
STEREO-CIT-005.A

P24 MISC Processor Manual 1

P24 MISC Microprocessor User's Manual

Dr. C. H. Ting
(c) Copyright 2000, eMAST Technology Corp
Hsinchu, Taiwan, Republic of China

Updated by Walter Cook 1/23/01 to reflect adaptation
to the ACTEL 54SX72A.

Caltech document number STEREO-CIT-004.A

Carry bit documentation corrected 10/9/01 (WRC)

Chapter 1. INTRODUCTION

1.1 General Information

P24 is “Minimal Instruction Set Computer” design patterned after Mr. Chuck
Moore's MuP21. P24 has a 24-bit CPU core with dual stack architecture intended
to efficiently execute Forth-like instructions. The processor design is simple
to allow implementation within field programmable gate arrays.

P24 employs a RISC-like instruction set with four 6-bit instructions packed into
24 bit words. The most significant bit of each instruction designates an I/O
Buss operation when set. For I/O Buss instructions (the I/O buss will be
referred to as the G buss) the second most significant bit specifies a write
when set, read when cleared, while the remaining four bits specify
the G buss address. For non-G buss instructions the most significant bit is
cleared and the remaining 5 bits specify 32 possible instructions, 31 of which
are implemented.

Following is a list of unique features of P24:

* 24-bit address and data buses
* 6-bit RISC-like CPU instructions
* 4-deep instruction cache
* 17-deep data stack
* 33-deep return stack
* Uses about 75% of 54SX72A registers and logic modules
* Current implementation runs at 10 MHz

1.2 Architecture of P24 CPU

P24 has the following registers:

A Address Register, supplying address for memory read and write
I Instruction Latch, holding instructions to be executed
P Program Counter, pointing to the next program word in memory
R Top of Return Stack
S Top of Data stack
T Accumulator for ALU

STEREO-CIT-005.A

P24 MISC Processor Manual 2

All registers are 24 bit wide.

(Original text. Applies to Dr. Ting’s VHDL model, but not to the current Actel
implementation: T, R, S, and A are all 25 bits wide. The most significant bit
in T, T(24) is the carry produced by the 24-bit adder. This carry bit is
preserved as data in T is transferred to other registers and to the stacks. The
preservation of carry bit greatly simplifies the logic processing of data, and
allows interrupts to be services when the next program word is fetches from the
memory, without having to save the carry bit and restore it on return.)

Unlike the original specification by Dr. Ting, the current ACTEL implementation
Does not provide the extra bit width needed to preserve the carry bit. The carry
bit is rather held in a dedicated flip-flop and is preserved only until the next
operation affecting the carry bit.

P24 has two stacks:

S_stack Data stack, 17 levels deep
R_stack Return stack, 33 levels deep

The return stack is used to preserve return addresses on subroutine calls. The
data stack is used to pass parameters among the nested subroutine calls. With
these two stacks in the CPU hardware, P24 is optimized to support the Forth
programming language.

The 24-bit P24 CPU sports a small, RISC-like instruction set. Four 6-bit
instructions are packed into one 24-bit word, and are executed consecutively
after a word is fetched from memory. The P24 CPU has a two stack architecture
that is easily programmed in Forth. The data stack is 17 levels deep (including
T), and the return stack is 33 levels depth.

The following diagram shows the architecture of the P24 processor. It shows the
registers, the stacks, and the data paths among them.

Not shown in the diagram is the connection between T register and the external
data bus. When reading data from memory, the A register supplies the memory
address to the address bus, and data is latch from the data bus into the T
register. When writing data into memory, the address is supplied by A register,
and data is written to the data bus from the T register.

Figure 1. The architecture of P24

 Data Bus Address Bus
 | ^ ^
 | | |
 v | |
-----		-----		-----
I		P		A
-----		-----		-----
 ^ ^
 | |
 v v
|-----------------------|-----| |-----| |-----|-----------------|

STEREO-CIT-005.A

P24 MISC Processor Manual 3

| Return Stack | R |<-----> | T |<-----> | S | Data Stack
 |
|-----------------------|-----| |-----| |-----|-----------------|
 ^ | |
 | v v
 | |---------|
 | | ALU |
 | |---------|
 |<------|

1.3 Functional Block Diagram of P24 (This section applies to Dr. Ting’s VHDL
definition and has not been updated to correspond to the ACTEL implementation
which is somewhat different.)

These data path diagrams should be read with the CPU24.VHD file.

The instruction decoding logic simply apply the proper control signals to the
following register loading and multiplexer selecting signals:

Clr Master reset
Clk Master clock, 0-40 MHz
t_sel Select input to T register
tload If set, load t_in into T register
spop If set, pop the data stack
spush If set, push T on the data stack
a_sel Select input to A register
aload If set, load a_in inot A register
r_sel Select input to R register
rload If set, load r_in into R register
rpop If set. Pop the return stack
rpush If set, push R on the return stack
p_sel Select input to P register
pload If set, load P_in into P register
m_sel Select output to Address bus
iload If set, load instruction from data bus to I register
reset Clear the machine instruction counter
slot Output of machine instruction counter to select instruction

The synchronous program execution unit clocks the slot signal, which selects the
proper 6-bit instructions in the I register to produce the above control
signals. At the rising clock edge, the selected data are latched into the
proper register and stacks. All data signals must stabilize before the next
rising clock edge strikes.

The architecture is very simple and components are very similar to one another.
It should be very easy to do a good layout, and the routing should not be
difficult.

Figure 2. The block diagrams of P24 components

The T and Data Stack Data Path

not t-------| |-----------| |-----------|
s xor t-----| | | | |
s and t-----|--t_in-----| T |--t--------| s_stack |----s

STEREO-CIT-005.A

P24 MISC Processor Manual 4

s + t-------| | | spop-----| |
(s+t)/2-----| tload----| | spush----| |
t/2 --------| clk------| | clk------| |
c&t/2-------| clr------| | clr------| |
(s+t)*2-----| |-----------| |-----------|
t*2&a-------|
t*2---------|
s --------|
a ---------|
r-----------|
data -------|
 |
t_sel-------^

The A Register and A-Mux

 |-----------|
t ----------|--a_in-----| |---a
a+1---------| | |
(s+t)&a/2---| aload----| A |
a*2+c-------| clk------| |
 | clr------| |
a_sel-------^ |-----------|

The Return Stack Data Path

 | |-----------| |-----------|
r_out-------|--r_in-----| R |--r--------| r_stack |---r_out
r+1---------| | | rpop-----| |
p-----------| rload----| | rpush----| |
 | clk------| | clk------| |
 | clr------| | clr------| |
r_sel-------^ |-----------| |-----------|

The Program Counter Data Path

 | |-----------|
interrupt---| | | |
p&i(17.0)---|--p_in-----| P |--p--------|---address
p+1---------| | | a--------|
r-----------| pload----| | |
 | clk------| | |
 | clr------| | |
p_sel-------^ |-----------| m_sel----^

The Instruction Latch and Decoder Data Path

 |-----------|
 | | |
data--------------------| I |--i(23.0)- |---code(5.0)
 iload-----| | |
 clk-------| | |
 clr-------| | |

STEREO-CIT-005.A

P24 MISC Processor Manual 5

 |-----------| |
 |
 |-----------| |
 | | |
 reset-----| sync |-slot(2.0)-^
 | |
 clk-------| |
 clr-------| |
 |--------- |

On power-up, all registers and the stacks are cleared to zero when "clr" is held
high. When "clr" is lowered to zero, the master clock "clk" will start the CPU
from memory location 0, as the initialized P register is pointing to.

Chapter 2. Device Characteristics

2.1 Input and Output Signals

P24 is very flexible in packaging, depending on the memory configuration. These
are the signals normally brought to I/O pins. In certain applications, the
memory is included on chip and the address bus and data bus do not have to be
brought out.

CLK 1-40 MHz master clock
A0-23 Address bus to RAM, SRAM and I/O devices
D0-23 Data bus for RAM, SRAM and I/O devices
CLR Low system reset (active low)
Vdd 5V power supply
Vss Ground
WE Write enable (active low)
INT0-4 External interrupt inputs
UART_IN RS232 serial input pin
UART_OUT RS232 serial output pin

2.2 Timing

All time periods noted in the following timing diagrams are in periods of the
master clock.

Figure 3. Timing of P24 instruction executions

Master Clock
|--- | |---- | |---- | |---- | |---- | |---- | |----
| | | | | | | | | | | | |
| |---- | |---- | |---- | |---- | |---- | |---- |

Slot0 Signal
|-----------| |-----------|
| slot5 | slot0 | slot1 | slot2 | slot3 | slot5 |
| |---| |----
 fetch Instr execute execute execute execute fetch instr

STEREO-CIT-005.A

P24 MISC Processor Manual 6

call, jump, jz, jnc
|-----------| |-----------|
| slot5 | slot0 | slot5 |
| |-----------| |--
 fetch Instr execute execute execute execute execute ...

NOP and RET instructions can be in any of the four slots. When these two
instructions are executed, slot5 will be forced into the next slot, and the next
instruction words will be fetched and then executed.

The ACTEL implementation contains a prioritized interrupt controller. If an
interrupt is pending an extra slot, slot4, is added to the sequence following
slot3. During slot4 the program counter is pushed to return stack and the
interrupt vector is placed in the program counter. Currently 7 interrupt lines,
labeled int0 – int6 are implemented and only two are used. Int0 vectors to
address 1, int2 to address 2, etc. The highest priority int0 is currently
assigned to the UART receive function, while the next highest priority int1 is
assigned to the UART transmit function. Once an interrupt is serviced via
execution of slot4, servicing of interrupts is automatically disabled until the
execution of an RTI instruction. Immediately after the RTI execution, the
highest priority pending interrupt (if any) will be serviced.

When executing a right shift instruction SHR, the sign bit T(23) is preserved.
Bits T(23..1) are shifted to the right by one bit. Bit T(0) is latched onto the
UART_OUT pin, and UART_IN pin is latched into the carry bit T(24). This very
simple mechanism allows a simple RS232 serial port to be built in P24 core. As
the serial port is the only peripheral device required by eForth, this simple
serial port opens a window for the user to access the resources provided by P24,
and supports a powerful embedded Forth system to control and to program the P24
system. (This simple UART was very valuable in bringing up the ACTEL
implementation, but is no longer used.)

Chapter 3. P24 Instruction Set

3.1 Instructions

The P24 instruction set can be best explained using the register and data flow
diagram as shown in Figures 1 and 2. The T register is the center of the ALU,
which takes data from the T and S registers and routes the results back to the T
register. The contents of T can be moved to the A register, pushed on the data
stack S, and pushed on the return stack S.

The T register connects the data stack and the return stack as a large shift
register. Data can be shifted towards the return stack by the PUSH instruction,
and shifted towards the data stack by the POP instruction.

Register A holds a memory address, which is used to read data from memory into
the T register, or write the data in T register to external memory. The address
in A can be auto incremented, so that P24 can conveniently access data arrays in
memory.

STEREO-CIT-005.A

P24 MISC Processor Manual 7

P is the program counter and it holds the address of the next instruction to be
fetched from the memory. After an instruction is fetched, P is auto incremented
and ready to read the next instruction. When a CALL instruction is executed,
the address in P is pushed on the return stack. When a return (RET)
instructions is executed, the previously saved address in R is popped back into
P. The execution sequence interrupted by CALL can now be resumed.

P24 is a microprocessor with 24-bit instructions. Each instruction contains up
to 4 6-bit machine codes. The instruction fields in a program word can be shown
as follows:

Bits: 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

 | Instruction 1 | Instruction 2 | Instruction 3 | Instruction 4 |

There are 64 possible instructions in a 6-bit field. Half of these are used for
G-Buss access, and are specified by a one in the most significant bit of the
six-bit field. For G-Buss access instructions the next most significant bit
specifies write if set, read if cleared, while the remaining 4 bits are the G-
Buss address. The G-Buss is intended to provide fast access to on-chip
application specific functions such a timers, i/o registers, UART, general
purpose registers, etc. The non-G-Buss instructions are of four classes:

0 Transfer Instructions
1 Memory Access Instructions
2 ALU Instructions
3 Register Instructions

JUMP, CALL, JZ and JNC instructions must appear in Slot0 of a program word, ie.
bits 23-18. The last 18 bits 17-0 contain the address inside the current 256K
word page. They can access code within the current page. To reach other pages
of memory, you will have to push a 24-bit address on the return stack and
execute the RET instruction.

The transfer instructions thus has the following forms:

 JUMP aaaaaa aaaaaa aaaaaa
 CALL aaaaaa aaaaaa aaaaaa
 JZ aaaaaa aaaaaa aaaaaa
 JNC aaaaaa aaaaaa aaaaaa

The conditional jump instruction JZ is used to implement the IF, WHILE, and
UNTIL words in Forth in that it does pop the number being tested in T. The
conditional jump instruction JNC causes a jump if the carry bit T(24) is
cleared. It is useful in multiple precision math operations. JNC does not pop
the T register, so its contents can be tested again.

Table 1. P24 Machine Code

Code Name Function

Transfer Instructions
00 JUMP Jump to 18 bit address. Must in Slot0.
01 RET Subroutine return.

STEREO-CIT-005.A

P24 MISC Processor Manual 8

02 JZ Jump if T is 0. Must in Slot0.
03 JNC Jump if carry is reset. Must in Slot0.
04 CALL Call subroutine. Must in Slot0.
05 NEXT Jump if R is not 0. Post-decrement R.

Pops R if R is 0. Must be in Slot0.
06 TIMES Repeat instruction word if R is not 0. Post-decrement R.
 Pops R if R is 0.
07 RTI Return from interrupt

Memory Access Instructions
09 LDP Push memory at A to T. Increment A.
0A LDI Push in-line literal to T.
0B LD Push memory at A to T.
0D STP Pop T to memory at A. Increment A.
0F ST Pop T to memory at A.

ALU Instructions
08 RR8 Rotate right T by 8 bits.
0C NIP Pop S, (Equivalent to SWAP DROP)
10 COM Complement all bits in T.
11 SHL Shift T left 1 bit.
12 SHR Shift T right 1 bit.
13 MUL Multiplication step.
14 XOR Pop S and Exclusive OR it to T.
15 AND Pop S and AND it to T.
16 DIV Division step.
17 ADD Pop S and add it to T.

Register Instructions
18 POP Pop R to push T.
19 LDA Push A to T.
1A DUP Duplicate T.
1B OVER S to T, push original T.
1C PUSH Pop T to push R.
1D STA Pop T to A.
1E NOP Do nothing.
1F DROP Pop T.

0E Reserved

3.2 P24 Instructions

JUMP (SKIP, ELSE, AGAIN, REPEAT)

Code: 0

Usage: 00000 aaaaaa aaaaaa aaaaaa

Stack Effects: none
Carry: no change

Function:

STEREO-CIT-005.A

P24 MISC Processor Manual 9

Jump to the 18 bit address in the bit field 17-0 in the current 256K word page
of memory. It must be in slot 0 of a word.

Restriction:

This instruction allows the program to be redirected to any location within an
256K word page of memory. It does not cross page boundaries. To jump to
locations outside of a memory page, one has to push the target address on the
return stack and execute the RET instruction to effect a long jump. This
restriction also applies to CALL, JZ and JNC. See also RET.

Coding Example:

CODE 50us
 2 ldi skip
CODE 100us
 1 ldi
 then
 sta -138 ldi
 begin lda add
 -until
 drop
 ret

SKIP makes an unconditional jump to THEN, to let 50us sharing the delay loop
with 100us.

RET (;)

Code: 1

Usage: 000001 xxxxxx xxxxxx xxxxxx
 cccccc 000001 xxxxxx xxxxxx
 cccccc cccccc 000001 xxxxxx
 cccccc cccccc cccccc 000001

Stack Effects: (-- ; R: a --)
Carry: no change

Function:

Pop the address of the top of the return stack into the program counter P, thus
resume the execution sequence interrupted by the last CALL instruction. Besides
terminating a subroutine, this instruction may be used to effect a long jump to
a location outside of the current memory page.

This instruction can be placed in any slot of a word. The instructions before
return are executed. The instructions following return are ignored.

Coding Example:

In the subroutine thread model, RET is used to terminate all code words and
colon words. The Forth word ; simply compiles a RET to end a Forth word.

STEREO-CIT-005.A

P24 MISC Processor Manual 10

JZ (IF, WHILE, UNTIL)

Code: 2

Usage: 000010 aaaaaa aaaaaa aaaaaa

Stack Effects: (n --)
Carry: no change

Function:

Conditionally jump to the 18 bit address in the bit field 17-0 in the current
256K word page of memory, if the T register contains a 0. It must be in slot 0
of a word.

The T register is destroyed and the data stack is popped back to T. This
instruction is different from JNC, which does not pop the data stack and removes
T.

Coding Example:

CODE ?DUP (w -- w w | 0)
 dup
 if dup ret then
 ret

JNC (-UNTIL, -IF, -WHILE)

Code: 3

Usage: 000011 aaaaaa aaaaaa aaaaaa

Stack Effects: (n -- n)
Carry: no change

Function:

Conditionally jump to the 18 bit address in the bit field 17-0 in the current
256K word page of memory, if the Carry flag (Bit 24 of T) is reset. It must be
in slot 0 of a word.

The T register and the data stack are preserved. This instruction is different
from the instructions JZ, which pop the data stack and removes T.

Coding Example:

To test the negative flag T(23), it is shifted into carry T(24) and tested using
JNC compiled by -IF.

CODE ABS (n -- +n)
 dup shl
 -if drop com 1 ldi add
 ret
 then

STEREO-CIT-005.A

P24 MISC Processor Manual 11

 drop ret

CALL

Code: 4

Usage: 000100 aaaaaa aaaaaa aaaaaa

Stack Effects: (-- ; R: -- a)
Carry: no change

Function:

Call a subroutine whose address is in the bit field 17-0 in the current 256K
word page of memory. It must be in slot 0 of a word

The address of the next word is pushed on the return stack. When a return
instruction in the subroutine is encountered, this address is popped off the
return stack and the next word is executed to resume the interrupted execution
sequence.

Restriction:

This instruction allows the program to call to any subroutine within the current
256K page of memory. It does not cross page boundaries.

Coding Example:

All Forth words are compiled as subroutine calls. This is the most efficient
way to build lists in Forth.

NEXT

Code: 5

Usage: 000101 aaaaaa aaaaaa aaaaaa

Stack Effects: (--)
Carry: no change
Function:

If R is non-zero jump to the 18 bit address in the bit field 17-0 in the current
256K word page of memory and post-decrement R. If R is zero, pop R. It must be
in slot 0 of a word.

Coding Example:

: FUN (n --) FOR R@ . NEXT ; (prints the numbers 0 through n in reverse
order)

STEREO-CIT-005.A

P24 MISC Processor Manual 12

TIMES

Code: 6

Usage: 000110 cccccc cccccc cccccc
 cccccc 000110 cccccc cccccc
 cccccc cccccc 000110 cccccc
 cccccc cccccc cccccc 000110

Stack Effects: (--)
Carry: no change
Function:

If R is non-zero jump back to the beginning of the current instruction word and
post-decrement R. If R is zero, pop R.

Coding Example:

CODE LSHIFT (n1 n2 –- n1*2^n2)
 zero com add push (subtract one from n2 and push to R)
 shl times ret (shift n1 left n2 times, then return)

RTI

Code: 7

Usage: 000111 xxxxxx xxxxxx xxxxxx
 cccccc 000111 xxxxxx xxxxxx
 cccccc cccccc 000111 xxxxxx
 cccccc cccccc cccccc 000111

Stack Effects: (-- ; R: a --)
Carry: no change

Function:

Pop the address of the top of the return stack into the program counter P, to
resume execution at completion of an interrupt service routine. Re-enables slot4
interrupt servicing.

This instruction can be placed in any slot of a word. The instructions before
RTI are executed. The instructions following return are ignored.

Coding Example:

: RCV 1 ASSIGN (uart receive interrupt service routine, see multi3 file)
 lda –IF –1 ELSE 0 THEN (save A and carry on data stk)
 G1@ RCVFULL? IF DROP ELSE RCV! THEN (service interrupt)
 WAKE OPERATOR ! (service interrupt)
 shl drop sta rti ; (restore carry and A, then rti)

STEREO-CIT-005.A

P24 MISC Processor Manual 13

LDP

Code: 9

Usage: 001001 ccccccc ccccccc ccccccc
 ccccccc 001001 ccccccc ccccccc
 ccccccc ccccccc 001001 ccccccc
 ccccccc ccccccc ccccccc 001001

Stack Effects: (-- n)
Carry: no change

Function:

Fetch the contents of a memory location whose 24-bit address is in the A
register and push that number onto the data stack. The address in the A
register is then incremented to facilitate accessing the next memory. It is
most useful in reading values from a table in the memory.

This fetch instruction is different from the @ instruction in Forth, which uses
the address on the top of the data stack.

This instruction also resets the carry flag (Bit 24) in the T register.

Coding Example:

Increment T sta ldp drop lda

Otherwise, cccccc cccccc ldi add
 000000 000000 000000 000001
costs 6 slots.

LDI

Code: 0A

Usage: 001010 cccccc cccccc cccccc
 nnnnnn nnnnnn nnnnnn nnnnnn

 cccccc 001010 cccccc cccccc
 nnnnnn nnnnnn nnnnnn nnnnnn

 cccccc cccccc 001010 cccccc
 nnnnnn nnnnnn nnnnnn nnnnnn

 cccccc cccccc cccccc 001010
 nnnnnn nnnnnn nnnnnn nnnnnn

Stack Effects: (-- n)
Carry: no change

Function:

STEREO-CIT-005.A

P24 MISC Processor Manual 14

Fetch the contents of the next word and push that number onto the data stack.
The program counter PC is incremented passing the next word. This instruction
allows a program to enter numbers onto the data stack for later use.

This instruction also resets the carry flag (Bit 24) in the T register.

Coding Example:

Push 1 2 3 4 on data stack:

 Ldi ldi ldi ldi
 1
 2
 3
 4

LD

Code: 0B

Usage: 001011 cccccc cccccc cccccc
 cccccc 001011 cccccc cccccc
 cccccc cccccc 001011 cccccc
 cccccc cccccc cccccc 001011

Stack Effects: (-- n)
Carry: no change

Function:

Fetch the contents of a memory location whose 24-bit address is in the A
register and push that number onto the data stack. The address in the A
register is not modified.

This fetch instruction is different from the @ instruction in Forth, which uses
the address on the top of the data stack.

This instruction also resets the carry flag (Bit 24) in the T register.

Coding Example:

STP

Code: 0D

Usage: 001101 cccccc cccccc cccccc
 cccccc 001101 cccccc cccccc
 cccccc cccccc 001101 cccccc
 cccccc cccccc cccccc 001101

Stack Effects: (n --)
Carry: no change

Function:

STEREO-CIT-005.A

P24 MISC Processor Manual 15

Pop the number off the data stack and store it into the memory location whose
24-bit address is in Register A. The address in the A register is then
incremented to facilitate the next memory access. It is most useful in storing
values to a table in the memory.

This store instruction is different from the ! instruction in Forth, which uses
the address on the top of the data stack.

Coding Example:

See the copying program shown in LDP.

ST

Code: 0F

Usage: 001111 cccccc cccccc cccccc
 cccccc 001111 cccccc cccccc
 cccccc cccccc 001111 cccccc
 cccccc cccccc cccccc 001111

Stack Effects: (n --)
Carry: no change

Function:

Pop the number off the data stack and store it into the memory location whose
24-bit address is in Register A. The address in the A register is not modified.

This store instruction is different from the ! instruction in Forth, which uses
the address on the top of the data stack.

Coding Example:

CODE ! (n a --)

sta st ret

RR8

Code: 08

Usage: 001000 cccccc cccccc cccccc
 cccccc 001100 cccccc cccccc
 cccccc cccccc 001100 cccccc
 cccccc cccccc cccccc 001000

Stack Effects: (n1 – n2)
Carry: no change

Function:

All 24 bits in the T register are rotated right by 8 bits. The least
significant byte of T moves to the position of the most significant byte.
Useful for fast accessing of byte data and data formatting/packing.

STEREO-CIT-005.A

P24 MISC Processor Manual 16

Coding Example:

: BYTE# (n1 n2 –- n3) (n3 is byte number n2 of n1, for)
 ?DUP (n2 expected equal 0, 1 or 2)
 IF zero com add push
 rr8 times
 THEN
 FF and ;

NIP

Code: 0C

Usage: 001100 cccccc cccccc cccccc
 cccccc 001100 cccccc cccccc
 cccccc cccccc 001100 cccccc
 cccccc cccccc cccccc 001100

Stack Effects: (n1 n2 -- n2)
Carry: no change

Function:

Pop S, leaving T unchanged.

Coding Example: (You hopefully never need this one.)
 (A good candidate for replacement with)
 (something more useful. Suggest not using.)

COM

Code: 10

Usage: 010000 cccccc cccccc cccccc
 cccccc 010000 cccccc cccccc
 cccccc cccccc 010000 cccccc
 cccccc cccccc cccccc 010000

Stack Effects: (n1 – n1*)
Carry: no change

Function:

Complement all 24 bits in the T register. This is a one's complement operation.

Coding Example:

To generate a -1 in T register:

 zero com

OR has to be synthesized from COM, and AND using:
A or B = not(not(A) and not(B))

CODE OR (n n - n) (this looks pretty awkward, maybe)

STEREO-CIT-005.A

P24 MISC Processor Manual 17

 com push com (the last available opcode or NIP)
 pop and com ret (should be replaced with OR)

SHL

Code: 11

Usage: 010001 cccccc cccccc cccccc
 cccccc 010001 cccccc cccccc
 cccccc cccccc 010001 cccccc
 cccccc cccccc cccccc 010001

Stack Effects: (n -- 2n)
Carry: Bit 23 of T is shifted into carry

Function:

Shift all lower 24 bits in the T register to the left by 1 bit. The lowest Bit-
0 is cleared.

Coding Example:

Multiply T by 3: dup shl add
Multiply by 5: dup shl shl add
Multiply by 6: dup shl add shl

SHL allows the negative bit of T(23) to be tested as carry T(24):

CODE 0< (n - f)
 shl
 -if drop -1 ldi ret
 then
 dup xor (0 ldi)
 ret

SHR

Code: 12

Usage: 010010 cccccc cccccc cccccc
 cccccc 010010 cccccc cccccc
 cccccc cccccc 010010 cccccc
 cccccc cccccc cccccc 010010

Stack Effects: (n -- n/2)
Carry: no change

Function:

Shift the contents of the T register right by one bit. Bit-0 is shifted to the
bit-banged UART serial output. The sign (Bit23) is preserved.

Coding Example:

STEREO-CIT-005.A

P24 MISC Processor Manual 18

SHR is used to implement a simple UART. The lowest bit in T, T(0) is shifted
out to the UART serial output pin, and the UART serial input pin is loaded into
carry for testing.

CODE EMIT (c --)
 $7F ldi and
 shl $FFFF01 ldi xor
 $0A ldi
 FOR shr 100us NEXT
 drop ret
CODE KEY (-- c)
 $FFFFFF ldi
 begin shr
 -until
 repeat (wait for start bit)
 50us
 7 ldi
 FOR
 100us shr
 -if $80 ldi xor then
 NEXT
 $FF ldi and
 100us ret

MUL

Code: 13

Usage: 010011 cccccc cccccc cccccc
 cccccc 010011 cccccc cccccc
 cccccc cccccc 010011 cccccc
 cccccc cccccc cccccc 010011

Stack Effects: (n1 n2 -- n1 n3)
Carry: unchanged

Function:

Conditionally add the S register on the data stack to the T register if Bit-0 in
A is set. If Bit-0 in A is reset, T register is not modified. The T-A register
pair is now shifted to the right by one bit.

This MUL instruction is useful as a multiplication step in implementing a fast
software multiplication routine. Repeating this instruction 24 times will
multiply A and S and produce a 48-bit product in the T-A pair. (T is normally
initialized to zero prior to the multiply sequence. However any non-zero initial
value in T adds to the final result in the T-A pair.)

Coding Example:

Multiply two 24-bit unsigned integers. Multiplicand is in S. Multiplier is in
A.

 mul mul mul mul
 mul mul mul mul

STEREO-CIT-005.A

P24 MISC Processor Manual 19

 mul mul mul mul
 mul mul mul mul
 mul mul mul mul
 mul mul mul mul

The 48-bit product is in T-A register pair and the multiplicand in S is
preserved.

Primitive multiplication routines are thus defined:

CODE UM* (u u -- ud)
 sta 0 ldi
 mul mul mul mul
 mul mul mul mul
 mul mul mul mul
 mul mul mul mul
 mul mul mul mul
 mul mul mul mul
 push drop lda pop
 ret

XOR

Code: 14

Usage: 010100 cccccc cccccc cccccc
 cccccc 010100 cccccc cccccc
 cccccc cccccc 010100 cccccc
 cccccc cccccc cccccc 010100

Stack Effects: (n1 n2 -- n3)
Carry: unchanged

Function:

Pop S on the data stack and exclusive-OR it to the T register. All 24 bits in T
are affected.

Coding Example:

To clear T to zero:

 dup xor (now use more transparent “drop zero”)

To generate a zero in T register:

 dup dup xor (now use faster “zero”)

T is duplicated twice to save its contents. The two duplicated copies of T are
XOR'ed together. All the reset bits remained reset. All set bits get reset.
Thus a 0 is created in T.

It costs 5 slots to produce a -1:

 Ldi cccccc cccccc cccccc
 -1

STEREO-CIT-005.A

P24 MISC Processor Manual 20

vs
 dup dup xor com (now use faster “zero com”)

AND

Code: 15

Usage: 010101 cccccc cccccc cccccc
 cccccc 010101 cccccc cccccc
 cccccc cccccc 010101 cccccc
 cccccc cccccc cccccc 010101

Stack Effects: (n1 n2 -- n3)
Carry: unchanged

Function:

Pop S on the data stack and AND it to the T register. All 24 bits in T are
affected.

Coding Example:

DIV

Code: 16

Usage: 010110 cccccc cccccc cccccc
 cccccc 010110 cccccc cccccc
 cccccc cccccc 010110 cccccc
 cccccc cccccc cccccc 010110

Stack Effects: (n1 n2 -- n1 n3)
Carry: unchanged

Function:

Add the S register on the data stack to the T register. If the addition produces
a carry place the sum in T, otherwise leave T unchanged. The T-A register pair
is now shifted to the left by one bit. Carry is shifted into A(0).

This DIV instruction is useful as a division step in implementing a fast
software division routine. Repeating this instruction 25 times will divide a 48
bit number originally in the T-A register pair by the negative of the number in
S, leaving the result in A and remainder in T.

Coding Example:

Divide a 48-bit positive integer by a positive divisor. The negated divisor is
in S.

 div div div div
 div div div div
 div div div div
 div div div div

STEREO-CIT-005.A

P24 MISC Processor Manual 21

 div div div div
 div div div div
 div shr

(Note: I think that this last shr undoes the most recent shl that is
part of div, aligning the remainder properly in T. Also I think
this division actually only works properly for 47 bit unsigned
numbers in T-A. -- WRC)

Primitive division routines are thus defined:

CODE UM/MOD (ud u -- ur uq)
 com 1 ldi add sta
 push lda push sta
 pop pop
 skip
CODE /MOD (n n -- r q)
 com 1 ldi add push
 sta pop 0 ldi
 then
 div div div div
 div div div div
 div div div div
 div div div div
 div div div div
 div div div div
 div 1 ldi xor shr
 push drop pop lda
 ret

ADD

Code: 17

Usage: 010111 cccccc cccccc cccccc
 cccccc 010111 cccccc cccccc
 cccccc cccccc 010111 cccccc
 cccccc cccccc cccccc 010111

Stack Effects: (n1 n2 -- n1+n2)
Carry: change according to n1 and n2

Function:

Pop S on the data stack and add it to the T register.

Coding Example:

The primitive addition in eForth is thus defined:

CODE UM+ (n n - n carry) (don’t use this if you want speed – WRC)
 add
 -if 1 ldi ret
 then
 dup dup xor (0)
 ret

STEREO-CIT-005.A

P24 MISC Processor Manual 22

POP

Code: 18

Usage: 011000 cccccc cccccc cccccc
 cccccc 011000 cccccc cccccc
 cccccc cccccc 011000 cccccc
 cccccc cccccc cccccc 011000

Stack Effects: (-- n ; R: n --)
Carry: unchanged

Function:

Pop the R register on the return stack to the T register. Original contents in
T are pushed on the data stack.

Coding Example:

Exchanging A and T lda push sta pop
Exchanging A and R lda pop sta push
Increment T sta ldp drop lda (now use “one add”)
Decrement T dup dup xor com add (now use “zero com add”)

LDA

Code: 19

Usage: 011001 cccccc cccccc cccccc
 cccccc 011001 cccccc cccccc
 cccccc cccccc 011001 cccccc
 cccccc cccccc cccccc 011001

Stack Effects: (-- a)
Carry: unchanged

Function:

Copy the contents in the A register to the T register. The original content of
the T register is pushed on the data stack. With LDA and STA, the A register
can serve as a scratch pad register to save and restore the contents of the T
register.

Coding Example: (see example for POP)

DUP

Code: 1A

Usage: 011010 cccccc cccccc cccccc
 cccccc 011010 cccccc cccccc

STEREO-CIT-005.A

P24 MISC Processor Manual 23

 cccccc cccccc 011010 cccccc
 cccccc cccccc cccccc 011010

Stack Effects: (n -- n n)
Carry: unchanged

Function:

Duplicate T register and push it on the data stack.

Coding Example:

Decrement T dup dup xor com add (now use “zero com add”)

OVER

Code: 1B

Usage: 011011 cccccc cccccc cccccc
 cccccc 011011 cccccc cccccc
 cccccc cccccc 011011 cccccc
 cccccc cccccc cccccc 011011

Stack Effects: (n1 n2 –- n1 n2 n1)
Carry: unchanged

Function:

S is transferred into T register. The original contents in the T register is
pushed onto the data stack.

Coding Example:

CODE 2DUP (n1 n2 – n1 n2 n1 n2)
 over over ret

PUSH

Code: 1C

Usage: 011100 cccccc cccccc cccccc
 cccccc 011100 cccccc cccccc
 cccccc cccccc 011100 cccccc
 cccccc cccccc cccccc 011100

Stack Effects: (n -- ; R: -- n)
Carry: unchanged

Function:

Pop S on the data stack and store it to the T register. The original contents
in the T register is pushed onto the return stack.

Coding Example:

STEREO-CIT-005.A

P24 MISC Processor Manual 24

CODE ROT (w1 w2 w3 -- w2 w3 w1)
 push push sta pop
 pop lda ret

STA

Code: 1D

Usage: 011101 cccccc cccccc cccccc
 cccccc 011101 cccccc cccccc
 cccccc cccccc 011101 cccccc
 cccccc cccccc cccccc 011101

Stack Effects: (a --)
Carry: no change

Function:

Pop S on the data stack and store it to the T register. The original contents
in the T register is copied into the A register. This instruction initializes
the A register so that it can be used to fetch data from memory or store data
into memory.

Coding Example:

CODE ! (n a --)
 sta st ret

NOP

Code: 1E

Usage: 011110 xxxxxx xxxxxx xxxxxx
 cccccc 011110 xxxxxx xxxxxx
 cccccc cccccc 011110 xxxxxx
 cccccc cccccc cccccc 011110

Stack Effects: (--)
Carry: no change

Function:

No operation. This instruction will force the execute state to slot 5, to get
the next word to be fetched and executed. (Actually this is what the NOP
SHOULD do, but in the current ACTEL implementation the NOP instead passes
control to the next instruction slot.)

Coding Example: usually inserted by assembler.

DROP

Code: 1F

STEREO-CIT-005.A

P24 MISC Processor Manual 25

Usage: 011111 cccccc cccccc cccccc
 cccccc 011111 cccccc cccccc
 cccccc cccccc 011111 cccccc
 cccccc cccccc cccccc 011111

Stack Effects: (n --)
Carry: unchanged

Function:

Pop S on the data stack and store it to the T register. The original contents
in the T register are lost.

Coding Example: see example for jump.

Chapter 3.1 G Buss Instructions

G@

Code: 2G, where G is 4bit G-Buss address

Usage: 10gggg cccccc cccccc cccccc
 cccccc 10gggg cccccc cccccc
 cccccc cccccc 10gggg cccccc
 cccccc cccccc cccccc 10gggg

Stack Effects: (n --)
Carry: unchanged

Function:

Read G-buss address gggg and store in T, push original contents of T to data
stack.

Coding example:

CODE KEY (-- c) (waits for a serial character and returns it)
 begin g0@ $10000 ldi and until g1@ ret

Note: Presently assembler words are implemented only for reading Gbuss addresses
0, 1, 2, and 3. The corresponding assembler words are “g0@, g1@, zero, and one”.
See discussion below.

G!

Code: 3G, where G is 4bit G-Buss address

Usage: 11gggg cccccc cccccc cccccc
 cccccc 11gggg cccccc cccccc
 cccccc cccccc 11gggg cccccc
 cccccc cccccc cccccc 11gggg

Stack Effects: (n --)

STEREO-CIT-005.A

P24 MISC Processor Manual 26

Carry: unchanged

Function:

Pop S from data stack into T. Original contents of T are written to G-buss
address gggg.

Coding example:

CODE EMIT (c --) (waits for previous transmit to complete, then)
 (sends character)
 begin g0@ $20000 ldi and until g1! Ret

Chapter 3.2 G-Buss Peripherals (Interrupt Register and UART)

 Currently, G-buss peripherals include only an interrupt control and status
register at address 0, the UART send/receive data register at address 1, and
read-only “zero” and “one” at addresses 2 and 3 respectively.

 The interrupt control register at address 0 is defined as follows:

 Bit0(lsb) r/w global interrupt enable (1 to enable)
 Bit1 r/w enable for interrupt 0 (highest priority)
 Bit2 r/w enable for interrupt 1
 Bit3 r/w enable for interrupt 2
 Bit4 r/w enable for interrupt 3
 Bit5 r/w enable for interrupt 4
 Bit6 r/w enable for interrupt 5
 Bit7 r/w enable for interrupt 6
 Bits8-15 not used, read as 0
 Bit16 r status of interrupt line 0
 Bit17 r status of interrupt line 1
 Bit18 r status of interrupt line 2
 Bit19 r status of interrupt line 3
 Bit20 r status of interrupt line 4
 Bit21 r status of interrupt line 5
 Bit22 r status of interrupt line 6
 Bit23 r logical OR of enabled interrupt lines

 The interrupt enable bits are all initialized to 0 by power-on reset. Note
that after performing an interrupt, the interrupt controller will (without
clearing bit 0) disable further interrupt servicing until after the next RTI
instruction is executed. Interrupt lines 0 and 1 are currently dedicated to the
UART receive and transmit functions respectively. Interrupt line 0 is set after
a character is received by the UART and is cleared by reading the data at Gbuss
address 1 (least significant byte). Interrupt line 1 is set after the UART has
completed a character transmission and is cleared by writing a character to
Gbuss address 1 (least significant byte). (An example of the programming of the
UART for interrupt driven i/o is in file multi3.f. Examples of polled i/o are
the KEY and EMIT words shown above.).

 Gbuss addresses 2 and 3 are currently read-only, returning 0 and 1
respectively. (Special assembler words “zero” and “one” compile the instructions
to read Gbuss addresses 2 and 3.)

STEREO-CIT-005.A

P24 MISC Processor Manual 27

 Gbuss addresses 2 and 3 are available for write-only applications. Gbuss
addresses 4-15 are entirely available.

Typical Gbuss peripherals that might be added depending on application
include:

(1) A timer to produce periodic interrupts at a programmable interval.
(2) A FIFO for buffering event data, producing an interrupt when full or

half full.
(3) Scratch-pad registers.
(4) Hardware single-step multiplier, with operands taken from pair of

scratch pad registers.
(5) I/O ports.
(6) Registers to control and monitor app-specific on-chip functions.
(7) Additional UARTs.

Chapter 4. P24 Metacompiler

(This section has not been updated to reflect changes made for the
ACTEL implementation. See the comments in files meta24i.f, ok24i.f, kern24i.f,
and ef24i.f for a log of the changes. The main changes are use of the hardware
UART, inclusion of target-resident assembly words and the repositioning of
certain buffers and system variables used by Forth. Multi-tasking words and
buffered interrupt-driven serial i/o words are in the file multi3.f and are not
currently present at boot. Multi-tasking words are documented by comments in the
file multi3.f. In addition, some words were added in meta24i.f to facilitate
prom burning etc. – see “prom.” and “image.” The details of the boot method have
changed. Presently booting can occur from EEPROM or serially. To be documented
later. Changes near the end of meta24i.f relate to booting. -- WRC)

Metacompiler is a term used by Forth programmers to describe the process of
building a new Forth system on an existing Forth system. The new Forth system
may run on the same platform as the old Forth system. It may be targeted to a
new platform, or to a new CPU. The new Forth system may share a large portion
of the Forth code with the old system, and hence the term metacompilation. In a
sense, a metacompiler is very similar to a conventional cross
assembler/compiler.

The P24 eForth metacompiler is contained in the source code file META24.F, which
runs under Win32Forth, a public domain Forth for Windows 95/98/2000/NT. It
calls on the following files to build the P24 eForth system:

 ASM24.F P24 assembler
 KERN24.F Kernel words in P24 eForth
 EF24.F High level words in P24 eForth
 K24.F Words to replace assembly macros

In this chapter, I take the source code in META24.F and explain the functions of
the Forth words which build the eForth system.

4.1 Start Up the Metacompiler

(Copyrighted by eMAST Technology Corp, 2000)
(All rights reserved)

STEREO-CIT-005.A

P24 MISC Processor Manual 28

comment:
meta24.f 07nov00cht, change for P24, p24c
 02dec00cht, interpreter ok, debugging compiler

This meta-compiler was originally written by Chuck Moore to build
Forth systems for the MuP21 microprocessor. It can be easily
changed and used to compile code for any CPU.

This file loads all the source code and construct an image of P24
which can be ported to VHDL for Xilinx XCV300/1000 FPGA. It runs
under Win32Forth, a public domain Forth system authored by Andrew
McKewan and Tom Zimmer. It can be downloaded from the web, at
www.forth.org, under the category of Compiler/Windows. Click on
the download button, and it will be downloaded to your computer
and automatically installed.

Run Win32Forth from your desktop, or from Start/Program/Win32Forth and
you will see a window opened. Open the WinView editor from the File
menu. Open the file META24.F through the directory tree. Then
click back the Win32Forth window and type:
 fload meta24
Youu will see the list of all the words compiled into the P24
target image. Type
 showram
to show the image dumped out in hexidecimal. Type
 bram
to see the image dumped in a form acceptable by Xilinx VHDL. Cut
and paste this image into your VHDL code and synthesize the P24
system.

4.2 Tools of Metacompiler

\ create two vocabularies. ASM24 will contain the assembler woprds
\ and the words in the P24 target. SIM24 will contain words which
\ build a cycle-based simulator to exercise code in the P24 target.

VOCABULARY ASM24
VOCABULARY SIM24

\ following are tools words added to the baseline Forth system
ONLY FORTH ALSO DEFINITIONS

\ turn off the warnings normally supplied by Win32Forth on
\ duplicated names and stack changes. They clutter the symbol
\ table.
HEX
WARNING OFF
' NOOP IS STACK-CHECK

\ type 'debugging? on' and you can pace the meta-compiler by
\ hitting SPACE for the next steps. Hit RET to stop.
\ This is useful when you want to locate errors before a full
\ compilation.
variable debugging?
debugging? off

STEREO-CIT-005.A

P24 MISC Processor Manual 29

\ .HEAD prints teh name of a new word to be compiled.
: .head (addr -- addr)
 >IN @ 20 word count type space >IN !
 dup .
 ;

\ CR is redefined so you can step through the compilation by
\ setting debuggin? on.
: CR CR
 debugging? @
 if .s KEY 0D = abort" done"
 then
 ;

\ Here is a group of Forth words which clash with words in the
\ target. You can use the aliases to ensure that you still
\ has the behavior of the original Forth words.
' ' alias forth'
' dup alias forthDUP
' drop alias forthDROP
' over alias forthOVER
' swap alias forthSWAP
' @ alias forth@
' ! alias forth!
' and alias forthAND
' + alias forth+
' - alias forth-
' word alias forthWORD
' CR alias CRR
' .(alias forth.(
' count alias forthCOUNT

\ Chuck Moore preferred this name for XOR.
: -OR XOR ;

\ RAM is a large array to hold the binary image of P24 target.
\ P24 is a 24-bit CPU. One 24 bit program word is compiled into
\ a 32-bit word in this array.
\ RESET clears the RAM array.
\ RAM@ (a) uses a word address to fetch a program word in RAM.
\ RAM! (n a) stores a word n into RAM at address a.
CREATE ram 8000 ALLOT
: RESET ram 8000 ERASE ; RESET
: RAM@ 4 * ram + @ ;
: RAM! 4 * ram + ! ;

\ FOUR displays four consecutive words in target.
\ SHOW displays 128 words in target from address a. It also returns
\ a+128 so you can SHOW the next block of 128 words.
\ SHOWRAM displays the entire image, 2048 words.
: FOUR 4 0 DO DUP RAM@ 7 U.R 1+ LOOP ;
: SHOW (a) 10 0 DO CR DUP 7 .R SPACE
 FOUR SPACE FOUR LOOP ;
: showram 0 0c 0 do show loop drop ;

\ UD. displays a 24-bit word in 8 digits with leading zeros.

STEREO-CIT-005.A

P24 MISC Processor Manual 30

\ B. displays one byte in two digits.
\ C. displays nibble in one digit.

\ STRING. displays the attribute init string in the VHDL format
\ required by Xilinx Foundation synthesizer. The string
\ "attribute INIT_" is temporarily replaced by "qq" to avoid
\ lines broken by Forth output routine. When the whole
\ attribute blocks are pasted into the VHDL code, "qq" must
\ be globally replaced by "attribute INIT_".

\ EIGHT displays one line of memory attribute for VHDL
\ BLOCKRAM displays one block of memory attributes for VHDL
\ BRAM dumps the entire memory blocks for VHDL
: ud. 0 <# # # # # # # # # #> type ;
: b. 0 <# # # #> type ;
: c. 0 <# # #> type ;
: string. (a) 8 / 10 /mod swap
\ ." attribute INIT_" b.
 ." qq" b.
 ." of memory" 0F and c.
 ." :label is " 22 emit ;
: eight 8 + dup 8 0 DO 1 - DUP RAM@ ud. LOOP DROP ;
: blockram (a) 10 0 DO CR DUP string.
 eight 22 emit 3B emit LOOP cr ;
: BRAM base @ hex 0 0F 0 do blockram loop drop base ! ;

4.3 Calling Other Building Blocks

\ Now we compile the structured, optimizing assembler for P24.
CR .(include asm24)
include ok24

\ Now we compile the kernel portion of the P24 eForth system.
$18 org
CR .(include eforth kernel)

include kern24

\ This set of words will be used to build high level control
\ structures in the body of eForth system:
\ BEGIN ... AGAIN
\ FOR ... NEXT
\ FOR AFT ... THEN NEXT
\ LIT let LDI to assemble a literal
\ $LIT compiles a counted ASCII string, packed three bytes to
\ a 24-bit program word.
: again (a --)
 jump ;
: for (-- a)
 push begin ;
: next (a --)
 doNEXT jump ;
: <next> next ;
: aft (a -- a' a")
 forthDROP begin 0 jump begin forthSWAP ;
: LIT (d --)
 ldi ;

STEREO-CIT-005.A

P24 MISC Processor Manual 31

: $LIT (--)
 22 forthWORD forthCOUNT
 forthDUP ,B (compile count)
 0 DO
 forthCOUNT ,B (compile characters)
 LOOP
 forthDROP ;

\ ;; terminates a high level colon word with a ret.
\ WAIT pauses the execution. Restart by any key. This is
\ a cheap breakpoint mechanism, now replaced by the simulator.
' EXIT alias ;;
\ ' WAIT alias ;; \ debugger

\ CREATE builds a new array word. doVAR returns the array address.
\ VARIABLE builds a variable in P24 target.
: CREATE makeHead begin .head CONSTANT doVAR DOES> forth@ call ;
: VARIABLE CREATE 0 #, ;

\ Ready to compile the high level portion of the P24 eForth.
CR .(include eforth24)
include ef24

\ Compile Forth words used as macros in assembler, but now needed
\ so the Forth interpreter and compiler have access to these
\ functions.
CR
include k24

4.4 Boot Code

\ Build the boot code starting at location 0. This piece of code
\ initializes the variables in RAM memory and then jumps to COLD.
0 ORG
10 LIT 704 LIT 6 LIT
forth' COLD >body forth@ LIT
push push
anew H forth@
 push sta ldp push
 lda pop pop sta
 stp lda
<next>
pops pops ret

\ Build the table of initial values for the variables to be
\ copied to RAM memory on booting.
10 ORG
730 #,
0A #,
lastH forth@ #,
780 #,
lastH forth@ #,
forth' $INTERPRET >body forth@ #,
forth' QUIT >body forth@ #,

STEREO-CIT-005.A

P24 MISC Processor Manual 32

Chapter 5 The Optimizing P24 Assembler

This ASM24.F file contains a Structured, Optimized Assembler for P24
CPU. It packs up to four machine instructions into one 24-bit
program word. It also builds structures similar to those in
high level Forth. The structures are build in a single pass,
without labels.

P24 eForth adopts the Subroutine Thread Model, in which the colon
words contain lists of subroutine calls, instead of lists of
addresses. Using this model, the assembler assumes the duties
of the compiler. Another advantage of the Subroutine Thread
Model is that machine instructions can be assembled in-line
with the colon words.

5.1 Assembly Tools

\ Put all the assembly words and words in the P24 target into
\ the ASM24 vocabulary.
ONLY FORTH ALSO ASM24
ASM24 DEFINITIONS

\ H points to the next free location in the target image to
\ receive new code or data.
\ LOC marks a target location to be reference later. It is not
\ used in the P24 system.
VARIABLE H
: LOC CONSTANT DOES> @ H ! ;

\ LASTH contains the link field address of the last word
\ to build the linked list of Forth words.
variable lastH 0 lastH ! \ init linkfield address lfa

\ NAMER! stored n into the next location in target.
\ It was useful if you want to assemble names in a separated
\ names dictionary.
: nameR! (n --)
 H @ RAM! \ store double to code buffer
 1 H +! \ bump nameH
 ;

\ COMPILE-ONLY marks the current word so it can only be compiled
\ in a colon word. It cannot be executed interactively.
\ IMMEDIATE marks the current word so it will be executed in
\ a colon word. All structure building words are so marked.
: compile-only 400000 lastH @ RAM@ -OR lastH @ RAM! ;
: immediate 800000 lastH @ RAM@ -OR lastH @ RAM! ;

\ Derived from Chuck Moore's P21 20 bit assembler
\ HI selects one of four masks to assemble a machine instruction
\ into one of the four slots in a 24-bit program word.
\ HW points to the program word into which new machine instructions
\ are to be assembled. H may advance from HW as literal values

STEREO-CIT-005.A

P24 MISC Processor Manual 33

\ are assembled following the program word.
\ BI points to one of the 3 bytes in a 24-bit program word. It
\ allows the assembler to pack 3 ASCII characters into one word.
VARIABLE Hi VARIABLE Hw
VARIABLE Bi (for packing)

\ ALIGN forces the next instruction to be assembled into the next
\ word.
\ ORG (a) changes H to a, to start assembling at a new location.
: ALIGN 10 Hi ! ;
: ORG DUP . CR H ! ALIGN ;

\ MASK contains four mask patterns to assemble a machine instruction
\ into one 6-bit slot of a program word. The mask is selected by
\ HI.
\ #, (n) assembles n into the next free location pointed by H.
\ Advance H afterwards.
\ ,W (n) assembles a machine instruction to the next free slot
\ in the current program word pointed to by HW.
\ ,I (n) assembles a machine instruction. It the current word
\ is full, assemble the instruction into the next word.
\ ,B (c) packs a character c into the current word. Uses BI to
\ determine the character postion in a 24-bit word. Pack it to
\ the next word if the current word is full.
CREATE mask FC0000 , 3F000 , FC0 , 3F ,
: #, FFFFFF AND H @ RAM! 1 H +! ;
: ,w Hw @ RAM@ -OR FFFFFF AND Hw @ RAM! ;
: ,I Hi @ 10 AND IF 0 Hi ! H @ Hw ! 0 #, THEN
 Hi @ mask + @ AND ,w 4 Hi +! ;
: ,B (c) Bi @ 0 = IF 1 Bi ! H @ Hw ! 0 #, 10000 * ,w EXIT THEN
 Bi @ 1 = IF 2 Bi ! 100 * ,w EXIT THEN
 0 Bi ! ,w ;

5.2 Transfer Instruction Assembler

\ INST A defining word to define a single slot machine instruction.

\ When the machine instruction word is executed, it assembles the
\ desired machine instruction into the current program word. If
\ the current word is full, start a new program word. The constant
\ contained in the machine instruction word has four identical
\ machine code patterns in the four slots, so that the word ,I
\ can select one of them and add it to the current program word.
\ NOP machine instruction word has 1E in all four slots. They
\ make up the 24-bit pattern 79E79E.
: INST CONSTANT DOES> @ ,I ;
79E79E INST nop

\ ANEW starts a new program word by filling the current word with
\ NOPs. It is required when we have to assemble a 4-slot
\ instruction like CALL, BZ, or BNZ.
: anew BEGIN Hi @ 10 AND 0= WHILE nop REPEAT 0 Bi !
 H @ Hw ! ;

\ JMP A defining word to assemble a 4-slot long instruction. The
\ machine instruction thus defined will take an address on the
\ stack and assemble the least significant 18 bits of the address

STEREO-CIT-005.A

P24 MISC Processor Manual 34

\ into the address field of the instruction.
: JMP CONSTANT DOES> @ anew SWAP 3FFFF AND -OR #, ALIGN ;

\ BEGIN starts a new program word and marks its address on stack.
\ -;' terminates a colon word by changing the last subroutine
\ call into a jump. This is tail-recursion, which saves the
\ return instruction at the end of a colon word.
\ LDI (n) assembles a Load-Immediate machine instruction and
\ add the literal value to the next word.
: begin anew H @ ;
: -;' Hw @ RAM@ DUP $FC0000 AND 100000 =
 IF 100000 -OR Hw @ RAM! ELSE DROP THEN ;
: ldi 28A28A ,I #, ;

\ CALL assembles a 18-bit call instruction to a location in the
\ current page of 256K words.
\ JUMP assembles a 18-bit jump instruction to a location in the
\ current page of 256K words.
\ BZ assembles a 18-bit conditional branch to a location in the
\ current page of 256K words. Branch on T=0.
\ BNC assembles a 18-bit conditional branch to a location in the
\ current page of 256K words. Branch on Carry Not Set.
\ UNTIL assembles a branch on T=0.
\ -UNTIL assembles a branch on no carry.
100000 JMP call
0 JMP jump 80000 JMP bz C0000 JMP bnc
 80000 JMP until C0000 JMP -until

\ The following words build structures in assembly code words,
\ much like those in the high level code. Since we use the
\ Subroutine Thread Model for colon words, these structure words
\ will be used in the colon words as well. The structures are:
\ IF ... THEN
\ IF ... ELSE ,,, THEN
\ SKIP ... THEN
\ BEGIN ... AGIAN
\ BEGIN ... UNTIL
\ BEGIN ... WHILE ... REPEAT
\ -IF, -WHILE, -UNTIL are similar to IF, WHILE, UNTIL, except
\ that they assemble BNC instead of BZ.
: if begin 0 bz ;
: -if begin 0 bnc ;
: skip begin 0 jump ;
: then DUP >R >R begin 3FFFF AND R> RAM@ -OR R> RAM! ;
: else skip SWAP then ;
: while if SWAP ;
: -while -if SWAP ;
: repeat jump then ;
: again jump ;

5.3 Single Slot Instructions

\ Here is the list of all the single slot machine instructions.
\ RET returns from subroutine call.
\ LDP loads a word and pushes it to T. Address of word is in A.
\ A is auto-incremented.

STEREO-CIT-005.A

P24 MISC Processor Manual 35

\ LD load a word and pushes it to T. Address of word is in A.
\ STP pops a word from T and stores it to memory. Address of
\ word is in A. A is auto-incremented.
\ ST pops a word from T and stores it to memory. Address of
\ word is in A.
\ COM compliments T, ones compliment.
\ SHL left shifts T by one bit.
\ SHR right shifts T by one bit. Arithmetic right shift.
\ MUL multiply step.
\ XOR pops data stack and XORs it to T.
\ AND pops data stack and ANDs it to T.
\ DIV divide step.
\ ADD pops data stack and ADDs it to T.
\ POP pushes T on data stack, and pops return stack to T.
\ LDA pushes T on data stack, and copy A to T.
\ DUP pushes T on data stack.
\ PUSH pushes T on return stack, and pops data stack to T.
\ STA Copies T to A and pops data stack to T.
\ DROP pops data stack to T.

 41041 INST ret
249249 INST ldp 2CB2CB INST ld 34D34D INST stp 3CF3CF INST st
410410 INST com 451451 INST shl 492492 INST shr 4D34D3 INST mul
514514 INST xor 555555 INST and 596596 INST div 5D75D7 INST add
618618 INST pop 659659 INST lda 69A69A INST dup
71C71C INST push 75D75D INST sta (79E79E INST nop) 7DF7DF INST drop

5.4 Miscellaneous Assembly Tools

\ POPS alias of DROP, useful after high level DROP is defined.
\ PUSHS alias of DUP, useful after high level DUP is defined.
: pops drop ;

: pushs dup ;

\ LJUMP a long jump to a 24-bit address. Pushes the address
\ on the return stack and then execute RET.
: ljump ' >body @ ldi \ get address of target word
 push ret ; \ long jump

\ (MAKEHEAD) builds a header for a new word. First builds the
\ link field using LASTH, and then packs the name count and name
\ into the name field, three bytes per word.
\ MAKEHEAD builds a header while retains the word pointer so
\ that the name string is still available to be printed.
: (makeHead)
 anew
 20 word \ get name of new definition
 lastH @ nameR! \ fill link field of last word
 H @ lastH ! \ save nfa in lastH
 forthdup c@ ,B \ store count
 count 0 do
 count ,B \ fill name field
 loop forthdrop anew
 ;
: makeHead
 >IN @ >R \ save interpreter pointer

STEREO-CIT-005.A

P24 MISC Processor Manual 36

 (makeHead)
 R> >IN ! \ restore word pointer
 ;

\ $LIT packs a counted string into the next available space
\ in the target image, three bytes to a word.
: $LIT (--)
 anew
 22 WORD
 forthDUP c@ ,B (compile count)
 count 0 DO
 count ,B (compile characters)
 LOOP
 forthDROP anew ;

\ ': builds a new subroutine in the target without a header.
\ CODE builds a new code word in the target with a header.
\ :: builds a new colon word in the target with a header. As
\ we are using the Subroutine Thread Model, :: is the same as
\ CODE, and colon words shared all the structure building tools
\ with code words.
: ': begin .head CONSTANT DOES> @ call ;
: CODE makeHead ': ;
: :: CODE ;

Chapter 6. The P24 Kernel

The KERN24.F file contains most of the words which are written
in assembly for speed considerations. P24 eForth is optimized
as all the words which can be written in assembly are so done.
However, much more optimization is achieved by a set of macros,
which try to convert the most commonly used high level Forth
words into machine instructions and packs these machine instruction
as tightly as possible. The end results are that the code size
is significantly reduced and the execution speed greatly increased.

The use of macros will be further explained along with the code.

The code words in this file alse serve as programming examples
for the optimal use of the P24 CPU. It is worth you while to study
them carefully, and use them as templates when you like to convert
high level application words into assembly.

The Forth Virtual Engine is:
 T top of stack
 S data stack 16 levels
 R return stack 16 levels
Both the data and return stacks are in CPU.

The A register is used by the memory fetching and storing
instructions to provide address to the external memory. When
not used to address memory, A can be used as a scratched
register.

STEREO-CIT-005.A

P24 MISC Processor Manual 37

In the MUL and DIV instructions, the A register serves as the
extension to the T register to hold the lower half of the partial
product or the divident.

Subroutine thread model eliminates IP, doColon, and EXIT.

16 levels of stacks are enough for most applications. They will
wrap around when exhausted.

Memory allocation:
 0 Boot code
 10 Initial variables
 18 Kernel
 9A Forth words
 700 RAM, variables
 710 Text buffer
 730 TIB
 780 User dictionary
 7FF End of memory

6.1 System Variable

\ All the system variables are defined as macros. They will be
\ assembled as literals in the form of LDI instructions. On
\ execution, they will return their respective addresses on the
\ data stack. It is assumed that the target system has RAM starting
\ from location $700. For a different target system, you have
\ to change the locations in these macros.

\ HLD points to buffer for output numeric string.
\ SPAN variable to hold the length of input text string.
\ >IN offset to the text string currently being interpreted.
\ #TIB length of the input text string
\ 'TIB location of the terminal input buffer.
\ BASE base for number conversions
\ CONTEXT pointer to start dictionary searches
\ CP points to the top of the dictionary
\ LAST points to the name field of the last word
\ 'EVAL points to $INTERPRET or $COMPILE to evaluate words
\ 'ABORT points to error recovery routine
\ TEXT points to text buffer to unpack strings
\ tmp a scratch pad variable.
hex
CRR .(System variables) CRR
: HLD 700 ldi ; \ scratch
: SPAN 701 ldi ; \ #chars input by EXPECT
: >IN 702 ldi ; \ input buffer offset
: #TIB 703 ldi ; \ #chars in the input buffer
: 'TIB 704 ldi ; \ TIB
: BASE 705 ldi ; \ number base

CRR
: CONTEXT 706 ldi ; \ first search vocabulary
: CP 707 ldi ; \ dictionary code pointer
: LAST 708 ldi ; \ ptr to last name compiled

STEREO-CIT-005.A

P24 MISC Processor Manual 38

: 'EVAL 709 ldi ; \ interpret/compile vector
: 'ABORT 70A ldi ;
: TEXT 710 ldi ; \ unpack buffer
: tmp 70B ldi ; \ ptr to converted # string

6.2 Assembly Macros for Code Optimizing

\ Many Forth words have corresponding P24 machine instructions
\ or can be represented by a short sequence of P24 machine
\ instructions. Instead of representing them in subroutines,
\ they are defined as macros, which invoke the assembler
\ mneumonics to pack as many machine instructions to program
\ words.
\ Obviously, if a Forth words can be translated to less than
\ four machine instrucitons, there are gains in shorter code
\ sizes and faster execution speed. However, there are also
\ significant gains when a Forth word is defined as a 4 machine
\ instruction macro, because it may continue the packing from
\ the previous word to the next word.
\ These macros together with the machine instructions
\ DUP, DROP, AND, XOR
\ tend to pack the code tightly.
CR .(macro words) CR
: EXIT ret ;
: EXECUTE (a) push ret ;
: ! (n a --) sta st ;
: @ (a - n) sta ld ;
: R> (- n) pop ;
: R@ (- n) pop dup push ;
: >R (n) push ;
: SWAP (n1 n2 - n2 n1)
 push sta pop lda ;
: OVER (n1 n2 - n1 n2 n1)
 push dup sta pop
 lda ;
: 2DROP (w w --)
 drop drop ;
: + (w w -- w) add ;
: NOT (w -- w) com ;
: NEGATE (n -- -n)
 com 1 ldi add ;
: 1- (a -- a)
 -1 ldi add ;
: 1+ (a -- a)
 1 ldi add ;
: BL (-- 32)
 20 ldi ;
: +! (n a --)
 sta ld add st
 ;
: - (w w -- w)
 com add 1 ldi add
 ;

6.3 Forth Words Coded in Assembler

STEREO-CIT-005.A

P24 MISC Processor Manual 39

\ Following words are complicated and have to be defined as
\ code word.
\ doVAR starts a variable or an array. It returns the address
\ following doVAR.

\ doNEXT terminates a FOR-NEXT loop. It decrements the counter
\ on the return stack. It exits the loop when the count is 0.
CR .(kernel words) CR
CODE doVAR
 pop ret
CODE doNEXT
 pop pop dup \ decrement count
 if -1 ldi add push
 push ret \ if index is not 0, loop back
 then
 drop 1 ldi add \ index is 0, exit loop and continue
 push ret

\ Following are Forth words which are too long for macros,
\ yet still easily expressible in machine instructions.
\ They are all commonly used Forth words.
\ UM+ (n n -- sum carry) is a special word in eForth to
\ provide carry in addition. However, it is not used here
\ because carry is readily accessible using -if or BNC.
\ Note that BZ removes the flag tested from the stack, while
\ BNC does not disturb the data stack. Thus BZ can be used
\ to code IF directly, and BNC will let -IF to test T repeatedly
\ using the SHL instruction.
CR
CODE 0< (n - f)
 shl
 -if drop -1 ldi ret
 then
 dup xor (0 ldi)
 ret
CODE OR (n n - n)
 com push com
 pop and com ret
CODE UM+ (n n - n carry)
 add
 -if 1 ldi ret
 then
 dup dup xor (0)
 ret
CODE ?DUP (w -- w w | 0)
 dup
 if dup ret then
 ret
CODE ROT (w1 w2 w3 -- w2 w3 w1)
 push push sta pop
 pop lda ret
CODE 2DUP (w1 w2 -- w1 w2 w1 w2)
 dup push push
 dup sta pop lda pop
 ret

CR

STEREO-CIT-005.A

P24 MISC Processor Manual 40

CODE DNEGATE (d -- -d)
 com push com 1 ldi
 add
 -if pop ret
 then
 pop 1 ldi add ret
CODE ABS (n -- +n)
 dup shl
 -if drop com 1 ldi add
 ret
 then
 drop ret

CR
CODE = (w w -- t)
 xor
 if dup dup xor ret then
 -1 ldi ret
CODE 2! (d a --)
 sta push stp
 pop st ret
CODE 2@ (a -- d)
 sta ldp ld ret
CODE COUNT (a -- a+1 n)
 sta ldp push lda
 pop ret

6.4 Packing and Unpacking Text Strings

\ B> adds one byte at b to the word at a. It shifts the
\ existing data in a left by 8 bits. Returns b+1 and a,
\ and is ready to pack in the next byte.

\ B> is used by PACK$ to pack a byte string into a packed
\ string.
\ >B unpacks three bytes in a and puts them at b. Returns
\ a+1 and b+3 so it is ready to unpack the next word. The
\ first byte unpacked is also return as a count, which is
\ useful when this word is the first word of a packed string.
\ >B is called by UNPACK$ to convert a packed string to a
\ counted byte string.
CR (pack B> and unpack >B strings)
CODE B> (b a -- b+1 a)
 push sta ldp push
 lda pop pop sta
 ld
 shl shl shl shl
 shl shl shl shl
 add st lda ret
CODE >B (a b -- a+1 b+3 count)
 push sta ldp push
 lda pop pop (a+1 n b) sta
 dup push
 $FF ldi and pop
 $FFFF00 ldi and $FF ldi xor
 shr shr shr shr
 shr shr shr shr

STEREO-CIT-005.A

P24 MISC Processor Manual 41

 dup push
 $FF ldi and pop
 $FFFF00 ldi and $FF ldi xor
 shr shr shr shr
 shr shr shr shr
 $FF ldi and dup push
 stp stp stp (a+1 c)
 lda pop ret

Chapter 7. High Level Words in P24 eForth

The file EF24.F contains all the high level words in P24 eForth.
This implementation follows closely the eForth model. The
following set of words are removed because they are not absolutely
necessary for embedded applications. In this implementation,
the size constrain is severe, and the existence of every word
must be justified rigorously.

Words removed from the eForth model:
 CATCH, THROW, PRESET, XIO, FILE, HAND, I/O
 CONSOLE, RECURSE, USER, VER, HI, 'BOOT

Most of the user variables are eliminated:
 SP0, RP0, '?KEY, 'EMIT, 'EXPECT, 'TAP, 'ECHO
 'PROMPT, CSP, 'NUMBER, HANDLER, CURRENT, NP

Only these user variables remain and are macros:
 HLD, SPAN, >IN, #TIB, 'TIB, 'EVAL, BASE, tmp
 CP, CONTEXT, LAST, 'ABORT, TEXT

The P24 eForth system can be summarized in the following words
and their pseudo code:

COLD boots Forth, print sign-on message and jump to QUIT
QUIT repeats the sequence: accepts a line of text and executes
 the commands in sequence. The pseudo code is:
 : QUIT BEGIN QUERY EVAL AGAIN ;
QUERY accepts one line of text of 80 characters or terminated
 by a carriage-return.
EVAL parses out tokens in the text and evaluates them:
 : EVAL BEGIN TOKEN WHILE 'EVAL @EXECUTE REPEAT .OK ;
TOKEN parses out one word from the input text.
'EVAL contains $INTERPRET in the interpret mode or $COMPILE
 in the compiling mode.
@EXECUTE executes either $INTERPRET or $COMPILE.
.OK prints out the "OK" message.
$INTERPRET (a) searches the dictionary for a word of the
 text string at a. If the word exists, execute it.
 Else, convert the string into a number on the stack.
 Failing to convert the string to a number, prints an
 error message and abort to QUIT.
 : $INTERPRET NAME? IF EXECUTE ELSE NUMBER?
 IF ELSE ERROR THEN THEN ;
$COMPILE (a) searches the dictionary for a word of the
 text string at a. If the word exists, compile it.

STEREO-CIT-005.A

P24 MISC Processor Manual 42

 Else, convert the string to a number and compile the
 number as a literal. Failing the conversion, prints
 a message and abort to QUIT.
 : $COMPILE NAME? IF , ELSE NUMBER?
 IF LITERAL ELSE ERROR THEN THEN ;
NAME? calls 'find' to locate a word of the name parsed out
 out the input text string.
NUMBER? (a) converts the text string at a to a number.
ERROR prints the offending text string and aborts to QUIT.
LITERAL (n) compiles n as a literal into the current word
 being compiled.

The above words serve as a top-down map of the eForth operating
system. The eForth system source code builds up to QUIT and
COLD. Most words in EF24.F are necessary in the building
process. The eForth system can be viewed as a very sophisticated
application of P24. Most applications are much simplier than
eForth system. You can model your application code to eForth,
and use all the tools contained therein.

8.1 Serial Port

\ 50us delays 52 us, half of a bit at 9600 baud.
\ 100us delays 104 us, one bit frame at 9600 baud.

\ EMIT (c) sends character c to the serial output port.

\ KEY (-- c) waits for a character from the serial input port.
\ The serial ports are actually connected to the T register.

\ The No-Cost UART
\ On executing SHR instruction, the least significant bit in
\ T, T(0), is shifted to a flip-flop, whose output is
\ connected to the serial output port. At the same time
\ the state of the serial input port is latched into the
\ carry bit, which is bit T(24). Repeating SHR 8 times,
\ a character is sent out. One character is captured by
\ waiting for the start bit on the serial input port, and then
\ test the port at the intervals of 100 us.
\ One must be very careful in using the SHR instruction.
\ In order not to disturb the output port, you should always
\ set T(0) to a 1 before executing SHR. This way, the serial
\ output port stays at the mark level.

CRR .(Chararter IO) CRR
CODE 50us
 2 ldi skip
CODE 100us
 1 ldi
 then
 sta -138 ldi
 begin lda add
 -until
 drop
 ret
CODE EMIT (c --)

STEREO-CIT-005.A

P24 MISC Processor Manual 43

 $7F ldi and
 shl $FFFF01 ldi xor
 $0A ldi
 FOR shr 100us NEXT
 drop ret
CODE KEY (-- c)
 $FFFFFF ldi
 begin shr
 -until
 repeat (wait for start bit)
 50us
 7 ldi
 FOR
 100us shr
 -if $80 ldi xor then
 NEXT
 $FF ldi and
 100us ret

8.2 Simple Utility Words

\ These common functions are too complicated to code in machine
\ instructions, and are left in the high level form.

CRR .(Common functions) CRR
:: U< (u u -- t) 2DUP XOR 0< IF SWAP DROP 0< EXIT THEN - 0< -;'
:: < (n n -- t) 2DUP XOR 0< IF DROP 0< EXIT THEN - 0< -;'
:: MAX (n n -- n) 2DUP < IF SWAP THEN DROP ;;
:: MIN (n n -- n) 2DUP SWAP < IF SWAP THEN DROP ;;
:: WITHIN (u ul uh -- t) \ ul <= u < uh
 OVER - >R - R> U< -;'

8.3 Division

\ UM/MOD and /MOD share the same body to do division of a 48-bit
\ divident by a 24 bit divisor, using the DIV machine instruction.
\ The higher half of the divident is placed in T and the lower

\ half is placed in A. The divisor is negated and placed on the
\ data stack below T. The negated divsor is added to T in the
\ adder. If a carry is generated, indicating that T is big enought
\ to subtract the divisor, The sum is accepted into T, and then T-A
\ combination is shifted left by one bit. The most significant bit
\ in A is shifted into T(0), and Carry is shifted into A(0).
\ If the adder does not generate a carry, the subtraction will not
\ be done. The T-A combination is shifted left by one bit, and
\ a 0 is shifted into A(0).

\ The above divide step DIV instructions is repeated 25 times to
\ generate the proper quotient in A. The remainder is in T, if it
\ is shifted right by one bit.

\ The only restriction in this division procedure is that the divisor
\ and the divident must be positive. It cannot handle negative
\ divisor or negative divident. This is not a serious limitation
\ because the special word M/MOD does signed division by first
\ convert both divisor and divident to postive numbers for division

STEREO-CIT-005.A

P24 MISC Processor Manual 44

\ operations, and then place appropriate signs in front of quotient
\ and remainder.

\ UM/MOD, /MOD, /, and MOD all assume that divisors and dividents
\ are positive. In the eForth system, this is not a problem.
\ Nevertheless, users must be aware of this limitation when writing
\ code which must handle negative numbers.
CRR .(Divide) CRR
CODE UM/MOD (ud u -- ur uq)
 com 1 ldi add sta
 push lda push sta
 pop pop
 skip
CODE /MOD (n n -- r q)
 com 1 ldi add push
 sta pop 0 ldi
 then
 div div div div
 div div div div
 div div div div
 div div div div
 div div div div
 div div div div
 div 1 ldi xor shr
 push drop pop lda
 ret
CODE MOD (n n -- r)
 /MOD
 drop ret
CODE / (n n -- q)
 /MOD
 push drop pop ret
:: M/MOD (d n -- r q) \ floored
 DUP 0< DUP >R
 IF NEGATE >R DNEGATE R>
 THEN >R DUP 0< IF R@ + THEN R> UM/MOD R>
 IF SWAP NEGATE SWAP THEN ;;

8.4 Multiplication Words

\ UM* multiplies two unsigned 24-bit integers and produces a
\ 48-bit product. The multiplier is placed in A register, and
\ the multiplicant is placed on the data stack below T. T is
\ cleared to zero. The MUL machine instruction looks at A(0)

\ bit. If it is a one, the multiplicant is added to T, and
\ the T-A combination is shifted to the right by one bit.
\ Carry us shifted into T(23). It A(0) is a zero, the multiplicant
\ is not added. The T-A combination is shifted to the right, and
\ a zero is shifted into T(23).
\ After the MUL instruction is repeated 24 times, a 48-bit product
\ is produced in the T-A combination. T has the more significant
\ half and A has the less significant half of the product.

\ Both UM* and * do the unsigned multiplication. M* does signed
\ multiplication. For correctness, * should call M* to do the
\ multiplicant. However, here * calls UM* for speed. You should

STEREO-CIT-005.A

P24 MISC Processor Manual 45

\ be aware of this property in your applications. As the eForth
\ system only does unsigned multiplications, it is not a problem.
CRR .(Multiply) CRR
CODE UM* (u u -- ud)
 sta 0 ldi
 mul mul mul mul
 mul mul mul mul
 mul mul mul mul
 mul mul mul mul
 mul mul mul mul
 mul mul mul mul
 push drop lda pop
 ret
:: * (n n -- n) UM* DROP ;;
:: M* (n n -- d)
 2DUP XOR 0< >R ABS SWAP ABS UM* R> IF DNEGATE THEN ;;
:: */MOD (n n n -- r q) >R M* R> M/MOD -;'
:: */ (n n n -- q) */MOD SWAP DROP ;;

8.5 Memory Access Words
8.6
\ >CHAR filters out non-printable characters for TYPE.
\ It thus ensures that TYPEing a non-printable character
\ will not choke the printer.
CRR .(Bits & Bytes) CRR
:: >CHAR (c -- c)
 $7F LIT AND DUP $7F LIT BL WITHIN
 IF DROP (CHAR _) $5F LIT THEN ;;

CRR .(Memory access) CRR
:: HERE (-- a) CP @ ;;
:: PAD (-- a) CP @ 50 LIT + ;;
:: TIB (-- a) 'TIB @ ;;

CRR
:: @EXECUTE (a --) @ ?DUP IF EXECUTE THEN ;;
:: CMOVE (b b u --)
 FOR AFT >R DUP @ R@ ! 1+ R> 1+ THEN NEXT 2DROP ;;
:: FILL (b u c --)
 SWAP FOR SWAP AFT 2DUP ! 1+ THEN NEXT 2DROP ;;

8.6 String Packing and Unpacking Words

\ PACK$ packs the string at b with length u into memory located
\ at a, three bytes to a 24-bit program word. It calls B> to
\ do the packing. This packing function greatly reduces the

\ total size of the P24 code image. The packing also speeds
\ up the dictionary searches because three bytes are compared
\ at once. The system scratch variable TMP is used to store
\ the byte count which directs the bytes to their proper
\ location. After the byte string is fully packed, the last
\ packed program word is left justified and empty slots are
\ filled with NUL bytes.
:: PACK$ (b u a -- a) \ null fill
 dup push

STEREO-CIT-005.A

P24 MISC Processor Manual 46

 1 ldi tmp sta st
 sta dup push st
 lda pop
 FOR AFT (b a)
 B>
 tmp sta ld
 IF ld 1 ldi xor
 IF dup dup xor st
 1 ldi add
 ELSE 2 ldi st
 THEN
 ELSE 1 ldi st
 THEN
 THEN NEXT
 tmp sta ld
 IF ld 2 ldi xor
 IF sta ld
 shl shl shl shl
 shl shl shl shl
 st lda
 THEN
 sta ld
 shl shl shl shl
 shl shl shl shl
 st lda
 THEN
 drop drop pop
 ;;

\ UNPACK$ unpacks a packed string at a into a counted byte string
\ at b. It calls >B to unpack a 24-bit word into three bytes.
\ It allows names of words to be printed, and in-line packed strings
\ to be accessed as byte strings.
:: UNPACK$ (a b -- b)
 DUP >R (save b)
 >B $1F LIT AND 3 LIT /
 FOR AFT
 >B DROP
 THEN NEXT
 2DROP R>
 ;;

8.6 Number Output Words

\ All numbers in P24 are stored internally as 24-bit binary patterns.
\ To make the numbers visual to the user, they are converted to
\ strings of digits to be printed. A number is converted one digit
\ at a time. It is divided by the value stored in BASE, and the

\ remainder is converted to a digit by DIGIT. The quotient is
\ divided further by BASE to build a complete numeric string
\ suitable for printing. The output numeric string is built
\ backward below the memory buffer at PAD, using HLD as the pointer
\ moving backward. Additional formating characters can be inserted
\ into the output string by HOLD.

\ This numeric output mechanism is extremely flexible and can produce

STEREO-CIT-005.A

P24 MISC Processor Manual 47

\ numbers in a wide variety of formats for tables and arrays. It also
\ allows the user to display numbers in any reasonable base, like
\ decimal, hexidecimal, octal, and binary, among other non-conventional
\ bases.
CRR .(Numeric Output) CRR \ single precision
:: DIGIT (u -- c)
 9 LIT OVER < 7 LIT AND +
 (CHAR 0) 30 LIT + ;;
:: EXTRACT (n base -- n c)
 0 LIT SWAP UM/MOD SWAP DIGIT -;'
:: <# (--) PAD HLD ! ;;
:: HOLD (c --) HLD @ 1- DUP HLD ! ! ;;
:: # (u -- u) BASE @ EXTRACT HOLD -;'
:: #S (u -- 0) BEGIN # DUP WHILE REPEAT ;;
CRR
:: SIGN (n --) 0< IF (CHAR -) 2D LIT HOLD THEN ;;
:: #> (w -- b u) DROP HLD @ PAD OVER - ;;
:: str (n -- b u) DUP >R ABS <# #S R> SIGN #> -;'
:: HEX (--) 10 LIT BASE ! ;;
:: DECIMAL (--) 0A LIT BASE ! ;;

8.7 Number Input Words

\ Numbers are entered into P24 as strings of digits, delimited by
\ spaces and other white characters like CR, TAB, NUL, etc.
\ Numeric strings are converted to internal binary form by
\ multiply the digits, most significant digit first, by the value

\ in BASE and accumulate the product until the digits are exhausted.

\ NUMBER? does the conversion. It allows a leading $ to
\ indicate that the numeric string is in hexidecimal. It also
\ allows a leading - sign for negative numbers.
CRR .(Numeric Input) CRR \ single precision
:: DIGIT? (c base -- u t)
 >R (CHAR 0) 30 LIT - 9 LIT OVER <
 IF 7 LIT - DUP 0A LIT < OR THEN DUP R> U< -;'
:: NUMBER? (a -- n T | a F)
 BASE @ >R 0 LIT OVER COUNT (a 0 b n)
 OVER @ (CHAR $) 24 LIT =
 IF HEX SWAP 1+ SWAP 1- THEN (a 0 b' n')
 OVER @ (CHAR -) 2D LIT = >R (a 0 b n)
 SWAP R@ - SWAP R@ + (a 0 b" n") ?DUP
 IF 1- (a 0 b n)
 FOR DUP >R @ BASE @ DIGIT?
 WHILE SWAP BASE @ * + R> 1+
 NEXT DROP R@ (b ?sign) IF NEGATE THEN SWAP
 ELSE R> R> (b index) 2DROP (digit number) 2DROP 0 LIT
 THEN DUP
 THEN R> (n ?sign) 2DROP R> BASE ! ;;

\ This is the set of words displaying characters to the output
\ device.
\ DO$ is an internal system word which unpacks a packed string compiled
\ in-line with program words. It digs up the starting address of the
\ packed string on the return stack, unpacks the string to location a,
\ and then move the return address passing the packed string. Then,

STEREO-CIT-005.A

P24 MISC Processor Manual 48

\ the execution can continue, skipping the packed string in-line.

\ $"| is compiled before a packed string. It unpacks the string and
\ returns the address of the TEXT buffer where the unpack string is
\ stored.
\ ."| is also compiled before a packed string. It unpacks the string
\ and displays it on the output device.
CRR .(Basic I/O) CRR
:: SPACE (--) BL EMIT -;'
:: CHARS (+n c --)
 SWAP 0 LIT MAX
 FOR AFT DUP EMIT THEN NEXT DROP ;;
:: SPACES (+n --) BL CHARS -;'
:: TYPE (b u --)
 FOR AFT DUP @ >CHAR EMIT 1+
 THEN NEXT DROP ;;
:: CR (--) (=Cr)
 0A LIT 0D LIT EMIT EMIT -;'
:: do$ (-- a)
 R> R@ TEXT UNPACK$
 R@ R> @ $3FFFFF LIT AND $30000 LIT / 1+ +
 >R SWAP >R ;;

CRR
:: $"| (-- a) do$ -;'
:: ."| (--) do$ COUNT TYPE -;'
:: .R (n +n --)
 >R str R> OVER - SPACES TYPE -;'
:: U.R (u +n --)
 >R <# #S #> R> OVER - SPACES TYPE -;'
:: U. (u --) <# #S #> SPACE TYPE -;'
:: . (n --)
 BASE @ 0A LIT XOR
 IF U. EXIT THEN str SPACE TYPE -;'
:: ? (a --) @ . -;'

8.7 Word Parser
\ TOKEN parses out the next word in the input stream, delimited by
\ spaces. The word is packed and placed on the top of the dictionary,
\ so that it can be used to do dictionary searches, and becomes the

\ name field if the word just happed to be the name of a new
\ definition.

\ PARSE allows the user to specify the delimiting character to parse
\ out the next word in the input stream. It calls 'parse' to do the
\ dirty work.

\ 'parse' scans the input stream and skips the leading blanks if
\ SPACE is the delimiting character. The parsed word starts with
\ the next non-delimiting character and is terminated by the next
\ delimiting character. It returns b the beginning address of the
\ parsed word, u the length of the remaining characters in the input
\ stream, and delta the length of the parsed word. It is a very
\ long word with many nested and interlaced structures. It is a
\ challenge even to the very experienced Forth programmers.
CRR .(Parsing) CRR
:: (parse) (b u c -- b u delta ; <string>)

STEREO-CIT-005.A

P24 MISC Processor Manual 49

 tmp ! OVER >R DUP \ b u u
 IF 1- tmp @ BL =
 IF \ b u' \ 'skip'
 FOR BL OVER @ - 0< NOT
 WHILE 1+
 NEXT (b) R> DROP 0 LIT DUP EXIT \ all delim
 THEN R>
 THEN OVER SWAP \ b' b' u' \ 'scan'
 FOR tmp @ OVER @ - tmp @ BL =
 IF 0< THEN WHILE 1+
 NEXT DUP >R
 ELSE R> DROP DUP 1+ >R
 THEN OVER - R> R> - EXIT
 THEN (b u) OVER R> - ;;
:: PARSE (c -- b u ; <string>)
 >R TIB >IN @ +
 #TIB @ >IN @ -
 R> (parse) >IN +! ;;
:: TOKEN (-- a ;; <string>)
 BL PARSE 1F LIT MIN 2DUP
 DUP TEXT ! TEXT 1+ SWAP CMOVE
 HERE 1+ PACK$ -;'
:: WORD (c -- a ; <string>)
 PARSE HERE 1+ PACK$ -;'

8.8 Dictionary Search

\ 'find' follows the linked list in the dictionary, and compares
\ the names of each compiled word with the packed string stored
\ at a. va points to the starting name field of the dictionary.
\ If a match is found, it returns the execution address (code

\ field address) and the name field address of the matching word
\ in the dictionary. If it failed to find a match, it returns
\ the address of the packed string and a 0 for a false flag.

\ 'find' runs through the dictionary very quickly, because it
\ compares the length and the first two characters in the names.
\ Most Forth words are unique in these three characters. For
\ words with the same lengths and identical first two characters,
\ 'find' calls SAME? to determine whether the remaining characters
\ of the packed strings match.
\ NAME> converts a name field address na to a code field address xt.
\
CRR .(Dictionary Search) CRR
:: NAME> (na -- xt)
 DUP @ $3FFFFF LIT AND
 $30000 LIT / + 1+ ;;
:: SAME? (a a u -- a a f \ -0+)
 $30000 LIT /
 FOR AFT OVER R@ + @
 OVER R@ + @ - ?DUP
 IF R> DROP EXIT THEN
 THEN NEXT
 0 LIT ;;
:: find (a va -- xt na | a F)
 SWAP \ va a

STEREO-CIT-005.A

P24 MISC Processor Manual 50

 DUP @ tmp ! \ va a \ get cell count
 DUP @ >R \ va a \ count
 1+ SWAP \ a' va
 BEGIN @ DUP \ a' na na
 IF DUP @ $3FFFFF LIT AND
 R@ XOR \ ignore lexicon bits
 IF 1+ -1 LIT
 ELSE 1+ tmp @ SAME?
 THEN
 ELSE R> DROP SWAP 1- SWAP EXIT \ a F
 THEN
 WHILE 1- 1- \ a' la
 REPEAT R> DROP SWAP DROP
 1- DUP NAME> SWAP ;;
:: NAME? (a -- xt na | a F)
 CONTEXT find -;'

8.9 Terminal Input

\ ^H processes the Back Space encountered in the input stream. It
\ backs up the character pointer and erased the character preceeding

\ the Back Sapce.
\ TAP echoes an input character and deposit it into the terminal
\ input buffer.
\ kTAP Detects a Carriage Return to terminate the input stream. It
\ also calls ^H to process a Back Space, and TAP to process ordinary
\ characters.
\ These words allows the interpreter to handle a human user on the
\ terminal smoothly, and friendly.
CRR .(Terminal) CRR
:: ^H (b b b -- b b b) \ backspace
 >R OVER R> SWAP OVER XOR
 IF (=BkSp) 8 LIT EMIT
 1- BL EMIT \ distructive
 (=BkSp) 8 LIT EMIT \ backspace
 THEN ;;
:: TAP (bot eot cur c -- bot eot cur)
 DUP EMIT OVER ! 1+ ;;
:: kTAP (bot eot cur c -- bot eot cur)
 DUP (=Cr) 0D LIT XOR
 IF (=BkSp) 8 LIT XOR
 IF BL TAP ELSE ^H THEN
 EXIT
 THEN DROP SWAP DROP DUP ;;

\ QUERY accepts a line of characters typed in by the user and
\ put them in the terminal input buffer for interpreting or
\ compiling. The line is terminated at the 80th input
\ character or a Carriage Return.
\ 'accept' waits for input characters and place them in the
\ terminal input buffer at b with length u. It returns the
\ same buffer address b with the length of the character string
\ actually received.
\ EXPECT receives the input stream and stores the length in the
\ variable SPAN.

STEREO-CIT-005.A

P24 MISC Processor Manual 51

CRR
:: accept (b u -- b u)
 OVER + OVER
 BEGIN 2DUP XOR
 WHILE KEY DUP BL - 5F LIT U<
 IF TAP ELSE kTAP THEN
 REPEAT DROP OVER - ;;
:: EXPECT (b u --) accept SPAN ! DROP ;;
:: QUERY (--)
 TIB 50 LIT accept #TIB !
 DROP 0 LIT >IN ! ;;

8.10 Error Handling Words

\ ABORT actually executes QUIT, which is defined much later.
\ Here it is defined as a vectored execution word which gets
\ the execution address in the system variable 'ABORT. This
\ mechanism also gives the user some flexibility in how the

\ application should handle an error condition.

\ abort" aborts after a warning message is displayed.

\ ERROR prints the character string store in the TEXT buffer
\ before aborting. The TEXT buffer contains the word just
\ parsed out of the input stream. This is the word which
\ the interpreter/compiler fail to recognize. The natural
\ error message is this word followed by a ? mark.
CRR .(Error handling) CRR
:: ABORT (--) 'ABORT @EXECUTE ;;
:: abort" (f --)
 IF do$ COUNT TYPE ABORT THEN do$ DROP ;;
:: ERROR (a --)
 SPACE TEXT COUNT TYPE
 $3F LIT EMIT CR ABORT

8.11 Text Interpreter

\ $INTERPRET interprets the word just parsed out of the input
\ stream. It searches the dictionary for this word. If a match

\ is found, executes it, unless the word is marked as a
\ compile-only word. It a match is now found in the dictionary,
\ convert the word into a number. If successful, the number is
\ left on the data stack. If not successful, exit with ERROR.
CRR .(Interpret) CRR
:: $INTERPRET (a --)
 NAME? ?DUP
 IF @ 400000 LIT AND
 ABORT" $LIT compile only" EXECUTE EXIT
 THEN DROP TEXT NUMBER?
 IF EXIT THEN ERROR
:: [(--)
 forth' $INTERPRET >body forth@ LIT 'EVAL !
 ;; IMMEDIATE
:: .OK (--)
 forth' $INTERPRET >body forth@ LIT 'EVAL @ =

STEREO-CIT-005.A

P24 MISC Processor Manual 52

 IF ."| $LIT OK" CR
 THEN ;;
:: EVAL (--)
 BEGIN TOKEN DUP @
 WHILE 'EVAL @EXECUTE \ ?STACK
 REPEAT DROP .OK -;'

CRR .(Shell) CRR
:: QUIT (--)
 (=TIB) $730 LIT 'TIB !
 [BEGIN QUERY EVAL AGAIN

CRR .(Compiler Primitives) CRR
:: ' (-- xt)
 TOKEN NAME? IF EXIT THEN
 ERROR
:: ALLOT (n --) CP +! ;;
:: , (w --) HERE DUP 1+ CP ! ! ;;
:: [COMPILE] (-- ; <string>)
 ' $100000 LIT OR , -;' IMMEDIATE

CRR
:: COMPILE (--) R> DUP @ , 1+ >R ;;
:: LITERAL $29E79E LIT , ,
 -;' IMMEDIATE
:: $," (--) (CHAR ")
 22 LIT WORD @ 1+ ALLOT -;'

CRR .(Name Compiler) CRR
:: ?UNIQUE (a -- a)
 DUP NAME?
 IF TEXT COUNT TYPE ."| $LIT reDef "
 THEN DROP ;;
:: $,n (a --)
 DUP @
 IF ?UNIQUE
 (na) DUP DUP NAME> CP !
 (na) DUP LAST ! \ for OVERT
 (na) 1-
 (la) CONTEXT @ SWAP ! EXIT
 THEN ERROR

8.12 Compiler

\ $COMPILE compiles the word just parsed out of the input

\ stream. It searches the dictionary for this word. If a match
\ is found, compiles it, unless the word is marked as an
\ immediate word. An immediate word is executed by the compiler.
\ If a match is not found in the dictionary, convert the word into
\ a number. If successful, the number is compile as a literal.
\ If not successful, exit with ERROR.
CRR .(FORTH Compiler) CRR
:: $COMPILE (a --)
 NAME? ?DUP
 IF @ $800000 LIT AND
 IF EXECUTE

STEREO-CIT-005.A

P24 MISC Processor Manual 53

 ELSE $3FFFF LIT AND $100000 LIT OR ,
 THEN EXIT
 THEN DROP TEXT NUMBER?
 IF LITERAL EXIT
 THEN ERROR
:: OVERT (--) LAST @ CONTEXT ! ;;
:: ; (--)
 $5E79E LIT , [OVERT -;' IMMEDIATE
::] (--)
 forth' $COMPILE >body forth@ LIT 'EVAL ! ;;
:: : (-- ; <string>)
 TOKEN $,n] -;'

8.13 Debugging Tools

CRR .(Tools) CRR
:: dm+ (b u -- b)
 OVER 7 LIT U.R SPACE
 FOR AFT DUP @ 7 LIT U.R 1+
 THEN NEXT ;;
:: DUMP (b u --)
 BASE @ >R HEX 8 LIT /
 FOR AFT CR 8 LIT 2DUP dm+
 THEN NEXT DROP R> BASE ! ;;

CRR

:: >NAME (xt -- na | F)
 CONTEXT
 BEGIN @ DUP
 WHILE 2DUP NAME> XOR
 IF 1-
 ELSE SWAP DROP EXIT
 THEN
 REPEAT SWAP DROP ;;
:: .ID (a --)
 TEXT UNPACK$
 COUNT $01F LIT AND TYPE SPACE -;'

CRR
:: SEE (-- ; <string>)
 ' CR
 BEGIN
 20 LIT FOR
 DUP @ DUP FC0000 LIT AND
 DUP
 IF 100000 LIT XOR THEN
 IF U. SPACE
 ELSE 3FFFF LIT AND >NAME
 ?DUP IF .ID THEN
 THEN 1+
 NEXT KEY 0D LIT = \ can't use ESC on terminal
 UNTIL DROP ;;
:: WORDS (--)
 CR CONTEXT
 BEGIN @ ?DUP
 WHILE DUP SPACE .ID 1-

STEREO-CIT-005.A

P24 MISC Processor Manual 54

 REPEAT ;;
CODE .S (dump all 17 stack items)
 PAD sta stp
 stp stp stp stp
 stp stp stp stp
 stp stp stp stp
 stp stp stp stp
 DROP PAD $10 LIT
 FOR DUP ? 1+ NEXT
 DROP PAD @ CR -;'

8.14 Start Up

CRR .(Hardware reset) CRR
:: DIAGNOSE (-)
 $65 LIT
\ 'F' prove UM+ 0< \ carry, TRUE, FALSE
 0 LIT 0< -2 LIT 0< \ 0 FFFF
 UM+ DROP \ FFFF (-1)
 3 LIT UM+ UM+ DROP \ 3

 $43 LIT UM+ DROP \ 'F'
\ 'o' logic: XOR AND OR
 $4F LIT $6F LIT XOR \ 20h
 $F0 LIT AND
 $4F LIT OR
\ 'r' stack: DUP OVER SWAP DROP
 8 LIT 6 LIT SWAP
 OVER XOR 3 LIT AND AND
 $70 LIT UM+ DROP \ 'r'
\ 't'-- prove BRANCH ?BRANCH
 0 LIT IF $3F LIT THEN
 -1 LIT IF $74 LIT ELSE $21 LIT THEN
\ 'h' -- @ ! test memeory address
 $68 LIT $700 LIT !
 $700 LIT @
\ 'M' -- prove >R R> R@
 $4D LIT >R R@ R> AND
\ 'l' -- prove 'next' can run
 1 LIT $6A LIT FOR 1 LIT UM+ DROP NEXT
 ;;

CRR
:: COLD (--)
 diagnose
 CR ."| $LIT P24 v"
 66 LIT <# # # (CHAR .) 2E LIT HOLD # #> TYPE
 CR QUIT

8.15 Control Structure Words

CRR .(Structures) CRR
:: IF (-- A) HERE $80000 LIT , -;' IMMEDIATE

:: FOR (-- a) $71E79E LIT , HERE -;' IMMEDIATE
:: BEGIN (-- a) HERE -;' IMMEDIATE
:: AHEAD (-- A) HERE 0 LIT , -;' IMMEDIATE

STEREO-CIT-005.A

P24 MISC Processor Manual 55

CRR
:: AGAIN (a --) , -;' IMMEDIATE
:: THEN (A --) HERE SWAP +! ;; IMMEDIATE
:: NEXT (a --) COMPILE doNEXT , -;' IMMEDIATE
:: UNTIL (a --) $80000 LIT + , -;' IMMEDIATE
CRR
:: REPEAT (A a --) AGAIN THEN -;' IMMEDIATE
:: AFT (a -- a A) DROP AHEAD BEGIN SWAP ;; IMMEDIATE
:: ELSE (A -- A) AHEAD SWAP THEN -;' IMMEDIATE
:: WHILE (a -- A a) IF SWAP ;; IMMEDIATE

8.16 Redefine Macro Words

CRR .(macro words) CRR

CODE EXIT pop drop ret
CODE EXECUTE push ret
CODE ! sta st ret
CODE @ sta ld ret

CRR
CODE R> pop sta pop lda push ret
CODE R@ pop sta pop dup push lda push ret

CODE >R sta pop push lda ret

CRR
CODE SWAP
 push sta pop lda ret
CODE OVER
 push dup sta pop
 lda ret
CODE 2DROP
 drop drop ret

CRR
CODE + add ret
CODE NOT com ret
CODE NEGATE
 com 1 ldi add ret
CODE 1-
 -1 ldi add ret
CODE 1+
 1 ldi add ret

CRR
CODE BL
 20 ldi ret
CODE +!
 sta ld add st
 ret
CODE -
 com add 1 ldi add
 ret

CRR
CODE DUP dup ret

STEREO-CIT-005.A

P24 MISC Processor Manual 56

CODE DROP drop ret
CODE AND and ret
CODE XOR xor ret
CODE COM com ret

8.17 Final System Words

CRR
:: ABORT" (-- ; <string>) COMPILE abort" $," ;; IMMEDIATE
:: $" (-- ; <string>) COMPILE $"| $," ;; IMMEDIATE
:: ." (-- ; <string>) COMPILE ."| $," ;; IMMEDIATE
:: CODE (-- ; <string>) TOKEN $,n OVERT -;'
:: CREATE (-- ; <string>) CODE doVAR ;;

:: VARIABLE (-- ; <string>) CREATE 0 LIT , -;'

CRR
:: .((--) 29 LIT PARSE TYPE -;' IMMEDIATE
:: \ (--) #TIB @ >IN ! ;; IMMEDIATE
:: (29 LIT PARSE 2DROP ;; IMMEDIATE
:: IMMEDIATE $800000 LIT LAST @ @ OR LAST @ ! ;;

CRR

Chapter 9. P24 Cycle-Based Simulator

An accurate and fast logic simulator is extremely valuable in the design and
testing of a new CPU. It is also very useful in separating the hardware design
from software development, so that hardware and software can be developed
simultaneously. This P24 simulator served well in the process of building the
P24 CPU and the eForth system which proves that the hardware-software system
works correctly.

This P24 simulator faithfully replicates the logic behavior of the P24 CPU on a
cycle by cycle basis. As the P24 CPU is composed of a set of registers and two
stacks, and the registers and stacks acquire new contents only on the rising
edge of the master clock, it is very simple to emulate this behavior.

Each register and each level in the two stacks are represented by two 32-bit
words. The first word contains the current value of the register, and the
second word contains the value to be latched into the register on the next
rising edge of the master clock. This simple mechanism very conveniently
replicates the behavior of a synchronously clocked flip-flops, and forms the
basis of the P24 simulator.

Two large arrays are opened to host these 32-bit word sets. The FROM array
contains the current values of all the registers and all the stack levels, and
the TO array contains the new values to be stored into the registers and stacks
on the next clock. The rising edge of the clock forces the entire TO array to
be copied into the FROM array, and these is functionally one machine cycle. The
multiplexers in P24 are replaced by Forth words which perform the logic
functions and update values in the TO array.

STEREO-CIT-005.A

P24 MISC Processor Manual 57

The Slot Machine, which fetches a program word from memory, and sequences the
execution of the four machine instructions in this word, is simulated by a 32-
bit counter. The less significant 3 bit in this counter steps through slots 0
to 4 in 5 clock cycles. Then this 3-bit field is cleared to zero and the upper
29-bit counter is incremented. Therefore, the upper 29-bit field in the counter
gives an accurate program word count.

The most interesting feature of this P24 simulator is that it can vector the KEY
and EMIT function to the equivalent Windows function, so that the simulator can
actually run P24 eForth interactively, and produces the identical output as the
actual P24 computer would do on a terminal. Now that it was proven that the
simulator runs identically to the actual P24 computer, the simulator can be used
for software development, in place of a real P24 computer.

The simulator code is in SIM24.F. It must be loaded after META24.F, which
builds a P24 eForth system in the array RAM. The simulator reads program words
from the RAM memory and execute the instructions contained in these program
words.

9.1 The Registers and the Stacks

\ Put all simulator words in SIM24 vocabulary. They are thus distinguished
\ from words of the same names in the FORTH and ASM24 vocabularies.
ONLY FORTH ALSO SIM24 DEFINITIONS

\ Stacks are limited to 16 levels, and act like circular buffers
\ Program are limited to 32KB, or 8KW, the size of RAM array
\ CLOCK has a 29-bit program word count filed and a 3-bit SLOT field
\ The SLOT field sequences program word fetch and execution of up to
\ four instructions in the program word.
\ (REGISTER) a pointer to switch between FROM array and TO array
\ BREAK breakpoint address
\ REGISTER the base address of either FROM or TO array
\ FROM forces accessing registers in the FROM array
\ TO forces accessing registers in the TO array
DECIMAL

15 CONSTANT LIMIT (stack depth)
$1FFF CONSTANT RANGE (size of memory array)
VARIABLE CLOCK (slot is in the last 3 bits)
VARIABLE (REGISTER) (where registers and stacks are)
VARIABLE BREAK (address of break point)

(On the rising edge of clock, copy TO array to FROM array.)
: REGISTER (REGISTER) @ ;
: FROM PAD (REGISTER) ! ;
: TO PAD $180 + (REGISTER) ! ;

\ P program counter
\ T accumulator
\ R top of return stack
\ A address register
\ I instruction latch
\ I0-4 machine instruction storage
\ RP return stack pointer
\ SP data stack pointer

STEREO-CIT-005.A

P24 MISC Processor Manual 58

\ RSTACK returns address of top of return stack
\ SSTACK returns address of top of data stack
: P REGISTER ;
: T REGISTER 4 + ;
: R REGISTER 8 + ;
: A REGISTER 12 + ;
: I REGISTER 24 + ;
: I0 REGISTER 28 + ;
: I1 REGISTER 29 + ;
: I2 REGISTER 30 + ;
: I3 REGISTER 31 + ;
: I4 REGISTER 32 + ;
: RP REGISTER 33 + ;
: SP REGISTER 34 + ;
: RSTACK RP C@ LIMIT AND CELLS REGISTER + $40 + ;
: SSTACK SP C@ LIMIT AND CELLS REGISTER + $80 + ;

9.2 Machine Cycles

Here are a set of words supporting the simulator.

\ CYCLE simulate rising edge of master clock. Copy TO array to FROM array.
\ NEXT forces fetching the next program word
\ RPUSH push a integer d on return stack
\ RPOPP pop return stack and leave the integer on the Forth stack
\ SPUSH push a integer d on data stack
\ SPOPP pop data stack and leave the integer on the Forth stack
\ CONTINUE fetch next program word and deposit the 4 machine instructions
\ in I1-I4
: CYCLE TO P FROM P $180 CMOVE 1 CLOCK +! ;
: NEXT CLOCK @ 7 OR CLOCK ! ;
: RPUSH (d -- , push d on return stack)
 FROM R @ RP C@ 1 + LIMIT AND TO RP C! RSTACK ! R ! ;
: RPOPP (-- d , pop d from return stack)
 FROM R @ RSTACK @ RP C@ 1 - LIMIT AND TO RP C! R ! ;
: SPUSH (d -- , push d on data stack)
 FROM T @ SP C@ 1 + LIMIT AND TO SP C! SSTACK ! T ! ;
: SPOPP (-- d , pop d from data stack)
 FROM T @ SSTACK @ SP C@ 1 - LIMIT AND TO SP C! T ! ;
: continue
 FROM P @ DUP 1+ TO RANGE AND P !
 RAM@ DUP I !
 64 /MOD SWAP I4 C!
 64 /MOD SWAP I3 C!
 64 /MOD SWAP I2 C!
 63 AND I1 C!
 ;

9.3 Machine Instructions

Machine instructions in the simulator take current values in the FROM registers
and stacks and compute the desired new values and deposit them in the TO
registers. Their functions in the real P24 CPU are performed by multiplexers
and logic circuits. Nevertheless, these instructions truthfully describe the
behavior of all the machine instructions.

STEREO-CIT-005.A

P24 MISC Processor Manual 59

: jmp FROM I @ RANGE AND TO P ! NEXT ;
: call FROM P @ RPUSH jmp ;

: ret RPOPP TO RANGE AND P !
 NEXT ;
: jz SPOPP $FFFFFF AND IF NEXT EXIT THEN
 jmp ;
: jnc FROM T @ $1000000 AND IF NEXT EXIT THEN
 jmp ;
: ld FROM A @ RANGE AND RAM@ SPUSH ;
: ldp ld
 FROM A @ 1+ TO A ! ;
: ldi FROM P @ 1+ RANGE AND TO P !
 FROM P @ RANGE AND RAM@ SPUSH ;
: st SPOPP FROM A @ RANGE AND RAM! ;
: stp st
 FROM A @ 1+ TO A ! ;
: com FROM T @ $FFFFFF AND $FFFFFF XOR TO T ! ;
: shr FROM T @ 2/ $FFFFFF AND TO T ! ;
: shl FROM T @ 2* $1FFFFFF AND TO T ! ;
: mul FROM A @ 1 AND
 IF SSTACK @ T @ + $1FFFFFF AND
 ELSE T @ THEN
 DUP 1 AND >R 2/ TO T !
 FROM A @ $FFFFFF AND 2/ R> IF $800000 OR THEN TO A ! ;
: andd SPOPP TO T @ AND $FFFFFF AND T ! ;
: xorr SPOPP TO T @ XOR $FFFFFF AND T ! ;
: div FROM SSTACK @ $FFFFFF AND T @ $FFFFFF AND +
 DUP $1000000 AND DUP >R
 IF ELSE DROP T @ THEN $FFFFFF AND
 2* (diff) A @ $800000 AND IF 1+ THEN TO T !
 FROM A @ 2* $FFFFFF AND R> IF 1+ THEN TO A ! ;
: add SPOPP $FFFFFF AND TO T @ $FFFFFF AND + TO T ! ;
: popr RPOPP SPUSH ;
: pushs FROM T @ SPUSH ;
: lda FROM A @ SPUSH ;
: pushr SPOPP RPUSH ;
: sta SPOPP TO A ! ;
: pops SPOPP DROP ;
: nop NEXT ;

\ GET forces the simulator to get a key from the keyboard under Windows OS
\ PUT forces the simulator to send a character to the display window
: get KEY DUP $1B = ABORT" done"
 SPUSH ret ;
: put SPOPP $7F AND EMIT ret ;

\ EXECUTE decodes a machine instruction and performs the required operations.
HEX

: execute (code --)
 DUP 0 = IF DROP jmp EXIT THEN
 DUP 1 = IF DROP ret EXIT THEN
 DUP 2 = IF DROP jz EXIT THEN
 DUP 3 = IF DROP jnc EXIT THEN
 DUP 4 = IF DROP call EXIT THEN

STEREO-CIT-005.A

P24 MISC Processor Manual 60

 DUP 6 = IF DROP get EXIT THEN
 DUP 7 = IF DROP put EXIT THEN
 DUP 9 = IF DROP ldp EXIT THEN
 DUP 0B = IF DROP ld EXIT THEN
 DUP 0A = IF DROP ldi EXIT THEN
 DUP 0D = IF DROP stp EXIT THEN
 DUP 0F = IF DROP st EXIT THEN
 DUP 10 = IF DROP com EXIT THEN
 DUP 11 = IF DROP shl EXIT THEN
 DUP 12 = IF DROP shr EXIT THEN
 DUP 13 = IF DROP mul EXIT THEN
 DUP 14 = IF DROP xorr EXIT THEN
 DUP 15 = IF DROP andd EXIT THEN
 DUP 16 = IF DROP div EXIT THEN
 DUP 17 = IF DROP add EXIT THEN
 DUP 18 = IF DROP popr EXIT THEN
 DUP 19 = IF DROP lda EXIT THEN
 DUP 1A = IF DROP pushs EXIT THEN
 DUP 1C = IF DROP pushr EXIT THEN
 DUP 1D = IF DROP sta EXIT THEN
 DUP 1E = IF DROP nop EXIT THEN
 DUP 1F = IF DROP pops EXIT THEN
 CR . ." illegal code" ABORT
 ;

9.4 Instruction Execution

\ .STACK displays the contents of a stack.
\ .SSTACK displays the contents of data stack
\ .RSTACK displays the contents of return stack.
\ .REGISTERS displays contents of all the relevant registers
\ S show all the registers and stack at this cycle
\ SYNC executes the current machine instruction using CLOCK to determine which
\ slot is being executed.
\ C runs one clock cycle and displays all the registers and stacks.
\ RESET clear both FROM and TO arrays, simulating the hardware reset.
\ G run and stop at the address given on the Forth stack. This is a much more
\ efficient way to set breakpoints and then run till breakpoint is triggered.
\ It allows the user to execute a large portion of the program and stop only
\ on specified location.
\ PUSH push a new integer into the T register and push the data stack
\ POP discard the contents in T and pop data stack back into T.
: .stack (add #) 0 ?DO DUP @ . 4 - LOOP DROP CR ;
: .sstack ." S:" T @ . SSTACK SP C@ .stack ;
: .rstack ." R:" R @ . RSTACK RP C@ .stack ;
: .registers ." P=" P @ . ." I=" I @ .
 ." I1=" I1 C@ . ." I2=" I2 C@ .

 ." I3=" I3 C@ . ." I4=" I4 C@ . CR
 ." A=" A @ . CR ;
: S CR ." CLOCK=" CLOCK @ . .registers
 .sstack .rstack ;

: sync CLOCK @ 7 AND
 DUP 0 = IF continue DROP EXIT THEN
 DUP 1 = IF I1 C@ execute DROP EXIT
 THEN

STEREO-CIT-005.A

P24 MISC Processor Manual 61

 DUP 2 = IF I2 C@ execute DROP EXIT
 THEN
 DUP 3 = IF I3 C@ execute DROP EXIT
 THEN
 DUP 4 = IF I4 C@ execute THEN
 DROP NEXT ;
: C sync CYCLE S ;
: reset FROM P 300 ERASE 0 CLOCK ! ;
reset

: G (addr --)
 CR ." Press any key to stop." CR
 BREAK !
 BEGIN sync P @ BREAK @ =
 IF CYCLE C EXIT
 ELSE CYCLE
 THEN
 KEY?
 UNTIL ;
: PUSH (d) pushs TO T ! ;
: POP pops ;

9.5 User Interface

This simulator has very simple text based user interface. The most used
commands are C for single steps, RUN to continue stepping with any key and
terminated by ESC. If the target address is know, then G is a convenient
choice. P allows the user to start simulating at any address.

: D P @ 1- FOUR FOUR ;
: M SHOW ;
: RUN CR ." Press ESC to stop." CR
 BEGIN C KEY 1B = UNTIL ;
: P RANGE AND DUP FROM P ! TO P ! ;

: HELP CR ." eM24 Simulator, copyright eMAST Technology, 2000"

 CR ." C: execute next cycle"
 CR ." S: show all registers"
 CR ." D: display next 8 words"
 CR ." addr M: display 128 words from addr"
 CR ." addr P: start execution at addr"
 CR ." addr G: run and stop at addr"
 CR ." RUN: execute, one key per cycle"
 CR ;

9.6 Simulating Running Forth System

The simulator is the most effective in debugging short sequences of program
words to verify that the sequences are executed correctly. After the P24
machine instructions are verified, one can use the G command to execute a long
stretch of program and break only at specific locations. This allows large
segment of programs to be tested.

The simulator can run eForth system if KEY and EMIT are vectored to the keyboard
input and screen display in Windows. This is accomplished by defining two new

STEREO-CIT-005.A

P24 MISC Processor Manual 62

machine instructions GET and PUT with the proper Windows interface. GET and PUT
is then patched into KEY and EMIT in the target memory. Now, executing:
 800 G
will start the P24 eForth running, because 800 is a location it will never
reach. In the meantime, the user can interact with the eForth in the simulator
like using any other eForth system.

It is possible to build this simulator into a full P24 program development
system by vectoring input streams from text files maintained under Windows.
This, however, will have to wait in the next revision of the simulator.

(patch KEY and EMIT to run eForth interactively)
180000 B7 RAM!
1C0000 AA RAM!

9.7 Running P24 Simulator

From Windows, load Win32Forth by clicking its icon on the desktop, or run it in
the Start/Programs/Win32Forth/Win32Forth. Win32Forth opens a window. Click
File/OpenFile and navigate to the directory in which all the P24 files are
stored. Select one of the files, say META24.F, and an WinView window is opened,
displaying the META24.F file.

Go back to the Win32Forth window, and type:
 Fload meta24
You will see a list of names and compiled addresses scrolling on the screen.
This list of names and addresses are very useful in running the simulator. You
can interpret the addresses and determine which word is being executed, and you
can select specific words to simulate.

You can inspect the compiled target image by typing:
 0 show
 show
 show ...
to dump the memory, 128 words at a time. SHOW will change the starting address
so that you can use it to dump consecutive blocks of target memory without
giving the address explicitly.

Load simulator file by typing:
 Fload sim24

Type HELP to see all the useful commands in the simulator. Then use C, RUN, G,
P commands to step through programs you want to debug.

Type BRAM to dump the target memory in a form acceptable to the VHDL synthesizer
in the Foundation FPGA development system. The eForth system can be synthesized
with the P24 core, and run in XCV300 FPGA or its large cousins from Xilinx.

P24 system is still undergoing modifications and enhancements. Check with eMAST
Technolgoy or Offete Enterpries for latest updates.

