09	0.012	43.8	43.8	43.1	U74	10946-QDAC2B-03	0.005	43.9	43.8	42.2
U40	7425-4100-09	0.012	43.4	43.4	42.5						

Vibration Analysis

- Random Vibration Results
- Out-of-plane displacement (in) based on out-of-plane input
- EDTRD: 16.4 grms (max 1.25 G²/Hz, from 60-200 Hz)
- Displacement over CCGA footprint: 0.004", max allowable = 0.006"

- Quasi-static results based on random vibration Grms response
- Input vector (X, Y, Z): 25G, 160G, 25G
- Displacement over CCGA footprint: 0.006", max allowable = 0.006"

FASTRad Analysis

- Updated analysis started by Dave Roth...
- PDR results showed no parts > 25krads (includes effective "RDM=2")

SIS

Peer review results

- Event and Power Board Initial Peer Review
 - August 21, 2013
 - Summarized with action items in memo SRI-13-029
 - 11 action items generated / 11 action items closed (6 for event board)
- Wait for peer reviews in November...

EM testing and analysis - CFD

ISIS CDR - 14 - EPI-Lo Event Board

End-to-End performance: Anode Positions with sensor data

End-to-End performance: Anode Positions with sensor data

Source Test, ST1-ST2, Anode Positions

End-to-End performance: Alpha. He3 (simulated) track

He4 Performance

Continue testing board with sensor

Status of special parts (e.g. ASICs)

- EM board has TOF ASICs from flight lot testing installed
- CFD ASIC
 - EM board has CFD ASICs from flight lot testing installed
- Both CFD and TOF ASICs have completed flight qualification testing
- Anything else or any relevant details from testing?

Plans for verification of design

- Initial build up by automated component placement and reflow will include all parts except Peak Detect SIPs, TOF chips, and ADCs
- Test procedures
- Temperature testing
- Flight software regression testing
- FPGA vector testing

SIS

Development milestones and procurement status

- EM complete and tested
- EM drawings signed off
- FM drawings complete but not signed off
- Need status on parts

A NASA Mission to To

Known changes from EM to FM

- No artwork changes?
- FM board will be fabricated from same design files as EM board?
- A few parts (delay lines) are jumpered across on EM and FM boards
- Some tailor components defined
 - CFD bias resistors
 - Linear regulator stability components

Drawing Status

- EM drawings released
- FM drawings complete but not released

ISIS

- The Event EM board is fully tested
- FM board fabrication will begin after CDR