EPI-HI Instrument Mechanical Peer Review

03 October 2013 Sandy Shuman

*Access panels in Instrument walls for connector access

*S/C Connections on Instrument wall.
*Instrument isolated from S/C Brkt.
*Instrument has 5 mounting feet.
*Telescopes electrically isolated from Electronics Box.

*Frames tied together with standard 300 series stainless steel hardware.
*Frames constructed of 6061 aluminum.
*PCB's constructed of multi-layer fiberglass reinforced polyimide.
*Internal shielding constructed from 6061 aluminum.

DPU Board (mounted in one side of frame) *Flex connection to Telescope Boards *Flex connection to LVPS *S/C connectors (PCB mount) *PCB's mounted to machined in posts in chassis

Bias Supply Board (mounted in one side of frame) *Flex connection to 3 Detector Boards *Flex connection DPU Board *R/F shielding

* PCB's mounted to machined in posts in chassis

LET2 Telescope Electronics Assembly

*Receives flex connection from Bias Board
*Receives flex connection from DPU Board
*Receives 2 flex connections from Telescope
*Housing provides feet for Instrument to bracket mounting.

HET1 & LET1 Electronics Assembly

- Each board receives:
 - *Flex connection from Bias Board
 - *Flex connection from DPU Board
 - *2 Flex connections from Telescope*PCB's mounted to machined in posts
 - in chassis

- *Receives flex connection from DPU Board
- * S/C connectors (PCB mount)
- *Individually shielded primary/secondary circuits top and bottom.
- *Housing is tapered to avoid HET Telescope FOV
- *Housing provides feet for Instrument to bracket mounting.
- *PCB's mounted to machined in posts in chassis

*LVPS Board provided by APL *Chassis and shields designed/provided by instrument team.

Typical Board stackup (old board size)

Instrument Properties

HET Telescope Assembly

- *Double Foil for Micro-Meteorite/Light protection
- *Double Ended Field of View
- *Silicon Wafer Detector Stack
- *Flex-Rigid Detector Mounts

LET Telescope Assembly

*Triple Foil for Micro-Meteorite/Light protection
*LET1 Double Ended Field of View
*LET2 Single Ended Field of View
*Silicon Wafer Detector Stack
*Flex-Rigid Detector Mounts

Typical Detector in Flex-rigid PCB Mount
*Silicon Wafer attached to Polyimide shelf
*Micro-strip connector output
* Alignment achieved with alignment pins and concentric shelves on mount.

Current Issues: Failed interconnect strips:

- Resolution: *Added stiffener (shown above) to rigidize the area across the transition of pad/trace.
 - *Redesign of cover layer to cover transition point to reduce gold embrittlement.

- *Mount design allows stacking of detectors face to face, face to back and back to back while maintaining same spacing.
 *Detector spacing= 0.5MM
- *Detector Voltage ~200V
- *Mounts provide adequate spacing for wirebond wire clearance

Telescope/Bracket Mounting and Interconnect:

- *Heritage design
- *Uses alignment pins to stack detectors in telescope body
- *Mounting bracket designed into telescope body.
- *Output signal cable will be completely enclosed in assembly providing proper shielding.

Pictures shown are of STEREO\HET Telescope

EPI-Hi resources: Mass [g]	4/27/11	6/1/12	2/12/13	4/5/13	8/14/13	
<u>Component</u>	Baseline	Past	Past	Intermed.	Present	Uncertainty
LET1 det. & housing	225	225	225	225	225	20%
LET1 electronics	257	238	221	240	258	20%
LET1 subtotal:	482	463	446	465	483	20%
LET2 det. & housing	145	145	145	145	145	20%
LET2 electronics	235	209	190	214	233	20%
LET2 subtotal:	380	354	335	359	378	20%
HET det. & housing	120	120	120	120	120	20%
HET electronics	235	238	221	231	250	20%
HET subtotal:	355	358	341	351	370	20%
Elec. box & hardware	1091	1000	1050	1100	1335	20%
DPU board	279	247	198	197	197	20%
Bias Supply	228	228	228	286	354	20%
LVPS	292	292	260	260	260	20%
Central elec. subtotal:	1890	1767	1736	1843	2146	20%
EPI-Hi subtotal:	3107	2942	2859	3019	3377	20%
EPI-Hi bracket	0	0	0	0	0	
Thermal hardware	0	0	50	50	50	20%
Thermal blankets	34	34	100	100	100	20%
EPI-Hi total:	 3141	2976	3009	3169	3527	20%

Resource history: Mass [g]	4/27/11	6/1/12	2/12/13	4/5/13	8/14/13	
<u>Component</u>	Baseline	Past	Past	Intermed.	Present	Uncertainty
LET1 det. & housing	225	225	225	225	225	20%
Proposal MEL - Rounded up						
2/23/10 MEW memo	225	225	225	225	225	С
LET1 electronics	257	238	221	240	258	20%
6/18/13 BK update - the requested increase in LET1 b	ooard area has been approved by the Project	:				
5/1/13 BK update - requested 20% increase in LET1 b	ooard area for risk reduction (adding 9cm x 4	1cm extension; 0.5	1 g/cm2)		18	С
4/5/13 BK update - board area 85% populated; comp,	staking, conf coat; 0.95 g/cm2			147	147	С
4/5/13 BK update - LET1 blank board 13.5cm x 13.5c	m; 0.51 g/cm2			93	93	С
2/13/13 BK update - board area 80% populated; comp	o, staking, conf coat; 0.95 g/cm2					С
2/12/13 BK update - LET1 blank board 15cm x 13.5cm	m; 0.51 g/cm2					С
2/7/13 BK update - board area 90% populated; comp,	staking, conf coat; 0.95 g/cm2		139			С
2/7/13 BK update - LET1 blank board 12cm x 13.5cm;	; 0.51 g/cm2		83			С
5/28/12 BK update w/ HKchip; board area 70% popula	ated; comp, staking, conf coat; 0.95 g/cm2	135				С
LET1 has 3 PHASIC hybrids as before						С
5/28/12 BK update - LET1 blank board 15cm x 15cm	w/ corner cutout 9cm & 5cm; 0.51 g/cm2	103				С
4/14/11 MEW memo	257					С
2/23/10 MEW memo						С
LET1 subtotal:	482	463	446	465	483	20%
LET2 det. & housing	145	145	145	145	145	20%
Proposal MEL - Rounded up						
2/23/10 MEW memo	145	145	145	145	145	С
LET2 electronics	235	209	190	214	233	20%
6/18/13 BK update - the requested increase in LET2 b	poard area has been approved by the Project	:				
5/1/13 BK update - requested 20% increase in LET2 b	ooard area for risk reduction (adding 9cm x 4	cm extension: 0.5	1 a/cm2)		18	С
4/5/13 BK update - board area 70% populated; comp.	staking, conf coat; 0.95 g/cm2	,	0 ,	121	121	С
4/5/13 BK update - LET2 blank board 13.5cm x 13.5c	m; 0.51 g/cm2			93	93	С
2/13/13 BK update - board area 60% populated; comp	o, staking, conf coat; 0.95 g/cm2					С
2/12/13 BK update - LET2 blank board 15cm x 13.5cr	n; 0.51 g/cm2					С
2/7/13 BK update - board area 70% populated; comp,	staking, conf coat; 0.95 g/cm2		108			С
2/7/13 BK update - LET2 blank board 12cm x 13.5cm	; 0.51 g/cm2		83			С
5/28/12 BK update w/ HKchip; board area 55% popula	ated; comp, staking, conf coat; 0.95 g/cm2	106				С
LET2 has 2 PHASIC hybrids as before						С
5/28/12 BK update - LET2 blank board 15cm x 15cm v	w/ corner cutout 9cm & 5cm; 0.51 g/cm2	103				С
4/14/11 MEW memo	235					С
2/23/10 MEW memo						С
 LET2 subtotal:	380	354		359	378	20%

HET det. & housing	120	120	120	120	120	20%			
2/23/10 MEW memo HET electronics	120 235	120 238	120 221	120 231	120 250	с 20%			
6/18/13 BK update - the requested increase in HET board area has	been approved by the Project								
5/1/13 BK update - requested 20% increase in HET board area for r	isk reduction (adding 9cm x 4c	m extension; 0.51 g	/cm2)		18	С			
4/5/13 BK update - board area 80% populated; comp, staking, conf	coat; 0.95 g/cm2			139	139	С			
4/5/13 BK update - HET blank board 13.5cm x 13.5cm; 0.51 g/cm2	4/5/13 BK update - HET blank board 13.5cm x 13.5cm; 0.51 g/cm2 93								
2/13/13 BK update - board area 80% populated; comp, staking, cor	nf coat; 0.95 g/cm2					С			
2/12/13 BK update - HET blank board 15cm x 13.5cm; 0.51 g/cm2	, 3					С			
2/7/13 BK update - board area 90% populated; comp. staking, conf			С						
2/7/13 BK update - HET blank board 12cm x 13.5cm: 0.51 g/cm2			С						
5/28/12 BK update w/ HKchip: board area 70% populated: comp. st	aking, conf coat: 0.95 g/cm2	135				С			
5/28/12 HET now has 3 PHASIC hybrids						C			
5/28/12 BK update - HET blank board 15cm x 15cm w/ corner cuto	ut 9cm & 5cm: 0.51 g/cm2	103				C			
4/14/11 MEW memo (HET has 2 PHASIC hybrids)	235					C			
2/23/10 MEW memo (HET has 2 PHASICs)						C			
HET subtotal:	355	358	341	351	370	20%			
Elec. box & hardware	1091	1000	1050	1100	1335	20%			
6/18/13 BK update - the requested increases in E-box size and teles	scope bracket mass have been	approved by the Pro	ject						
5/1/13 BK update - requested 100% increase in telescope bracket r	nass for risk reduction		-		80	С			
5/1/13 BK update - requested 20% increase in board area for risk re	eduction (adding 9cm x 4cm ex	tension) requires mo	ore hardware/spacers		30	С			
5/1/13 BK update - requested 20% increase in board area for risk re	eduction (adding 9cm x 4cm ex	tension) requires bic	iger box		125	С			
4/5/13 BK update - Elec box 14cm x 14cm x 15cm	ί σ	<i>,</i> , , , , , , , , , , , , , , , , , ,		800	800	С			
2/11/13 Sandy update - Hardware, spacers, connections			220	220	220	С			
2/11/13 Sandy update - Telescope brackets			80	80	80	С			
2/11/13 Sandy update - Elec box 13cm x 14cm x 15cm			750			С			
6/1/11 Radiation shielding not needed since PHASIC will be rad-hard		0				C			
4/14/11 MEW memo - Hardware	177	177				C			
4/14/11 MEW memo - Radiation shielding	91					C			
4/14/11 MEW memo - Telescope brackets	58	58				C			
4/14/11 MEW memo - Elec box 16cm x 16cm x 10 4cm	765	765				C			
Proposal & DPU/LVPS increments - Hardware	100	100				C			
Proposal & DPU/LVPS increments - Flec box						C			
2/23/10 MEW memo - Hardware						C C			
2/23/10 MEW memo - Elec box						C C			
2/23/10 MEW memo - Extra Board Area						C C			
DPU board	279	247	198	197	197	20%			
7/8/13 Sandy update - DPU board height reduced by 0.8cm to acco	mmodate chamfer on the E-box	x; new board dims 13	3.5cm x 12.7cm						
4/5/13 BK update - board area 60% populated; comp, staking, conf coat; 0.95 g/cm2 104									
4/5/13 BK update - DPU blank board 13.5cm x 13.5cm; 0.51 g/cm2	2			93	93	С			
2/7/13 BK update - board area 75% populated; comp, staking, conf	coat; 0.95 g/cm2		115			С			
2/7/13 BK update - DPU blank board 12cm x 13.5cm; 0.51 g/cm2			83			С			
5/28/12 BK update w/ HKchip; board area 65% populated; comp, st				С					
Component area now 4.9" x 3.5" w/ HKchip, which makes 25% redu	ction					С			
DPU board has MDM connector and MCM SRAM		30				С			

DPU board has flexi-strip cutouts of approximately 10cm2						С		
5/28/12 BK update - DPU blank board 15cm x 15cm w/ corner cutout 9cr	n & 5cm; 0.51 g/cr	n2 98				С		
4/14/11 MEW memo (component area 4.9" x 4.7" per JAB layout)	279					С		
Proposal DPU increment						С		
2/23/10 MEW memo	•••	•••	•••		254			
Bias Supply	228	228	228	286	354	20%		
6/18/13 BK update - the requested increase in Bias Supply board area has	been approved by	the Project						
5/1/13 BK update - requested 20% increase in Bias Supply board area for	risk reduction (addi	ng 9cm x 4cm extension;	0.51 g/cm2)		18	С		
5/1/13 BK update - if 20% increase approved, DPU and Bias Supply boards	s will be swapped in	the stack; the latter will r	need an extra RF shield; b	oth shields will be 20% largeı	130	С		
5/1/13 Dean Aalami update for RF shield 0.030" thick					54	С		
4/5/13 Dean Aalami update for board heavily populated; comp, staking, co	onf coat			127	127	С		
4/5/13 Dean Aalami update for blank board area 13.5cm x 13.5cm (2.78 g/sq.in) 79								
4/5/13 Dean Aalami update for RF shield 0.050" thick 80								
2/12/13 BK update - Bias Supply blank board 15cm x 13.5cm; 0.51 g/cm	2					С		
4/14/11 MEW memo - Shield	82	82	82			С		
4/14/11 MEW memo - Board	146	146	146			С		
Proposal MEL - Board & Shield						С		
2/23/10 MEW memo - Shield						С		
2/23/10 MEW memo - Board						С		
LVPS	292	292	260	260	260	20%		
7/29/13 Sandy update - LVPS board height reduced by to accommodate of	chamfer on the E-bo	ox; new board dims 14cm	x 10.8cm					
2/7/13 Reid Gurnee update - based on similar design and board size for an	other project		160	160	160	С		
2/7/13 BK update - estimate for top RF shield			100	100	100	С		
Proposal LVPS increment	292	292						
2/23/10 MEW memo								
Central elec. subtotal:	1890	1767	1736	1843	2146	20%		
EPI-Hi subtotal:	 3107	2942	2859	3019	3377	20%		
EPI-Hi bracket	0	0	0	0	0			
4/14/11 MEW momo	0	0	0	0	0			
2/23/10 MEW memo	0	0	0	0	0			
Thermal hardware	0	0	50	50	50	20%		
	0	U	50	50	50	2070		
Thermal blankets	34	3/	100	100	100	200%		
	54	54	100	100	100	20%		
2///13 BK update - estimate for all blankets			100	100	100	C		
4/14/11 MEW memo	34	34	34	34	34	С		
2/23/IU MEW MEMO								
 FPI_Hi total·	 3141	 2976	3000	 3160	3527	2007-		
1/1 1-111 (Vlai)	2171		5007	5107	5541	20%		

EPI-Hi Harness Diagram

BK 5/12/13

EPI-Hi Boards, Telescopes, Connectors & Interconnections

(side view, opposite from ISIS bracket)

INFORMATION INCLUDED HERE	EIN IS CONTROLLED UNDER THE INTERNATIONAL
TRAFFIC IN ARMS REGULATION	NS ("ITAR") AND IS BEING RELEASED UNDER U.S.
DEPARTMENT OF STATE EXPORT LI	CENSE *TA3245-11. RE-TRANSFER OF THIS INFORMATION
TO ANOTHER FOREIGN PERSON	OR FOREIGN ENTITY REQUIRES AN EXPORT LICENSE
ISSUED BY T	THE U.S. DEPARTMENT OF STATE.

	REVISION							
REV	ZONE	DESCRIPTION	DATE	APPROVAL				
-	-	-	-	-				

OLD

2190773

PRELIMINARY

PLOT DATE: 27-Jul-13

PWB, POLY	IMIDE	FLEX, MU	ILTI-LAYER			POLYIMIDE	-			
		DESCR	IPTION			MATERIAL	MAT'L SPEC OR CAG	E CODE		
		LIST	OF MATERIAL				-			
S OTHERWISE S E ALL SHARP E	DGES R.O	: 10	NATIONAL AERONAUTIO SPACE ADMINISTRA	CS AND TION	Godda	ard Space Flight Center	GREENBELT, WALLOPS ISLAND,	MD X VA		
ANCES FOR THE	&surf	_finish/	NAME	INIT.	DATE	DRAWING INTERPRE	TED PER 500-PG-8700.2	. 5		
±.005 ±1/16	±.5°	FINISH IN MIN	designed S. SHUMAN			TITLE				
S OTHERWISE S E ALL SHARP E	PECIFIED DGES RO.	: 25	drawn S. SHUMAN			OUTLINE DRAWING ,				
ANCES FOR MET X.X X	RIC:		CHECKED B. KECMAN			TEL	ESCOPE			
±0.15 ±0.2	±0.5°		APPROVED · ELEC ENGINEER B. KECMAN			ELECTR	ONICS BOARD			
±0.8 ±1.5	HET E	LEC BD	APPROVED - ELEC ENGINEER R. COOK							
190774	LETI	ELEC BD	APPROVED - SYS ENGINEER B. KECMAN			size cage code dwo	2190773	REV		
KT ASSY	USE	D ON	APPROVED - POL T. vonrOSENVIN	GE		SCALE: 1.000	SHEET:	I OF I		
	PWB, POLY S OTHERWISE S E ALL SHARP E ANCES FOR INC 	PWB, POLYIMIDE S OTHERWISE SPECIFIED E ALL SHARP EDGES R. ANCES FOR INCHES: \$ surf .XXX X/X ±.005 ±1/16 ±.5° S OTHERWISE SPECIFIED E ALL SHARP EDGES RO. ANCES FOR METRIC: X.X X ±0.15 ±0.2 ±0.5° XXX XXXX ±0.15 ±1.5 190784 HET E 190774 LETI 190779 LET2 (T ASSY USE	PWB, POLYIMIDE FLEX, MU DESCR LIST S OTHERWISE SPECIFIED: E ALL SHARP EDGES R.010 ANCES FOR INCHES: * XXX X/X ± .005 ±1/16 ± .5° FINISH IN AIM S OTHERWISE SPECIFIED: E ALL SHARP EDGES R0.25 ANCES FOR METRIC: X.X X ± 0.15 ± 0.2 ± 0.5° XXX XXXX ± 0.15 ± 0.2 ± 0.5° XXX XXXX 190784 HET ELEC BD 190779 LET2 ELEC BD (T ASSY USED ON	PWB, POLYIMIDE FLEX, MULTI-LAYER DESCRIPTION LIST OF MATERIAL S OTHERWISE SPECIFIED: E ALL SHARP EDGES R.010 ANCES FOR INCHES: * & Surf_finish * xxx x/x NATIONAL AERONAUTIO SPACE ADMINISTRAT * xxx x/x * * * ±.005 ±1/16 ±.5° FINISH IN MIN DESIGNED S. SHUMAN S OTHERWISE SPECIFIED: E ALL SHARP EDGES R0.25 ANCES FOR METRIC: * x.x x DESIGNED S. SHUMAN S OTHERWISE SPECIFIED: E ALL SHARP EDGES R0.25 ANCES FOR METRIC: * x.x x DBANN S. SHUMAN HOTS ±0.2 ±0.5° * * 0.15 ±0.2 ±0.5° * * 0.15 ±0.2 ±0.5° * * 0.8 ±1.5 FINISH IN MIN #090784 HET ELEC BD 190779 LET2 ELEC BD #PROVED - SIS ENGINEER B. KECMAN #0780VED - SIS ENGINEER B. KECMAN	PWB, POLYIMIDE FLEX, MULTI-LAYER DESCRIPTION LIST OF MATERIAL S OTHERWISE SPECIFIED: E ALL SHARP EDGES R.010 ANCES FOR INCHES: * 0.005 ±1/16 ±.5° FINISH IN MIN S OTHERWISE SPECIFIED: E ALL SHARP EDGES R.0.25 ANCES FOR METRIC: X.X X X/X ± ±.005 ±1/16 ±.5° FINISH IN MIN S OTHERWISE SPECIFIED: E ALL SHARP EDGES R0.25 ANCES FOR METRIC: X.X X ± ±0.15 ±0.2 ±0.5° XXX X XXX ± ±0.15 ±0.2 ±0.5° TASS FINISH IN MIN OPAWN B. KECMAN S SHUMAN S SHUMAN S SHUMAN S SHUMAN S CHECMAN S SHUMAN S SHUSE SO	PWB, POLYIMIDE FLEX, MULTI-LAYER DESCRIPTION LIST OF MATERIAL S OTHERWISE SPECIFIED: E ALL SHARP EDGES R.010 ANCES FOR INCHES: *XXX X/X ±.005±1/16±.5° NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Goddi XXX X/X ±.005±1/16±.5° NATIONAL AERONAUTICS AND SACE ADMINISTRATION Goddi S OTHERWISE SPECIFIED: E ALL SHARP EDGES R0.25 ANCES FOR METRIC: X.X X X ±0.15±0.2±0.5° FINISH IN AIM FINISH IN AIM DESIGNED S. SHUMAN Goddi S OTHERWISE SPECIFIED: E ALL SHARP EDGES R0.25 ANCES FOR METRIC: X.X X X ±0.15±0.2±0.5° FINISH IN AIM FINISH IN AIM MAME MATE 190774 HET ELEC BD 190774 LETI ELEC BD 190774 R. KECMAN MATPROVED - FILE ENGINEER B. KECMAN MATPROVED - FILE ENGINEER B. KECMAN 190779 LETZ ELEC BD VCT ASSY USED ON T. YOOTOSENVINGE MATPROVED - FILE	PWB, POLYIMIDE FLEX, MULTI-LAYER POLYIMIDE DESCRIPTION MATERIAL LIST OF MATERIAL S OTHERWISE SPECIFIED: E ALL SHARP EDGES R.010 ANCES FOR INCHES: ************************************	PWB, POLYIMIDE FLEX, MULTI-LAYER POLYIMIDE DESCRIPTION MATERIAL S OTHERWISE SPECIFIED: E ALL SHARP EDGES R.010 ANCES FOR INCHES: * XXX X/X ±.005 ±1/16 ±.5° NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Goddard Space Flight Center GREENBELT, WALLOPS ISLAND. XXX X/X ±.005 ±1/16 ±.5° NAME INIT. DATE DRAWING INTERPRETED PER 500-PG-8700.2 S OTHERWISE SPECIFIED: E ALL SHARP EDGES R0.25 ANCES FOR METRIC: X.X X XXX ±0.15 ±0.2 ±0.5° NAME INIT. DATE DRAWING INTERPRETED PER 500-PG-8700.2 S OTHERWISE SPECIFIED: E ALL SHARP EDGES R0.25 ANCES FOR METRIC: X.X X XXX ±0.15 ±0.2 ±0.5° NHUMAN ITILE TITLE 90784 HET ELEC BD 190774 IETI ELIC CENTIONERER R. COOK SIZE CAGE COOE 36FC1 DEG NO. 2190773 190779 LETZ ELEC BD 190779 IETZ ELEC BD COOK NAPPROVED - STS ENGINEER B. KECMAN SIZE CAGE COOE 36FC1 DEG NO. 2190773 190779 LETZ ELEC BD CT ASSY USED ON T. Y ONTOSENVINGE SIZE CAGE COOE 36FC1 DEG NO. 2190773		

Δ

2

							1
		REV ZONE	DESCR	IPTION	DATE -	APPROVAL -	
							D
			10				
•		•	Charles and Harris P.S.				
	5						
				0			
		0					
C	2						
0							С
		0					
	Comm			0			
l	-	0					
•							
							DL D I N E
							DWG. NC
							<u>N</u>
							907
							9 3
							REV
							NOISI
	PRI	ELIN	VINAF	R Y			
		PLOT DAT	E: 08-Jul-13				
- X ITEM REQD REQD	PART NO.	3, POLYIMIDE FLE	EX, MULTI-LAYER DESCRIPTION	POLY	IMIDE Rial <mark>Mat'l Sp</mark>	<u>EC OR CAGE CODE</u>	
THIRD ANGLE PROJECTION	INCH UNLESS OTH REMOVE ALL TOLERANCES	HERWISE SPECIFIED: _ SHARP EDGES R.010 \$ FOR INCHES: &surf_fi	NATIONAL AERONAUTICS SPACE ADMINISTRATIO	AND Goddard Space F	light Center WAL	GREENBELT, MD X LOPS ISLAND, VA	A
	HYBRID UNLESS OTHERMISE SPECIFIED DIMENSIONS ARE IN MM [IN]	X X/X D5 ±1/16 ±.5° FINI HERWISE SPECIFIED: SHARP EDEES R0.25 S EOP METRIC	ISH IN IN DESIGNED S. SHUMAN DRAWN S. SHUMAN		JTLINE DRA	WING ,	
HARDWARE CLASSIFICATION	METRIC UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE MAN	$\begin{array}{c} x \\ x $	NISH IN MARKEN APPROVED - ELEC ENGINEER	Bl/	AS ELECTR BOARD	ONICS,	
SOFTWARE: FILE LOCATION: \S DRAWING FILE: 2 MODEL FILF FLECTRONICS	Pro/ENGINEER WF5.0 SHUMAN\SOLAR-PROBE 90793 REVIL9.0 2190 BOARD-BIAS REVIL9.0 NFXT	794 BIAS BO ASSY LISED	R. COOK APPROVED - SYS-ENGINEER B. KECMAN APPROVED - PDL ON T. VONROSENVINGF	SCALF	6FC1 2190	793 - Sheet I of I	
				JUNEL.			r

GSFC 660.3/M (01/10)

			REV ZONE	R E DESCRIPTION	VISION	DATE -	APPROVAL -	
			<u> </u>					
								D
			COMPONENT HEIGHT P.					
		,						
				e				
		ć						
								•
				*				C
								FOLD LINE
								DWG. NO.
								210
								3706
								õ
								REVI
рни		PF	{ELII	/IINAR`	Y			
			PLOT DATE:	06-Jul-13				
			I					
REQD	X REQD	- PART NO.	PWB, POLYIMIDE FLEX	, MULTI-LAYER ESCRIPTION	POL Y I M I DE MATERIAL	MAT'L SP	EC OR CAGE CODE	

				LIST	OF MATERIAL								
		INCH	UNLESS OTHERWISE SPECIFIED: REMOVE ALL SHARP EDGES R.010 TOLEPANCES FOR INCHES:		NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Goddard		rd Space Flight Center GREENBELT, M WALLOPS ISLAND, V			T, MD X ND, VA			
ANGLE PROJECTIO	N	unless otherwise specified Dimensions are in		&surf_finish	NAME	INIT.	DATE		DRAWING INTE	RPRETED PER	500-PG-8700	.2.5	
		HYBRID	$\pm .01 \pm .005 \pm 1/16$	±.5° FINISH IN mIN	designed S. SHUMAN			TITLE					
	UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MM [IN]	UNLESS OTHERWISE SPECIFIED: REMOVE ALL SHARP EDGES R0.25		drawn S. SHUMAN			OUTLINE DRAWING,				i,		
RF CLASSIFICATIO	CLASSIFICATION METRIC A UNLESS OTHERINGE SPECIFIED DMEDISCIONS ARE MM	TOLERANCES FOR METRIC: X.XX X.X X \angle		CHECKED P. GOODWIN				DPU	ELECT	RONIC	S		
Α		UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE MM	$\pm 0.07 \pm 0.15 \pm 0.2 \pm 0.5$		APPROVED - ELEC ENGINEER J. BURNHAM			BOARD					
WARE:	Pro	/ENGINEER WF5.0	10.0 10.0 11.0		APPROVED - ELEC ENGINEER R. COOK								
LOCATION:	SSH	UMAN\SOLARPROBE	2190789	DPU BOARD	APPROVED - SYS ENGINEER B. KECMAN						00700	REV	
INGFILE: LFILE: E	LECTRONIC	CS-BOARD-DPU REV -	NEXT ASSY	USED ON	approved - pdl T. vonrOSENVIN(3 E		SCA	LE: 1.000		IU / 88 Sheet:	I OF I	
										GSF	⁻ C 660.3/M	(0 / 0)	

Specification for Thick/Thin Silicon Detectors for the EPI-HI Instrument for Solar Probe Plus

Version 1.01, 29 March 2012

1. Applicability.

• This specification applies to thin, silicon solid-state detectors for use in the EPI-Hi LET telescopes to be developed for NASA's Solar Probe Plus (SPP) mission.

2. Detector Designations.

• Two different detector types are specified. They are designated L0 and L1.

3. Technology.

• Detectors shall be fabricated by ion implantation of crystalline silicon. The silicon shall have a $\langle 100 \rangle$ crystal orientation. Detectors are to be fabricated using thick/thin technology based on silicon-on-insulator (SOI) wafers. The active thickness of the detectors shall be controlled by the thickness of the SOI device layer, with the SOI's buried oxide layer being used as an etch stop in achieving this thickness.

4. **Operation.**

• Detectors will be operated fully depleted in a transmission-type configuration. Signals will be taken from the junction (p⁺) surface, which will be operated at ground potential; the ohmic (n⁺) surface will be operated at a positive bias.

5. Active Element Geometry.

• The overall active area of each detector shall be a circle of diameter 11.2 mm (providing a 100 mm² total active area). On the junction surface this area shall be subdivided into 5 equal-area segments, a central bull's eye of diameter 5.0 mm surrounded by 4 quadrants of a ring, as illustrated in the accompanying figures. The gaps between adjacent active detector segments shall be kept sufficiently narrow to assure efficient collection of signal charge produced by particles passing through the gap region. The manufacturer shall advise the EPI-Hi team of the proposed gap width.

6. Thin Membrane Shape and Area.

• The thin Si membrane on which the detectors are fabricated shall extend outside the area occupied by the active elements of the detector and any surrounding floating guard rings (see below). For L1, the excess radius shall be sufficient to allow easy alignment of the patterning used for thinning the SOI with the patterning used for producing the detector elements. For L0, the thin membrane shall have a diameter of 36 mm, significantly larger than the active diameter of the detector.

7. Chip Size and Shape.

• The overall shape of the detector chips shall be 16-sided regular polygons. The size of the L1 chip shall be 25 mm measured from flat to flat. The size of the L0 chip shall be 60 mm measured from flat to flat.

8. Orientation.

• The detector chips shall be fabricated with a fixed, specified orientation relative to the primary and secondary flats on the device layer of the SOI wafer.

9. Guard Rings.

• The manufacturer shall provide recommendations concerning the advisability of including a set of narrow, floating guard rings surrounding the detector active area.

10. Contacts.

- Each of the 5 active segments shall be connected by a narrow trace to a wire bonding pad located on the thick portion of the wafer. The trace connected to central bull's eye segment of the detector shall be routed between between two of the surrounding four segments.
- On the L0 detectors these traces will need to be relatively long due to the larger diameter of the thin membrane relative to that of the active area. The manufacturer shall provide advice on the desirability of isolating these traces from the silicon.

11. Active Thickness.

• In their active regions the L0 detectors shall have an overall thickness of $10\pm0.5\,\mu\text{m}$ and the L1 detectors shall have an overall thickness of $25\pm0.5\,\mu\text{m}$. These thicknesses shall correspond to the device layer thickness specified for the SOI wafers.

12. Thickness Uniformity.

• Good thickness uniformity is a high priority. The uniformity goal is <1% thickness nonuniformity over the 100 mm^2 active areas. The SOI wafers shall be specified to have a device layer thickness that varies by no more than $0.5 \,\mu\text{m}$ microns over the entire wafer and the SOI wafer order shall specify that the manufacturer attempt to achieve uniformity better than $0.2 \,\mu\text{m}$ on a best-effort basis. Etching and other processing of the wafers shall be carried out in such a way as to not significantly degrade the thickness uniformity from that of the SOI device layer.

13. Handle Wafer Thickness

• The handle wafer used in fabricating the SOI shall have a nominal thickness of $500 \,\mu\text{m}$.

14. Segment Isolation.

• The DC resistance between each active electrode and all other active electrodes on the junction surface of the detector shall be greater than $10 \text{ M}\Omega$, with a goal of greater than $10 \text{ M}\Omega$.

15. Dead Layers.

• The junction and the ohmic surfaces of the detector shall each have dead layers of thickness $<0.2 \,\mu\text{m}$ due to ion implantation and metallization.

16. Metallization.

• The detector surfaces shall be metallized with a luminum having a thickness $<\!1000\,\text{\AA}$ over the active area of the device. Thicker a luminization outside the active area is acceptable.

17. Surface Condition.

• The detectors shall have specular reflecting (mirror) surfaces of good quality.

18. Detector Mounting.

• Transmission-style detector mounts will be designed and procured by NASA's Goddard Space Flight Center and supplied to the detector manufacturer. The detector manufacturer shall review and approve the detector mount specification and design prior to fabrication of the mounts. It is anticipated that detector mounts will be fabricated as multilayer circuit boards using G10/FR4 and flexible Kapton leads with appropriate connectors for mating to external circuitry. Detector chips shall be installed in the detector mounts using Shin-Etsu KJR-9022E resin. The resin shall be mixed and cured according to manufacturer's instructions. An alternative mixing and curing procedure is acceptable, if approved by NASA.

19. Mounting Tolerances.

• The detector chips shall be installed in the mounts in such a way as to maintain the following tolerances: parallelism between chip and mounting ledge, $<1^{\circ}$; translational accuracy in the plane of the detector <0.2 mm; rotational accuracy about an axis perpendicular to the plane of the detector, $<0.5^{\circ}$.

20. Electrical Connections.

• Electrical connections between detector contacts and nearby pads on the detector mount shall be made using a minimum of 4 separate wire bonds per connection. Wire bonding shall be done using soft aluminum wire with a nominal diameter of $50 \,\mu\text{m}$. Wire bond lengths shall be kept as short as practical with a goal of $< 3 \,\text{mm}$. The minimum bond strength shall correspond to the pull of a 10 gram weight. A non-destructive pull test shall be performed by the manufacturer on 2 of the detector bonds connected to each detector contact to demonstrate compliance with this specification.

21. Depletion Voltage.

• The maximum depletion voltage, V_d , for the two detector types shall be as follows: for L0, 2V; for L1, 4V.

22. Breakdown Voltage.

• The minimum acceptable breakdown voltages for the two detector types shall be: for L0, 10 V; for L1, 15 V. The breakdown voltage shall be determined from measurements of the detector's leakage current (I) versus bias (V) with all detector segments connected in parallel. The breakdown voltage shall be taken to be the value of V for which I has value equal to twice its value at V_d .

23. Leakage Current.

• The maximum allowable leakage current shall be: for L0, 1 nA, for L1, 2 nA. For determining whether these specifications have been met, leakage currents shall be measured with all detector segments connected in parallel and with the detector biased at least 1 V above the full depletion voltage. These measurements shall be made at room temperature in a vacuum $<5 \times 10^{-6}$ torr after the detector has been allowed to stabilize for at least 1 hour. The leakage current specification shall be met within 30 seconds of bias being applied. The leakage currents shall not exceed the values listed above by more than a factor of 2 for a period of at least 1 year after delivery.

24. Alpha Particle Resolution.

• The range of alpha particles from typical sources (e.g., ²⁴¹Am or ²⁴⁴Cm) is longer than the thickness of the L0 and L1 detectors. To obtain a measurement of the detector resolution, the alpha particles shall be collimated in a narrow beam and allowed to penetrate a thin, uniform energy-degrader foil (e.g., aluminum) prior to impinging on the detector. The foil thickness shall be such that alpha particles penetrate between 50% and 90% of the nominal detector thickness. The resulting pulse height from the detector shall be measured with all detector segments connected in parallel using a charge sensitive amplifier, a shaping amplifier having peaking time (zero to peak) in the range 1 to $4\,\mu$ s, and a pulse height analyzer. The alpha particle resolution shall not exceed 50 keV FWHM, after correcting for the energy spread of the source and additional broadening introduced by the degrader foil.

25. Temperature Ranges.

• The detectors shall have an operating temperature range of -40° C to $+40^{\circ}$ C and a non-operating temperature range of -60° C to $+60^{\circ}$ C. The detectors shall meet the performance specifications after being returned to 20° C following exposure to the storage temperature extremes for at least 1 hour.

26. Radiation Hardness.

• The detectors shall remain suitable for use after being subjected to proton radiation doses of up to $100 \,\mathrm{krad}$.

27. Vacuum Stability.

• The detectors shall be tested for at least 72 hours at room temperature in a vacuum of 5×10^{-6} torr or better with the detectors continually biased to at least 1 V above the depletion voltage. The leakage current and, if possible, the electronic noise, shall be monitored throughout this test and the measurements reported as part of the documentation package to be delivered with the detector.

28. Thermal Cycling.

• The detectors shall be cycled at least 10 times between temperatures of -40° C and $+40^{\circ}$ C at a rate of approximately 2° C/minute. This test shall be performed with no bias applied in a vacuum of 5×10^{-6} torr or better or in a dry nitrogen atmosphere.

29. Random Vibration Testing.

• The detectors shall be subjected to a single-axis random vibration test with the acceleration axis normal to the detector surface. The test shall be performed using a vibration spectrum and overall amplitude appropriate for the Solar Probe Plus launch (details to be provided). After the vibration test the detectors shall be thoroughly inspected for cracks, detached wire bonds, or other damage.

30. Acoustic Testing.

• Acoustic testing of all of the L0 and L1 detectors are planned after receipt from the manufacturer using an acoustic spectrum and an overall amplitude suitable for the Solar Probe Plus launch. For the acoustic test the detectors will be mounted in a fixture that will approximate the acoustic response of the EPI-Hi instrument. This fixture will be designed and fabricated by the EPI-Hi team. The detectors will be thoroughly inspected after the test for cracks, detached wire bonds, or other damage.

If so desired, the detector manufacturer may propose an option for performing the acoustic testing prior to detector delivery.

31. Detector Identification.

• Each detector shall have a unique, 2-digit identification number written on the mount with an indelible ink compatible with use near solid-state detectors. This serial number shall be used to label all data to be included in the documentation package to be delivered with the detector.

32. Documentation Package.

• Each delivered detector shall be accompanied by a documentation package containing information about the detector fabrication and testing. As a minimum, this package shall contain the following: 1) detector identification number, 2) original delivery date (month and year), 3) ID number of the SOI wafer from which the detector was fabricated, 4) copy of the specifications and data sheet for the SOI wafer obtained from the SOI manufacturer, 5) copy of the batch traveler documenting the detector fabrication and testing steps, 6) plot of detector capacitance versus bias, 7) plot of detector leakage current versus bias measured at room temperature and atmospheric pressure, 8) depletion voltage, 9) breakdown voltage, 10) alpha particle and test pulser pulse-height spectra measured with the alpha particles incident on the junction side and on the ohmic side of the detector using the procedures described above, 11) alpha particle resolution calculated from the measurements, 12) environmental test results. The measurement results shall be reported in a standard format to be agreed upon by the detector manufacturer and the EPI-Hi team.

Figure 1.

Figure 2.

Specification for Thick Silicon Detectors for the EPI-HI Instrument for Solar Probe Plus

Version 1.03, 25 April 2012

1. Applicability.

• This specification applies to conventional silicon solid-state detectors for use in the EPI-Hi Low-Energy Telescope (LET) and High-Energy Telescope (HET) sensors to be developed for NASA's Solar Probe Plus mission. A separate specification describes the requirements for "thick/thin" silicon detectors for use in LET.

2. Designations.

• Two different LET detector types are specified. They are designated L2 and L3. In addition, three different HET detector types are specified, with designations H1, H2, and H3. Requirements for each of these detector types are discussed in the following paragraphs and summarized in Table 1. The accompanying figures illustrate the detector geometries.

3. Technology.

• Detectors shall be fabricated by ion implantation of crystalline silicon. The silicon shall have a $\langle 100 \rangle$ crystal orientation. Detectors are to be fabricated using conventional lapped and polished silicon wafers

4. Operation.

• Detectors will be operated fully depleted in a transmission-type configuration. Signals will be taken from the junction (p^+) surface, which will be operated near ground potential; the ohmic (n^+) surface will be operated at a positive bias.

5. Active Shape and Area.

- The active areas of the detectors shall be segmented into various numbers of signal elements, as follows.
 - The L2 design shall contain 6 elements, consisting of a central bull's eye of diameter 5.0 mm surrounded by 4 quadrants of a ring with outside diameter of 11.3 mm. These 5 elements shall be surrounded by an additional ring having outside diameter of 24.0 mm. The L2 design is illustrated in Figure 1.
 - The L3 design shall contain 2 elements, consisting of a central circular area of diameter 11.3 mm surrounded by a ring having an outer diameter of 24.0 mm. The L3 design is illustrated in Figure 2.
 - The H1 and H2 designs shall each contain 7 elements. A central bull's eye of diameter 5.0 mm shall be surrounded by 4 quadrants of a ring with outside diameter of 11.3 mm. These 5 elements shall be surrounded by two narrow rings having outside diameters of 14.3 mm and 17.3 mm, respectively. Thus each of these rings shall have a radial width of 1.5 mm. The H1 and H2 designs are illustrated in Figure 3.
 - The H3 design shall contain 3 elements. A circular central area of diameter 11.3 mm shall be surrounded by two narrow rings having outside diameters of

14.3 mm and 17.3 mm, respectively. Thus each of these rings shall have a radial width of 1.5 mm. The H3 design is illustrated in Figure 4.

- The manufacturer shall advise the EPI-Hi team of the proposed width of the gaps between adjacent detector segments in these designs.
- It should be noted that the H1 and H2 detectors have identical sizes and configurations of active elements, but have different thicknesses.

6. Chip Shape and Area.

• The completed chips shall be 16-sided regular polygons. The manufacturer shall review these chip dimensions and advise the EPI-Hi team on the minimum outside dimensions of the chip required for achieving optimum detector performance. For purposes of this draft specification, the following flat-to-flat dimensions of the chips have been assumed: L2, 28 mm; L3, 28 mm; H1 and H2, 21.3 mm; H3, 21.3 mm. These overall chip dimensions are indicated in Figures 1 through 4.

7. Orientation.

• The detector chips shall be fabricated with a fixed, specified orientation relative to the primary and secondary flats on the silicon wafers.

8. Floating Guard Rings.

• The detectors shall all include sets of floating multi-guard structures around the periphery of the active area of the detector. The manufacturer shall design this multi-guard structure to optimize detector characteristics and shall advise the EPI-Hi team on the width required to implement it.

9. Contacts.

• The active elements of each detector shall be connected by narrow traces to wire bonding pads located near the periphery of the chip. In some cases this will require that the trace pass through a narrow gap between or through surrounding element(s). The widths of such gaps should be kept to the minimum required for good detector performance. The manufacturer shall recommend suitable widths for the trace and the gap to the EPI-Hi team.

10. Active Thickness.

• The detector thicknesses shall be as follows: L2, $500\pm5\,\mu\text{m}$; L3, $1000\pm5\,\mu\text{m}$; H1, $500\pm5\,\mu\text{m}$; H2, $1000\pm5\,\mu\text{m}$; H3, $1000\pm5\,\mu\text{m}$.

11. Thickness Uniformity.

• The total thickness variation over the active area of each detector shall be less than $\pm 2.5 \,\mu\text{m}$ for the 500 μm detectors and less than $\pm 5 \,\mu\text{m}$ for the 1000 μm detectors.

12. Segment Isolation.

• The DC resistance between each active electrode and all other active electrodes on the junction surface of the detector shall be greater than $10 \text{ M}\Omega$, with a goal of greater than $10 \text{ M}\Omega$.

13. Dead Layers.

• The junction and the ohmic surfaces of the detector shall each have dead layers of thickness $<1 \,\mu m$ due to surface implants and metallization.

14. Metallization.

• The detector surfaces shall be metallized with aluminum having 2000 ± 500 Å thickness.

15. Surface Condition.

• Detectors shall have specular reflecting (mirror) surfaces of good quality.

16. Detector Mounting.

- Transmission-style detector mounts will be designed and procured by NASA's Goddard Space Flight Center and supplied to the detector manufacturer. The detector manufacturer shall review and approve the detector mount specification and design prior to fabrication. It is anticipated that detector mounts will be fabricated as multilayer circuit boards using G10/FR4 and flexible Kapton leads with appropriate connectors for mating to external circuitry. Detector chips shall be installed in the detector mounts using Shin-Etsu KJR-9022E resin mixed and cured according to manufacturer instructions. An alternative mixing and curing procedure is acceptable, if approved by NASA.
- An important requirement for the HET and LET sensors is to have close spacings between successive detectors in the telescope stacks. The maximum allowable gap between successive detectors in a stack (bottom surface of one detector to top surface of the next detector) is 0.5 mm. For the H3 devices, multiple detector chips will be electrically connected together to effectively produce thicker detectors. Two mounting schemes are being considered for these devices: one in which each chip is in a separate mount, the other in which an individual mount holds two chips. NASA/GSFC will produce concept drawings for both approaches for review by the detector manufacturer. A choice between the two approaches will be made by the EPI-Hi team taking into account advice from the manufacturer.

17. Mounting Tolerances.

• The detector chips shall be installed in the mounts in such a way as to maintain the following tolerances: parallelism between chip and mounting ledge, $<1^{\circ}$; translational accuracy in the plane of the detector <0.1 mm; rotational accuracy relative to the symmetry axis perpendicular to the plane of the detector $<0.5^{\circ}$.

18. Electrical Connections.

- Electrical connections between detector contacts and nearby pads on the detector mount shall be made using a minimum of 4 separate wire bonds per connection. Wire bonding shall be done using soft aluminum wire with a nominal diameter of $50 \,\mu\text{m}$. Wire bond lengths shall be kept as short as practical with a goal of $<3 \,\text{mm}$. The minimum bond strength shall correspond to the pull of a 10 gram weight. A non-destructive pull test shall be performed by the manufacturer on 2 of the detector bonds connected to each detector contact to demonstrate compliance with this specification.
- The wirebonding shall be done in such a way as to minimize the maximum height of the wire bond above the detector surface. This requirement is imposed in order to minimize the chance of electrical breakdown between the wirebond and the surface of the adjacent detector when the detector telescope is operated in a dry nitrogen

environment. The manufacturer shall propose a suitable wirebonding approach for approval by the EPI-Hi team.

19. Full-Depletion Voltage.

• The maximum full-depletion voltage, V_d , for the 500 μ m detectors (L2 and H1) shall be 40 V and for the 1000 μ m detectors (L3, H2, H3) shall be 160 V.

20. Breakdown Voltage.

• The minimum acceptable breakdown voltages for the 500 μ m detectors (L2 and H1) shall be 120 V and for the 1000 μ m detectors (L3, H2, H3) shall be 250 V. The breakdown voltage shall be determined from measurements of the detector's leakage current (I_L) versus bias (V) with all detector segments connected in parallel. The breakdown voltage shall be taken to be the value of V for which I_L has a value equal to twice its value at V_d .

21. Leakage Current.

• The maximum allowable leakage currents at 20°C shall be as follows: for L2, 150 nA; for L3, 300 nA; for H1, 75 nA; for H2, 150 nA; for H3, 150 nA per chip. For determining whether these specifications have been met, leakage currents shall be measured with all detector segments connected in parallel and with the detector biased at least 20 V above the full-depletion voltage. These measurements shall be made at room temperature in a vacuum $<5 \times 10^{-6}$ torr after the detector has been allowed to stabilize for at least 1 hour. The leakage current specification shall be met within 30 sec of bias being applied. The leakage currents shall not exceed the values listed above by more than a factor of 2 for a period of at least 1 year after delivery.

22. Alpha Particle Resolution.

• Measurements of detector resolution shall be made in a vacuum using an alpha particle source (e.g., 241 Am or 244 Cm). The source shall be positioned at least 10 cm from the detector and shall illuminate the entire active area of the detector. The resulting pulse height distribution from the detector shall be measured with all detector segments connected in parallel using a charge sensitive amplifier, a shaping amplifier having peaking time (zero to peak) in the range 1 to 4μ s, and a pulse height analyzer. Measurements made with the alpha particles incident on each of the detector surfaces shall be reported.

23. Temperature Range.

• The detectors shall have a operating temperature range of -40° C to $+40^{\circ}$ C and a nonoperating temperature range of -60° C to $+60^{\circ}$ C. They shall meet the performance specifications after being returned to 20°C after exposure to each of the non-operating temperature extremes for at least 1 hour.

24. Radiation Hardness.

• The detectors shall be designed to remain suitable for use after being subjected to proton radiation doses of up to 100 krad.

25. Vacuum Stability.

• The detectors shall be tested for at least 72 hours at room temperature in a vacuum of 5×10^{-6} torr or better with the detectors continually biased to at least 20 V above

the full-depletion voltage. The leakage current and, if possible, the electronic noise, shall be monitored throughout this test and the measurements shall be reported as part of the documentation package to be delivered with each detector.

26. Thermal Cycling.

• The detectors shall be cycled at least 10 times between temperatures of -60° C and $+60^{\circ}$ C at a rate of approximately 2°C per minute. This test shall be performed with no bias applied in a vacuum of 5×10^{-6} torr or better or in a dry nitrogen atmosphere. Visual inspections and electrical tests shall be carried out to establish that the performance of the detectors has not been degraded due to the thermal cycling.

27. Random Vibration Testing.

• The detectors shall be subjected to a single-axis random vibration test with the acceleration axis normal to the detector surface. A specification for the spectrum and overall amplitude of the vibration will be provided by the EPI-Hi team. The detectors shall be thoroughly inspected after the test for cracks, detached wire bonds, or other damage. Any observed damage shall be reported to the EPI-Hi team. The damaged detectors shall, at the discretion of the EPI-Hi team, be delivered for further inspection.

28. Detector Identification.

• Each detector shall have a unique, 2-digit identification number written on the mount with an indelible ink compatible with use near solid-state detectors. This serial number shall be used to label all data to be included in the documentation package to be delivered with the detector.

29. Documentation Package.

• Each delivered detector shall be accompanied by a documentation package containing information about the detector fabrication and testing. At a minimum this package shall contain the following: 1) detector identification number, 2) original delivery date (month and year), 3) wafer ID number and copy of the wafer manufacture's data sheet for the silicon wafer from which the detector was fabricated, 4) plot of detector capacitance versus bias, 5) plot of detector leakage current versus bias measured at room temperature and atmospheric pressure, 6) depletion voltage, 7) breakdown voltage, 8) alpha particle and test pulser pulse-height spectra measured with the alpha particles incident on the junction side and on the ohmic side of the detector and alpha-particle resolution derived from these data, 9) environmental test results, 10) copy of the manufacture's batch traveller documenting the fabrication and testing steps that the detector has gone through. The measurement results shall be reported in a standard format to be agreed upon by the detector manufacturer and the EPI-Hi team.

Design ID:	Design ID: L2		H1	H2	H3				
Thickness:	$500\pm5\mu\mathrm{m}$	$1000\pm5\mu{ m m}$	$500{\pm}5\mu{ m m}$	$1000\pm5\mu{ m m}$	$1000\pm5\mu{ m m}$				
Chip Shape:	16-sided polygon	16-sided polygon	16-sided polygon	16-sided polygon	16-sided polygon				
Chip Size (flat-to-flat):	$28\mathrm{mm}$	$28\mathrm{mm}$	$21.3\mathrm{mm}$	$21.3\mathrm{mm}$	$21.3\mathrm{mm}$				
Active Segments:	6	2	7	7	3				
Segment Geometry:	Figure 1	Figure 2	Figure 3	Figure 3	Figure 4				
Thickness:	$500\pm5\mu\mathrm{m}$	$1000\pm5\mu{ m m}$	$500\pm5\mu\mathrm{m}$	$1000\pm5\mu\mathrm{m}$	$1000\pm5\mu\mathrm{m}$				
Thickness Variation:	$\pm 2.5\mu{ m m}$	$\pm 5\mu{ m m}$	$\pm 2.5\mu{ m m}$	$\pm 5\mu{ m m}$	$\pm 5\mu{ m m}$				
Full-Depletion Voltage:	$40\mathrm{V}$	$160\mathrm{V}$	$40\mathrm{V}$	$160\mathrm{V}$	$160\mathrm{V}$				
reakdown Voltage:	$120\mathrm{V}$	$250\mathrm{V}$	120 V	$250\mathrm{V}$	$250\mathrm{V}$				
Leakage Current (20° C):	$150\mathrm{nA}$	300 nA	$75\mathrm{nA}$	$150\mathrm{nA}$	$150\mathrm{nA}$ per chip				

Table 1.

Solar Probe Plus EPI-Hi Instrument Silicon Detector Key Requirements Summary

Figure 1.

Figure 2.

Figure 3.

Figure 4.

HET TELESCOPE CONFIGURATION 03-MAY-2013

H2 DETECTOR (1.0MM THK) INNER ACTIVE 5.0MM SEGMENTED ACTIVE 11.3MM ACTIVE RING 14.3MM ACTIVE GUARD RING 17.3MM INACTIVE OUTER RING 21.3MM

H4 DETECTOR

••				•
(1.0	OMM	THK	Χ2)
INNER A	CTIVE	: Ø11	.3MN	1
ACTIVE GUARD	RING	Ø14	.3MN	1
ACTIVE GUARD	RING	Ø17	.3MN	1
INACTIVE OUTER	RING	Ø21	.3MN	1

	H1 DETECTOR (0.5MM THK) INNER ACTIVE Ø 5.0MM SEGMENTED ACTIVE Ø 11.3MM
H1A	ACTIVE RING $ ot i$ 14.3MM ACTIVE RING $ ot i$ 17.3MM INACTIVE OUTER RING $ ot i$ 21.3MM
H2A	H3 DETECTOR (1.0MM THK X 2)
H3A1 H3A2	INNER ACTIVE Ø11.3MM ACTIVE GUARD RING Ø14.3MM ACTIVE GUARD RING Ø17.3MM INACTIVE OUTER RING Ø21.3MM
H4A1 H4A2	H5 DETECTOR (1.0MM THK X 2)
H5A1 H5A2	INNER ACTIVE $ otin 11.3 \text{MM} $ ACTIVE GUARD RING $ otin 14.3 \text{MM} $ ACTIVE GUARD RING $ otin 17.3 \text{MM} $ INACTIVE OUTER RING $ otin 21.3 \text{MM} $
H5B2 H5B1	
H4B2 H4B1	
H3B2 H3B1	
H2B	SILICON DETECTO

-SILICON DETECTOR

GLENAIR MICRO STRIP

CONNECTOR

H1B

LET TELESCOPE CONFIGURATION 02-MAY-2013

	LET 2	LET 1
	LO	LOA
	L1	L1A
	L2	L2A
DETECTORS BELOW LINE- ARE FLIPPED OVER W/ SEGMENTATION FACING	L3	L3A
REVERSE DIRECTION	L4	L4A
	L5	L4B
	L6	L3B
		L2B
	L1B	
	LOB	

PROTECTIVE FOILS

1.0 MICRON POLYIMIDE OVER 95% OPEN POLYIMIDE MESH (BOTH ENDS)

LO DETECTOR

INNER ACTIVE \emptyset 5.0MM X 0.01 THK SEGMENTED ACTIVE \emptyset 11.3MM X 0.01 THK OUTER ACTIVE \emptyset 34.0MM X 0.01 THK HANDLE INACTIVE \emptyset 45.5MM X 0.30 THK

L1 DETECTOR

INNER ACTIVE \emptyset 5.0MM X 0.025MM THK SEGMENTED ACTIVE \emptyset 11.3MM X 0.025MM THK HANDLE INACTIVE \emptyset 28.0MM X 0.5MM THK

L2 DETECTOR

INNER ACTIVE \emptyset 5.0MM X 0.50MM THK SEGMENTED ACTIVE OUTER \emptyset 11.3MM X 0.50MM THK OUTER ACTIVE \emptyset 24.0MM X 0.50MM THK WAFER INACTIVE OUTER \emptyset 28.00 X 0.50MM THK

L3, L4, L5 & L6 DETECTOR INNER ACTIVE Ø11.3MM X 1.0MM THK OUTER ACTIVE Ø24.0MM X 1.0MM THK

WAFER INACTIVE OUTER \emptyset 28.0MM X 1.0MM THK

2							
	PEV	70NE			DATE		
	- KEV		DESCRIP		- DATE	-	
							D
				RAL ACTIVE F	REGION		
		/	/				
TON FLEX CIRCUIT-		/	/AN	TI-COINCIDE	NCE REG	ION	
		$ \longrightarrow $		IN-ACTIVE R	EGION		
			Κ/				
		\neg	\mathbf{X}				
		\nearrow M	\wedge				
	\bigwedge	·)*)]	())				C
	\mathcal{M}		' / /				
	\bigcirc						
	\searrow	/					
CONNECTOR							
SEE DETAIL B							FOLD
							Dang'
SEE DETAIL A				∕──SEE DET	AIL C		Ģ
							[]
							m
							H
1.00 —							קד
SEC	τιών α	- A					\leq
*AREA CROSS	-SECTION L	INES SHOWN					2
							<u>v</u>
							Z
							Ë
							 • • •
TEM REQD REQD PART NO.	DESCR	IPTION		MATERIAL	MAT'L SPE	C OR CAGE CODE	
NO.	LIST	OF MATERIAL	I				
INCH	CIFIED: ES R.010 S:	NATIONAL AERONAUTIC SPACE ADMINISTRAT	S AND Goddar	d Space Flight Center	WALL	GREENBELT, MD	Α
	∠ FINISH IN µ IN	NAME	INIT, DATE		ETED PER 500	-PG-8700,2,5	
UNLERS OTHERMILE STREPED ELEMENTICHE AND IN UNLESS OTHERWISE SPE MMM [IN]	CIFIED: ES RO.25	<u>Dênan</u>					
HARDWARE CLASSIFICATION METRIC $x, xx = x, x = \pm 0.07 \pm 0.15 \pm 0.04$	ic; ∠ θc⊉surf_finish∕	CHECKED		SOLAR	PROBE		
Unline offermal effected XX XXX XXX SOF TWARE ' Pro/FNGINEER Pro/FNGINEER	FINISH IN UN	APPROVED -					
FILE LOCATION: DRAWING FDEEECTOR-MOUNT-SINGLE RFV		APPROVED -		⁵¹ /Т. саде соде С. 36FC1			ן א ואוד
MODEL FILE:DETECTOR-MOUNT-STACK REV . NEXT ASSY	USED ON	APPROVED · POL		SCALE: 4.000		SHEET: I OF 2	
2					0316 0	vv,j/m (UI/IU)	

Indented labels signify flipped connectors & detectors

2							
	PEV	70NE			DATE		
	- KEV		DESCRIP		-	-	
							D
				RAL ACTIVE F	REGION		
		/	/				
TON FLEX CIRCUIT-		/	/AN	TI-COINCIDE	NCE REG	ION	
		$ \longrightarrow $		IN-ACTIVE R	EGION		
			Κ/				
		\neg	\mathbf{X}				
		\nearrow M	\wedge				
	\bigwedge	·)*)]	())				C
	\mathcal{M}		' / /				
	\bigcirc						
	\searrow	/					
CONNECTOR							
SEE DETAIL B							FOLD
							Dang'
SEE DETAIL A				∕──SEE DET	AIL C		Ģ
							m
							H
1.00 —							קד
SEC	τιών α	- A					\leq
*AREA CROSS	-SECTION L	INES SHOWN					2
							<u>v</u>
							Z
							Ë
							 • • •
REQD REQD PART NO.	DESCR	IPTION		MATERIAL	MAT'L SPE	C OR CAGE CODE	
NO.	LIST	OF MATERIAL	I				
INCH	CIFIED: ES R.010 S:	NATIONAL AERONAUTIC SPACE ADMINISTRAT	S AND Goddar	d Space Flight Center	WALL	GREENBELT, MD	Α
	∠ FINISH IN µ IN	NAME	INIT, DATE		ETED PER 500	-PG-8700,2,5	
UNLERS OTHERMILE STREPED ELEMENTICHE AND IN UNLESS OTHERWISE SPE MMM [IN]	CIFIED: ES RO.25	<u>Dênan</u>					
HARDWARE CLASSIFICATION METRIC $x, xx = x, x = \pm 0.07 \pm 0.15 \pm 0.04$	ic; ∠ θc⊉surf_finish∕	CHECKED		SOLAR	PROBE		
Unline offermal effected XX XXX XXX SOF TWARE ' Pro/FNGINEER Pro/FNGINEER	FINISH IN UN	APPROVED -					
FILE LOCATION: DRAWING FDEEECTOR-MOUNT-SINGLE RFV		APPROVED -		SIT CAGE CODE D			ן א ואוד
MODEL FILE:DETECTOR-MOUNT-STACK REV . NEXT ASSY	USED ON	APPROVED · POL		SCALE: 4.000		SHEET: 1 OF 2	
2					0316 0	vv,j/m (UI/IU)	

GSFC 660.3/M (01/10)

3

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NAME

drawn S. SHUMAN

r f_finish FINISH IN M APPROVED PROJECT M. WE I DENBECK APPROVED ELEC. ENGINEER R. COOK

APPROVED SYS. ENGINEER SPP\EPI-HI B. KECMAN

. GOODWIN

Goddard Space Flight Center

- D 36FC1 D

DATE

UNLESS OTHERWISE SPECIFIED: REMOVE ALL SHARP EDGES R.OIO TOLERANCES FOR INCHES: &surf_finish

UNLESS OTHERWISE SPECIFIED: REMOVE ALL SHARP EDGES R0.25 TOLERANCES FOR METRIC:

X XXX XXXX =0.3 ±0.8 ±1.5

2190830

MODEL FDIELECTOR-MOUNT-SINGLE-LO REV -.- NEXT ASSY USED ON T. vonROSENVINGE

X.XX X.X X ∠ j±0.07 ±0.15 ±0&nde t±0€5surf_finish

.XX .XXX X/X .01 ±.005 ±1/16 ±.5° FINISH IN AIN DESIGNED S. SHUMAN

INCH UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN.

HYBRID UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN

MM [IN]

METRIC UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE MM

\SOLAR-PROBE

Pro/ENGINEER WF5.0

2190831 REV -

THIRD ANGLE PROJECTION

ARDWARE CLASSIFICATION

Α

ILE LOCATION:

DRAWING FILE:

OFTWARE:

F OL D L I N E

۵

GSFC 660.3/M (01/10)

2190831

GREENBELT, MD 🛛 WALLOPS ISLAND, VA

DRAWING INTERPRETED PER 500-PG-8700.2.5

DETECTOR MOUNT

LET LO DETECTOR

SECTION A-A