STEREO-CIT-005.A

P24 M SC M croprocessor User's Manual

Dr. C H Ting
(c) Copyright 2000, eMAST Technol ogy Corp
Hsi nchu, Taiwan, Republic of China

Updated by Walter Cook 1/23/01 to reflect adaptation
to the ACTEL 54SX72A.

Cal t ech document nunber STEREO-ClI T-004. A

Carry bit documentation corrected 10/9/01 (WRC)

Chapter 1. | NTRODUCTI ON

1.1 CGeneral Infornmation

P24 is “Mnimal Instruction Set Conputer” design patterned after M. Chuck
Moore's MuP21. P24 has a 24-bit CPU core with dual stack architecture intended
to efficiently execute Forth-like instructions. The processor design is sinple
to allow inplenmentation within field programmabl e gate arrays.

P24 enploys a RISC-like instruction set with four 6-bit instructions packed into
24 bit words. The nmpst significant bit of each instruction designates an 1/0O
Buss operation when set. For 1/O Buss instructions (the 1/0 buss will be
referred to as the G buss) the second nost significant bit specifies a wite
when set, read when cleared, while the remaining four bits specify

the G buss address. For non-G buss instructions the nost significant bit is
cleared and the remaining 5 bits specify 32 possible instructions, 31 of which
are inpl enent ed.

Following is a list of unique features of P24:

24-bit address and data buses

6-bit RISC-1ike CPU instructions

4-deep instruction cache

17-deep data stack

33-deep return stack

Uses about 75% of 54SX72A registers and | ogi ¢ nodul es
Current inplenmentation runs at 10 MHz

* 0% o F X F F

1.2 Architecture of P24 CPU
P24 has the followi ng registers:

Addr ess Regi ster, supplying address for nmenmory read and wite
Instruction Latch, holding instructions to be executed
Program Counter, pointing to the next programword in nenory
Top of Return Stack

Top of Data stack

Accumul ator for ALU

—nxuUov—>

P24 MISC Processor Manua 1

STEREO-CIT-005.A

Al registers are 24 bit w de

(Oiginal text. Applies to Dr. Ting's VHDL nodel, but not to the current Acte

i nplementation: T, R S, and A are all 25 bits wide. The nost significant bit
in T, T(24) is the carry produced by the 24-bit adder. This carry bit is
preserved as data in T is transferred to other registers and to the stacks. The
preservation of carry bit greatly sinplifies the |logic processing of data, and
allows interrupts to be services when the next programword is fetches fromthe
menory, wthout having to save the carry bit and restore it on return.)

Unlike the original specification by Dr. Ting, the current ACTEL inplenentation
Does not provide the extra bit width needed to preserve the carry bit. The carry
bit is rather held in a dedicated flip-flop and is preserved only until the next
operation affecting the carry bit.

P24 has two st acks:

S _stack Data stack, 17 |levels deep
R stack Return stack, 33 levels deep

The return stack is used to preserve return addresses on subroutine calls. The
data stack is used to pass paraneters anong the nested subroutine calls. Wth
these two stacks in the CPU hardware, P24 is optimzed to support the Forth
progranmm ng | anguage.

The 24-bit P24 CPU sports a small, RISGlike instruction set. Four 6-bit
instructions are packed into one 24-bit word, and are executed consecutively
after a word is fetched fromnmenory. The P24 CPU has a two stack architecture
that is easily progranmed in Forth. The data stack is 17 levels deep (including
T), and the return stack is 33 |l evels depth.

The followi ng di agram shows the architecture of the P24 processor. It shows the
regi sters, the stacks, and the data paths anmpong them

Not shown in the diagramis the connection between T register and the externa
data bus. Wen reading data fromnenory, the A register supplies the nenory
address to the address bus, and data is latch fromthe data bus into the T
register. Wen witing data into nenory, the address is supplied by A register,
and data is witten to the data bus fromthe T register

Figure 1. The architecture of P24

Dat a Bus Addr ess Bus
| N N
| | |
v | |
|- - | |- | |- |
[| P | | A
[EEEEE | |- - | |- - |
N N
| |
\Y; \Y;

P24 MISC Processor Manua 2

STEREO-CIT-005.A

| Return Stack | R |<----- > | T |<----- > | S | Data Stack

1.3 Functional Bl ock D agram of P24 (This section applies to Dr. Ting’s VHDL
definition and has not been updated to correspond to the ACTEL inpl ementation
which is somewhat different.)

These data path diagrans should be read with the CPU24. VHD fil e.

The instruction decoding logic sinply apply the proper control signals to the
foll owi ng register | oading and nmultipl exer sel ecting signals:

cr Mast er reset

Ak Mast er cl ock, 0-40 Mz

t_sel Select input to T register

tl oad If set, load t_in into T register

spop If set, pop the data stack

spush If set, push T on the data stack

a_sel Select input to A register

al oad If set, load a_in inot A register

r_sel Select input to R register

rl oad If set, load r_in into R register

r pop If set. Pop the return stack

rpush If set, push R on the return stack

p_sel Select input to P register

pl oad If set, load P_in into P register

m sel Sel ect output to Address bus

il oad If set, load instruction fromdata bus to | register
reset Cl ear the machine instruction counter

sl ot Qut put of machine instruction counter to select instruction

The synchronous program execution unit clocks the slot signal, which selects the
proper 6-bit instructions in the | register to produce the above contro

signals. At the rising clock edge, the selected data are latched into the
proper register and stacks. Al data signals must stabilize before the next
rising clock edge strikes.

The architecture is very sinple and conponents are very simlar to one another
It should be very easy to do a good |ayout, and the routing should not be
difficult.

Fi gure 2. The bl ock di agrans of P24 conponents

The T and Data Stack Data Path

s and t----- [--t_in----- | T [--t-------- | s_stack |[----s

P24 MISC Processor Manua 3

STEREO-CIT-005.A

S + t------- | | | spop----- | |
(s+t)/2----- | tload----| | spush----] |
t/2 -------- | clk------ | | clk------ | |
c&t/2------- | clr------ | | clr------ | |
(s+t)*2----- | |-----m----- | | === |
t*28&a------- |
t*2--------- |
S -------- |
a --------- |
R |
data ------- |
|
t_sel------- A
The A Register and A- Mux
| o |
to----e-- - |--a_in----- | |---a
A+l ----- o | |
(s+t)&a/2---| aload----| A |
ar*2+c------- | clk------ | |
| clre----- | |
a_sel------- A [----------- |
The Return Stack Data Path
| R | o |
r_out------- [--r_in----- | R [--r-------- | r_stack |---r_out
At SREEEEEE | | | rpop-----| |
p----------- | rload----| | rpush----] |
| clk------ | | clk------ | |
| clr------ | | clr------ | |
r_sel------- A [----------- | [----------- |
The Program Counter Data Path
| | o |
interrupt---| | | |
p& (17.0)---|--p_in----- | P | --p-------- | ---address
R | | | A |
F----------- | pload----| | |
| clk------ | | |
| clre----- | | |
p_sel------- A [----------- | msel----2
The Instruction Latch and Decoder Data Path
| o |
| | |
data-------------------- | I | --i(23.0)- |---code(5.0)
iload----- | | |
clk------- | | |
clr------- | | |

P24 MISC Processor Manua 4

STEREO-CIT-005.A

|
|
|
|
-slot(2.0)-7

On power-up, all registers and the stacks are cleared to zero when "clr" is held
high. Wen "clr” is lowered to zero, the master clock "clk” will start the CPU
frommenory location O, as the initialized P register is pointing to.

Chapter 2. Device Characteristics

2.1 I nput and Qutput Signals

P24 is very flexible in packagi ng, depending on the nmenory configuration. These
are the signals normally brought to I/O pins. |In certain applications, the
menory is included on chip and the address bus and data bus do not have to be

br ought out.

CLK 1-40 MHz master cl ock

AO0- 23 Address bus to RAM SRAM and I/ O devi ces
DO-23 Data bus for RAM SRAM and 1/ O devices
CLR Low systemreset (active |ow)

vdd 5V power supply

Vss G ound

V\E Wite enable (active |ow)

| NTO- 4 External interrupt inputs

UART_I N RS232 serial input pin

UART_QUT RS232 serial output pin
2.2 Timng

Al time periods noted in the following timng diagrans are in periods of the
mast er cl ock.

Fi gure 3. Timng of P24 instruction executions

Mast er Cl ock

|- |- |- |- |- |- |-~
| | | | | | | | | | | | |

| |- |- |- |- |- |-]

Sl ot 0 Signal

| o | | o |

| sloth | slotO | slot1l | slot2 | slot3 | slotb |

| | o | |-~
fetch Instr execut e execut e execut e execut e fetch instr

P24 MISC Processor Manua 5

STEREO-CIT-005.A

call, junmp, jz, jnc

| o | | o |

| sloth | slotO | slotb |

| | | | oo
fetch Instr execut e execut e execut e execut e execute ..

NOP and RET instructions can be in any of the four slots. Wen these two
instructions are executed, slot5 will be forced into the next slot, and the next
instruction words will be fetched and then execut ed.

The ACTEL inplenmentation contains a prioritized interrupt controller. If an
interrupt is pending an extra slot, slot4, is added to the sequence foll ow ng
slot3. During slot4 the programcounter is pushed to return stack and the
interrupt vector is placed in the programcounter. Currently 7 interrupt |ines,
| abeled intO — int6 are inplenented and only two are used. IntO vectors to
address 1, int2 to address 2, etc. The highest priority intO is currently
assigned to the UART receive function, while the next highest priority intl is
assigned to the UART transmt function. Once an interrupt is serviced via
execution of slot4, servicing of interrupts is automatically disabled until the
execution of an RTI instruction. Imediately after the RTlI execution, the

hi ghest priority pending interrupt (if any) will be serviced

VWhen executing a right shift instruction SHR, the sign bit T(23) is preserved.
Bits T(23..1) are shifted to the right by one bit. Bit T(0) is |latched onto the
UART_QUT pin, and UART IN pin is latched into the carry bit T(24). This very

si nmpl e mechanismallows a sinple RS232 serial port to be built in P24 core. As
the serial port is the only peripheral device required by eForth, this sinple
serial port opens a wi ndow for the user to access the resources provided by P24,
and supports a powerful enbedded Forth systemto control and to programthe P24
system (This sinple UART was very valuable in bringing up the ACTEL

i npl ementation, but is no |onger used.)

Chapter 3. P24 Instruction Set

3.1 I nstructions

The P24 instruction set can be best explained using the register and data flow
di agram as shown in Figures 1 and 2. The T register is the center of the ALU,
whi ch takes data fromthe T and S registers and routes the results back to the T
register. The contents of T can be noved to the A register, pushed on the data
stack S, and pushed on the return stack S

The T register connects the data stack and the return stack as a large shift
register. Data can be shifted towards the return stack by the PUSH i nstruction
and shifted towards the data stack by the POP instruction

Regi ster A holds a nmenory address, which is used to read data frommenory into
the T register, or wite the data in T register to external menory. The address
in A can be auto increnented, so that P24 can conveniently access data arrays in
nenory.

P24 MISC Processor Manua 6

STEREO-CIT-005.A

P is the programcounter and it holds the address of the next instruction to be
fetched fromthe menory. After an instruction is fetched, P is auto increnented
and ready to read the next instruction. Wen a CALL instruction is executed,
the address in P is pushed on the return stack. Wen a return (RET)
instructions is executed, the previously saved address in R is popped back into
P. The execution sequence interrupted by CALL can now be resuned.

P24 is a microprocessor with 24-bit instructions. Each instruction contains up
to 4 6-bit machine codes. The instruction fields in a programword can be shown
as foll ows:

Bits: 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

| I'nstruction 1 | I'nstruction 2 | I'nstruction 3 | Instruction 4 |

There are 64 possible instructions in a 6-bit field. Half of these are used for
G Buss access, and are specified by a one in the nost significant bit of the
six-bit field. For G Buss access instructions the next nost significant bit
specifies wite if set, read if cleared, while the remaining 4 bits are the G
Buss address. The G Buss is intended to provide fast access to on-chip
application specific functions such a tiners, i/o registers, UART, genera

pur pose registers, etc. The non-G Buss instructions are of four classes

0 Transfer Instructions

1 Menory Access |nstructions
2 ALU I nstructions

3 Regi ster Instructions

JUMP, CALL, JZ and JNC instructions nmust appear in Slot0O of a programword, ie.
bits 23-18. The last 18 bits 17-0 contain the address inside the current 256K
word page. They can access code within the current page. To reach other pages
of menory, you will have to push a 24-bit address on the return stack and
execute the RET instruction.

The transfer instructions thus has the follow ng forns:

JUVP aaaaaa aaaaaa aaaaaa
CALL aaaaaa aaaaaa aaaaaa
JZ aaaaaa aaaaaa aaaaaa
JNC aaaaaa aaaaaa aaaaaa

The conditional junp instruction JZ is used to inplenent the IF, WH LE, and
UNTIL words in Forth in that it does pop the nunber being tested in T. The
conditional junp instruction JNC causes a junp if the carry bit T(24) is
cleared. It is useful in multiple precision math operations. JNC does not pop
the T register, so its contents can be tested again.

Tabl e 1. P24 Machi ne Code

Code Nane Functi on

Transfer |Instructions

00 JUwP Junp to 18 bit address. Mist in SlotO.
01 RET Subroutine return

P24 MISC Processor Manua 7

STEREO-CIT-005.A

02 Jz Jump if Tis 0. Mist in SlotO.

03 JNC Junp if carry is reset. Mist in SlotO.

04 CALL Cal |l subroutine. Mst in SlotO.

05 NEXT Jump if Ris not 0. Post-decrenment R
Pops Rif Ris 0. Must be in SlotO.

06 TI MES Repeat instruction word if Ris not 0. Post-decrenent R
Pops Rif Ris O.

07 RTI Return from i nterrupt

Menory Access | nstructions

09 LDP Push nenory at Ato T. Increnment A

0A LDI Push in-line literal to T.

0B LD Push nenory at Ato T.

0D STP Pop T to menory at A. Increnment A

OF ST Pop T to nmenory at A

ALU Instructions

08 RR8 Rotate right T by 8 bits.

0oC NI P Pop S, (Equivalent to SWAP DROP)

10 coMm Compl enent all bits in T.

11 SHL Shift T left 1 bit.

12 SHR Shift T right 1 bit.

13 MUL Mul tiplication step.

14 XOR Pop S and Exclusive OR it to T.

15 AND Pop S and AND it to T.

16 DI V Di vi si on step.

17 ADD Pop S and add it to T.

Regi ster Instructions

18 POP Pop R to push T.

19 LDA Push Ato T.

1A DUP Duplicate T.

1B OVER Sto T, push original T.

1C PUSH Pop T to push R

1D STA Pop T to A

1E NOP Do not hi ng.

1F DROP Pop T.

OE Reser ved

3.2 P24 | nstructions

JUMP (SKIP, ELSE, AGAIN, REPEAT)

Code: 0

Usage: 00000 aaaaaa aaaaaa aaaaaa
Stack Effects: none

Carry: no change

Functi on:

P24 MISC Processor Manua 8

STEREO-CIT-005.A

Jump to the 18 bit address in the bit field 17-0 in the current 256K word page
of menmory. It must be in slot 0O of a word.

Restriction:

This instruction allows the programto be redirected to any location within an
256K word page of menory. It does not cross page boundaries. To junp to

| ocations outside of a nenory page, one has to push the target address on the
return stack and execute the RET instruction to effect a long junp. This
restriction also applies to CALL, JZ and JNC. See al so RET.

Codi ng Exanpl e:

CCODE 50us
2 Idi skip
CODE 100us
1 1di
t hen
sta -138 |di
begi n | da add
-until
drop
ret

SKI P makes an unconditional junp to THEN, to | et 50us sharing the delay | oop
wi th 100us.

RET (;)

Code: 1

Usage: 000001 XXXXXX XXXXXX XXXXXX
cccccecc 000001 XXXXXX XXXXXX
cccececce cccceccc 000001 XXXXXX
cceceecec ccececcec ccececece 000001

Stack Effects: (--; R a--)

Carry: no change

Functi on:

Pop the address of the top of the return stack into the program counter P, thus
resune the execution sequence interrupted by the last CALL instruction. Besides
term nating a subroutine, this instruction may be used to effect a long junp to
a location outside of the current menory page.

This instruction can be placed in any slot of a word. The instructions before
return are executed. The instructions following return are ignored.
Codi ng Exanpl e:

In the subroutine thread nodel, RET is used to ternmnate all code words and
colon words. The Forth word ; sinply conpiles a RET to end a Forth word.

P24 MISC Processor Manua 9

STEREO-CIT-005.A

JZ (IF, WHLE, UNTIL)

Code: 2

Usage: 000010 aaaaaa aaaaaa aaaaaa
St ack Effects: (n--)

Carry: no change

Functi on:

Conditionally junmp to the 18 bit address in the bit field 17-0 in the current
256K word page of menory, if the T register contains a 0. It nust be in slot O
of a word.

The T register is destroyed and the data stack is popped back to T. This
instruction is different fromJNC, which does not pop the data stack and renoves
T.

Codi ng Exanpl e:
CODE ?DUP (w-- ww | 0)
dup

if dup ret then
ret

JNC (-UNTIL, -1F, -WHLE)

Code: 3

Usage: 000011 aaaaaa aaaaaa aaaaaa
Stack Effects: (n--n)

Carry: no change

Functi on:

Conditionally junmp to the 18 bit address in the bit field 17-0 in the current
256K word page of menory, if the Carry flag (Bit 24 of T) is reset. It nust be
inslot O of a word.

The T register and the data stack are preserved. This instruction is different
fromthe instructions JZ, which pop the data stack and renoves T.

Codi ng Exanpl e:

To test the negative flag T(23), it is shifted into carry T(24) and tested using
JNC conpiled by -1F.

CODE ABS (n -- +n)
dup shl
-if drop com1 Idi add
ret
t hen

P24 MISC Processor Manua 10

STEREO-CIT-005.A

drop ret
CALL
Code: 4
Usage: 000100 aaaaaa aaaaaa aaaaaa
Stack Effects: (--; R --a)
Carry: no change
Functi on:

Call a subroutine whose address is in the bit field 17-0 in the current 256K
word page of nenmory. It nust be in slot 0 of a word

The address of the next word is pushed on the return stack. When a return
instruction in the subroutine is encountered, this address is popped off the
return stack and the next word is executed to resune the interrupted execution
sequence.

Restriction:

This instruction allows the programto call to any subroutine within the current
256K page of menory. It does not cross page boundari es.

Codi ng Exanpl e:

Al Forth words are conpiled as subroutine calls. This is the nost efficient
way to build lists in Forth.

NEXT

Code: 5

Usage: 000101 aaaaaa aaaaaa aaaaaa
Stack Effects: (--)

Carry: no change

Functi on:

If Ris non-zero junp to the 18 bit address in the bit field 17-0 in the current
256K word page of nmenory and post-decrenent R If Ris zero, pop R It nust be
in slot O of a word.

Codi ng Exanpl e:

FUN (n--) FORR@. NEXT ; (prints the nunbers O through n in reverse
order)

P24 MISC Processor Manua 11

STEREO-CIT-005.A

TI VES

Code: 6

Usage: 000110 cccccc cccecec cccececce
cccceccec 000110 ccceccecece ccecceccecce
cccecece ccecececc 000110 cccececce
cceceecec cececececec cccecece 000110

Stack Effects: (--)

Carry: no change

Functi on:

If Ris non-zero junp back to the beginning of the current instruction word and
post -decrenment R If Ris zero, pop R

Codi ng Exanpl e:

CODE LSH FT (n1l n2 — nl*27n2)

zero com add push (subtract one fromn2 and push to R)
shl times ret (shift n1 left n2 times, then return)
RTI
Code: 7
Usage: 000111 XXXXXX XXXXXX XXXXXX
ccccce 000111 XXXXXX XXXXXX
cccccc cccccc 000111 XXXXXX
ccceccc ccceccc ccccecc 000111
Stack Effects: (--; R a--)
Carry: no change
Functi on:

Pop the address of the top of the return stack into the programcounter P, to
resune execution at conpletion of an interrupt service routine. Re-enables slot4
i nterrupt servicing.

This instruction can be placed in any slot of a word. The instructions before
RTI are executed. The instructions followi ng return are ignored.

Codi ng Exanpl e:

RCV 1 ASSI GN (uart receive interrupt service routine, see multi3 file)
lda -IF -1 ELSE 0 THEN (save A and carry on data stk)
Gl@ RCVFULL? | F DROP ELSE RCV! THEN (service interrupt)

WAKE OPERATOR ! (service interrupt)
shl drop sta rti ; (restore carry and A, then rti)

P24 MISC Processor Manua 12

STEREO-CIT-005.A

LDP

Code: 9

Usage: 001001 cccccec cecceeccec cceccececce
cccececccec 001001 cccccecceccec ccccccce
ccecececcc ccececececc 001001 ccccccce
ccecececc ccececececc cececececce 001001

Stack Effects: (-- n)

Carry: no change

Functi on:

Fetch the contents of a nmenory |ocation whose 24-bit address is in the A
regi ster and push that nunber onto the data stack. The address in the A
register is then increnented to facilitate accessing the next nmenmory. It is
nmost useful in reading values froma table in the nenory.

This fetch instruction is different fromthe @instruction in Forth, which uses
the address on the top of the data stack.

This instruction also resets the carry flag (Bit 24) in the T register.
Codi ng Exanpl e:

Increnment T sta I dp drop |da

O herw se, ccccece ccccce | di add

000000 000000 000000 000001
costs 6 slots.

LDl

Code: 0A

Usage: 001010 cccccc cccecc ccceccce
nnNNNN NnNNNNN nNNNNNN nnnnnn
cccececcec 001010 ccccecece cceccececce
nNNNNN NnNNNNN NNNNNN nnnnnn
cccecece cceccecc 001010 ccecccecce
nNNNNN NnNNNNN NNNNNN nnnnnn
cceceecec cececececec cccecece 001010
nNNNNN NNNNNN nNNNNNN nnnnnn

Stack Effects: (-- n)

Carry: no change

Functi on:

P24 MISC Processor Manua 13

STEREO-CIT-005.A

Fetch the contents of the next word and push that nunmber onto the data stack
The program counter PC is increnented passing the next word. This instruction
allows a programto enter nunbers onto the data stack for later use

This instruction also resets the carry flag (Bit 24) in the T register.

Codi ng Exanpl e:

Push 1 2 3 4 on data stack

Ldi Idi Idi Idi

1
2
3
4
LD
Code: 0B
Usage: 001011 cccccc cccecc ccceccce
cccceccec 001011 ccceccecece ccecceccecce
cceceecec ccecececc 001011 cccccce
cceceece ccecececec cccececece 001011
Stack Effects: (-- n)
Carry: no change
Functi on:

Fetch the contents of a nmenory |ocation whose 24-bit address is in the A
regi ster and push that nunber onto the data stack. The address in the A
register is not nodified.

This fetch instruction is different fromthe @instruction in Forth, which uses
the address on the top of the data stack.

This instruction also resets the carry flag (Bit 24) in the T register.

Codi ng Exanpl e:

STP

Code: 0]D)

Usage: 001101 cccccc cccecc ccceccce
ccccecce 001101 ccceccecece cceccececece
cccecece ccececccec 001101 cccccce
cceceece ccecececec ccececece 001101

Stack Effects: (n--)

Carry: no change

Functi on:

P24 MISC Processor Manua 14

STEREO-CIT-005.A

Pop the nunber off the data stack and store it
24-bit address is in Register A

increnented to facilitate the next menory access.
values to a table in the nmenory.

This store instruction is different fromthe

the address on the top of the data stack.

Codi ng Exanpl e:

See the copying program shown in LDP

ST
Code:

Usage:

Stack Effects:
Carry:

Functi on:

OF

001111 cccccc
cccecee 001111
cccccece cccccce
ccccece ccceccecece

(n--)

no change

Pop the nunber off the data stack and
24-bit address is in Register A The

This store instruction is different fromthe !

ccccce cccccece
ccccce cccccece
001111 cccccc
cccccec 001111

into the nmenory | ocation whose
The address in the Aregister is then
useful in storing

instruction in Forth, which uses

store it into the menory | ocati on whose

address in the A register

the address on the top of the data stack.

Codi ng Exanpl e:

CODE! ((na--)
sta st ret

RR8
Code:

Usage:

Stack Effects:
Carry:

Functi on:

Al 24 bits inthe T register are rotated right

08

001000 cccccc
cccecee 001100
cccccece cccccce
ccccce cccccce

(N1 -—n2)
no change

ccccce cccccece
ccccce cccccece
001100 cccccc
cccccc 001000

by 8 bits.

is not nodified.

instruction in Forth, which uses

The | east

significant byte of T noves to the position of the nost significant byte.
Useful for fast accessing of byte data and data formatting/ packing.

P24 MISC Processor Manua

15

STEREO-CIT-005.A

Codi ng Exanpl e:

BYTE# (n1 n2 — n3) (n3 is byte nunber n2 of ni1, for)
?DUP (n2 expected equal 0, 1 or 2)
I F zero com add push
rr8 tinmes

THEN
FF and ;

NI P

Code: 0C

Usage: 001100 cccccc cccecc ccceccce

cccceccec 001100 ccccecece cceccececece
cccecece ccecececc 001100 cceccccce
cceceecec ccecececec ccceccece 001100

Stack Effects: (N1 n2 -- n2)
Carry: no change
Functi on:

Pop S, |eaving T unchanged.

Codi ng Exanpl e: (You hopefully never need this one.)
(A good candidate for replacenment with)
(sonething nore useful. Suggest not using.)

(0%

Code: 10

Usage: 010000 cccccc cccecc cccececce
cccececcec 010000 ccccecece cccececece
ccecececce ccecececcec 010000 ccecccecce
cceceecec cccceccc cccececec 010000

Stack Effects: (n1 — n1*)

Carry: no change

Functi on:

Conmpl ement all 24 bits in the T register. This is a one's conpl enent operation
Codi ng Exanpl e:
To generate a -1 in T register:

zero com

OR has to be synthesized from COM and AND usi ng:
A or B = not(not(A) and not(B))

CODEOR(nn-n) (this looks pretty awkward, maybe)

P24 MISC Processor Manua 16

STEREO-CIT-005.A

com push com (the last avail able opcode or NIP)
pop and com r et (should be replaced with OR)

SHL

Code: 11

Usage: 010001 cccccc cccecc cccececce

cccececcec 010001 ccccecece cceccececce
cccecece ccecececcec 010001 ccccecce
cceceece ccecececec ccececece 010001

Stack Effects: (n--2n)
Carry: Bit 23 of T is shifted into carry
Functi on:

Shift all lower 24 bits in the T register to the left by 1 bit. The |owest Bit-
0 is cleared.

Codi ng Exanpl e:

Multiply T by 3: dup shl add
Multiply by 5: dup shl shl add
Multiply by 6: dup shl add sh

SHL all ows the negative bit of T(23) to be tested as carry T(24):

CODE 0< (n - f)

shl
-if drop -1 1di ret
t hen
dup xor (O Idi)
ret
SHR
Code: 12
Usage: 010010 cccccc cccecc ccceccce
ccccece 010010 ccceccecece ccceccecce
cccecece ccecececcec 010010 ccccecce
cceceecec ccecececcec ccceccece 010010
Stack Effects: (n--n/2)
Carry: no change
Functi on:

Shift the contents of the T register right by one bit. Bit-0is shifted to the
bi t - banged UART serial output. The sign (Bit23) is preserved.

Codi ng Exanpl e:

P24 MISC Processor Manua 17

STEREO-CIT-005.A

SHR is used to inplenent a sinple UART. The lowest bit in T, T(0) is shifted
out to the UART serial output pin, and the UART serial input pin is |oaded into
carry for testing.

CODE EMT (¢ --)

$7F I di and
shl $FFFFO1 | di xor
$0A | di
FOR shr 100us NEXT
drop ret
CODE KEY (-- c)
$FFFFFF | di
begi n shr
-until
r epeat (wait for start bit)
50us
7 1di
FOR
100us shr
-if $80 Idi xor then
NEXT
$FF I di and
100us ret
MUL
Code: 13
Usage: 010011 cccccc ccceccc ccceccecce
cccceccec 010011 ccceccecece ccecceccecce
cccececce ccceccececcec 010011 cccccce
ccececece ccececece ccececece 010011
Stack Effects: (n1 n2 -- nl n3)
Carry: unchanged
Functi on:

Conditionally add the S register on the data stack to the T register if Bit-0 in
Ais set. If Bit-0in Ais reset, T register is not nodified. The T-A register
pair is now shifted to the right by one bit.

This MJL instruction is useful as a nultiplication step in inplenenting a fast
software multiplication routine. Repeating this instruction 24 times wll
multiply A and S and produce a 48-bit product in the T-A pair. (T is normally
initialized to zero prior to the multiply sequence. However any non-zero initia
value in T adds to the final result in the T-A pair.)

Codi ng Exanpl e:

Mul tiply two 24-bit unsigned integers. Miltiplicand is in S Miltiplier is in
A

mul mul mul mul
mul mul mul mul

P24 MISC Processor Manua 18

STEREO-CIT-005.A

mul
mul
mul
mul

mul
mul
mul
mul

mul
mul
mul
mul

mul
mul
mul
mul

The 48-bit product is in T-Aregister pair and the multiplicand in Sis

preserved.

Primtive nmultiplication routines are thus defined:

CODE UM (u u -- ud)
sta 0 |d
mul rmul nmul nul
mul rmul nmul nul
mul rmul nmul nul
mul mul nmul nul
mul mul nmul mnul
mul rmul nmul mnul
push drop | da pop
ret

XOR
Code:

Usage:

Stack Effects:
Carry:

Functi on:

Pop S on the data stack
are affected.

Codi ng Exanpl e:

To clear T to zero:

To generate a zero in T

14

010100
cceccecc
ccececc
ccececc

cCCCCC ccccce ccccecece
010100 cccccc cccccce
ccccce 010100 cccccc
cccccec cccececec 010100

(n1 n2 --
unchanged

n3)

and exclusive-OR it to the T register. Al 24 bits in T

dup xor

register:

(now use nore transparent “drop zero”)

dup dup xor (now use faster “zero”)

T is duplicated twice to save its contents. The two duplicated copies of T are
XOR ed together. Al the reset bits remained reset. Al set bits get reset.
Thus a 0 is created in T.

It costs 5 slots to produce a -1:

P24 MISC Processor Manua

Ldi
-1

CCCCCC cccceccecce ccccecce

19

STEREO-CIT-005.A

VS
dup dup xor com (now use faster “zero coni)

AND

Code: 15

Usage: 010101 cccccc cccecc cccececce
ccccecce 010101 ccccecece ccecceccecce
cccececce ccecececce 010101 ccceccce
cceceecec ccecececec ccececece 010101

Stack Effects: (n1 n2 -- n3)

Carry: unchanged

Functi on:

Pop S on the data stack and AND it to the T register. Al 24 bits in T are
af f ect ed.

Codi ng Exanpl e:

Dl V

Code: 16

Usage: 010110 cccccecc ceccecec cccececce
ccccecce 010110 ccceccecece ccecceccecce
cccecece cccecccecce 010110 ccccecce
cccccc ccececece cccecececce 010110

Stack Effects: (n1 n2 -- nl n3)

Carry: unchanged

Functi on:

Add the S register on the data stack to the T register. If the addition produces
a carry place the sumin T, otherw se |eave T unchanged. The T-A register pair
is now shifted to the left by one bit. Carry is shifted into A(O).

This DIV instruction is useful as a division step in inplenenting a fast
software division routine. Repeating this instruction 25 times will divide a 48
bit nunber originally in the T-A register pair by the negative of the nunber in
S, leaving the result in A and remainder in T.

Codi ng Exanpl e:

Divide a 48-bit positive integer by a positive divisor. The negated divisor is
in S

div div div div

div div div div

div div div div

div div div div

P24 MISC Processor Manua 20

STEREO-CIT-005.A

div div div div
div div div div
div shr

(Note: I think that this last shr undoes the nost recent shl that is
part of div, aligning the remainder properly in T. Also | think

this division actually only works properly for 47 bit unsigned
nunbers in T-A. -- WRQ)

Primtive division routines are thus defined:

CODE UMMOD (ud u -- ur uq)
coml1l | di add sta
push | da push sta
pop pop
skip

CODE/MD(nn--r14g)
com1l I di add push
sta pop O Id
t hen
div div div div
div div div div
div div div div
div div div div
div div div div
div div div div
div 1 1di xor shr
push drop pop |da

ret

ADD

Code: 17

Usage: 010111 cccccc cccecc cccececce
ccccecce 010111 ccceccecec ccceccecce
ccceecec cccccec 010111 cccccce
cceceece ccececece ccececece 010111

Stack Effects: (n1 n2 -- nl+n2)

Carry: change according to nl and n2

Functi on:

Pop S on the data stack and add it to the T register.
Codi ng Exanpl e:
The primtive addition in eForth is thus defined:

COOE UMW (nn- ncarry) (don’t use this if you want speed — WRC)
add
-if 1 1di ret
t hen
dup dup xor (0)
ret

P24 MISC Processor Manua 21

STEREO-CIT-005.A

POP
Code: 18
Usage: 011000 cccccc cccecec cccececce
cccccc 011000 ccccec ccecccc
cccececc cccccc 011000 cccccc
ccceccc ccccec cccccec 011000
Stack Effects: (--n; R n--))
Carry: unchanged
Functi on:
Pop the Rregister on the return stack to the T register. Oiginal contents in
T are pushed on the data stack.
Codi ng Exanpl e:
Exchanging A and T | da push sta pop
Exchangi ng A and R | da pop sta push
Increnment T sta I dp drop |da (now use “one add”)
Decrement T dup dup xor com add (now use “zero com add”)
LDA
Code: 19
Usage: 011001 cccccc ceccecc ccceccce

cccececcec 011001 cccceccecc ccccecce
cccececce ccececceccec 011001 cccccce
cceceece ccecececec ccececece 011001

Stack Effects: (-- a)
Carry: unchanged
Functi on:

Copy the contents in the Aregister to the T register
the T register is pushed on the data stack. Wth LDA and STA,

The origina

cont ent of

the A register

can serve as a scratch pad register to save and restore the contents of the T

register.

Codi ng Exanpl e: (see exanple for POP)

DUP
Code: 1A
Usage: 011010 cccccc cccecc ccceccce

ccccecce 011010 ccceccecece ccecceccecece

P24 MISC Processor Manua 22

STEREO-CIT-005.A

Stack Effects:
Carry:

Functi on:

ccceccec cccccec 011010 ccccecce
cceceecec ccececece ccecececec 011010

(n--

nn)

unchanged

Duplicate T register and push it on the data stack

Codi ng Exanpl e:

Decrement T

OVER
Code:

Usage:

Stack Effects:
Carry:

Functi on:

Sis transferred into T register.

dup dup xor com add

1B

011011
cceccecc
ccececc
cccccc

ccecccc
011011
ccecccc
cccccc

(n1 n2 — nl
unchanged

pushed onto the data stack.

Codi ng Exanpl e:

CODE 2DUP (n1 n2 — nl n2 nl1 n2)

over over ret

PUSH
Code:

Usage:

Stack Effects:
Carry:

Functi on:

Pop S on the data stack and store it to the T register

1C

011100
ccececc
ccececc
cceccecc

(n--

ccecccc
011100
ccececc
cceccecc

 RO-

unchanged

The ori gi nal

cccccece cccccce
cccccece cccccce
011011 cccccc
cccecee 011011

n2 nl)

cccccece cccccece
ccccce cccccece
011100 cccccc
cccecee 011100

n)

inthe T register is pushed onto the return stack

Codi ng Exanpl e:

P24 MISC Processor Manua

23

The origi na

(now use “zero com add”)

contents in the T register is

contents

STEREO-CIT-005.A

CODE ROT (w1l w2 W3 -- w2 w3 wl)
push push sta pop

pop | da ret

STA

Code: 1D

Usage: 011101 cccccc cccecc ccceccce
ccccece 011101 ccceccecece ccecceccecece
cccecece ccecececce 011101 cccccce
cceceece ccecececec ccececece 011101

Stack Effects: (a--)

Carry: no change

Functi on:

Pop S on the data stack and store it to the T register. The original contents
inthe T register is copied into the Aregister. This instruction initializes
the A register so that it can be used to fetch data fromnmenory or store data
into nenory.

Codi ng Exanpl e:

CODE! ((na--)

sta st ret

NOP

Code: 1E

Usage: 011110 XXXXXX XXXXXX XXXXXX
cccccC 011110 XXXXXX XXXXXX
cccececce cccceccc 011110 XXXXXX
cceceecec ccecececec ccececece 011110

Stack Effects: (--)

Carry: no change

Functi on:

No operation. This instruction will force the execute state to slot 5, to get
the next word to be fetched and executed. (Actually this is what the NOP
SHOULD do, but in the current ACTEL inplenmentation the NOP instead passes
control to the next instruction slot.)

Codi ng Exanpl e: usually inserted by assenbler.

DROP

Code: 1F

P24 MISC Processor Manua 24

STEREO-CIT-005.A

Usage: 011111 cccccc cccecc ccceccce
ccceccece 011111 ccceccecec ccceccecce
cccecece ccecececce 011111 cccccce
cceceecec ccececece ccececece 011111

Stack Effects: (n--)
Carry: unchanged
Functi on:

Pop S on the data stack and store it to the T register. The original contents
inthe T register are lost.

Codi ng Exanpl e: see exanple for junp.

Chapter 3.1 G Buss Instructions

Go
Code: 2G where Gis 4bit G Buss address
Usage: 10gggg ccceccc cccece ccceccce
ccccecc 10gggg ccceccc cccccce
ccccec ccceccc 10gggg cccccce
cceccec cccecc cccecce 10gggg
Stack Effects: (n--)
Carry: unchanged
Functi on:

Read G-buss address gggg and store in T, push original contents of T to data
st ack.

Codi ng exanpl e:

CODE KEY (-- c) (waits for a serial character and returns it)
begin g0@ $10000 Idi and until gl@ret

Note: Presently assenbler words are inplenented only for readi ng Gbhuss addresses
0, 1, 2, and 3. The correspondi ng assenbler words are “g0@ gl@ zero, and one”
See di scussi on bel ow.

a
Code: 3G where Gis 4bit G Buss address
Usage: 11gggg ccceccc cccece ccceccce
ccccec 1llgggg ccceccc cccccce
ccccec cceccecc 1llgggg cccccce
cceccec cccecc cccecce 11gggg
Stack Effects: (n--)

P24 MISC Processor Manua 25

STEREO-CIT-005.A

Carry: unchanged
Functi on:

Pop S fromdata stack into T. Oiginal contents of T are witten to G buss
addr ess gggg.

Codi ng exanpl e:
COOE EMT (¢ --) (waits for previous transnmt to conplete, then)
(sends character)
begi n g0@ $20000 Idi and until gl! Ret
Chapter 3.2 G Buss Peripherals (Interrupt Register and UART)
Currently, G buss peripherals include only an interrupt control and status
regi ster at address 0, the UART send/receive data register at address 1, and
read-only “zero” and “one” at addresses 2 and 3 respectively.

The interrupt control register at address 0 is defined as foll ows:

BitO(l sb) r/iw global interrupt enable (1 to enable)

Bitl r/fw enable for interrupt O (highest priority)
Bit2 r/fw enable for interrupt 1

Bit3 r/fw enable for interrupt 2

Bit4 r/fw enable for interrupt 3

Bit5 r/fw enable for interrupt 4

Bit6 r/fw enable for interrupt 5

Bit7 r/fw enable for interrupt 6

Bi t s8- 15 not used, read as O

Bitl6 r status of interrupt line O

Bitl7 r status of interrupt line 1

Bitl8 r status of interrupt line 2

Bitl19 r status of interrupt line 3

Bit 20 r status of interrupt line 4

Bit21 r status of interrupt line 5

Bit22 r status of interrupt line 6

Bit23 r | ogi cal OR of enabled interrupt Iines

The interrupt enable bits are all initialized to O by power-on reset. Note
that after performng an interrupt, the interrupt controller will (w thout
clearing bit 0) disable further interrupt servicing until after the next RT
instruction is executed. Interrupt lines O and 1 are currently dedicated to the
UART receive and transmt functions respectively. Interrupt line O is set after
a character is received by the UART and is cleared by reading the data at Gbuss
address 1 (least significant byte). Interrupt line 1 is set after the UART has
conpl eted a character transmission and is cleared by witing a character to
Gouss address 1 (least significant byte). (An exanple of the programm ng of the
UART for interrupt driven i/ois in file nmulti3.f. Exanples of polled i/o are
the KEY and EM T words shown above.).

Gouss addresses 2 and 3 are currently read-only, returning 0 and 1

respectively. (Special assenbler words “zero” and “one” conpile the instructions
to read Gbuss addresses 2 and 3.)

P24 MISC Processor Manua 26

STEREO-CIT-005.A

Gouss addresses 2 and 3 are available for wite-only applications. Gbuss
addresses 4-15 are entirely avail abl e.

Typi cal CGbuss peripherals that m ght be added dependi ng on application
i ncl ude:

(1) Atimer to produce periodic interrupts at a progranmabl e interval

(2) AFIFOfor buffering event data, producing an interrupt when full or
hal f full

(3) Scratch-pad registers.

(4) Hardware single-step nultiplier, with operands taken from pair of
scratch pad registers.

(5) I/0O ports.

(6) Registers to control and nonitor app-specific on-chip functions.

(7) Additional UARTs.

Chapter 4. P24 Metaconpiler

(This section has not been updated to reflect changes nmade for the

ACTEL inplementation. See the comments in files neta24i.f, ok24i.f, kern24i.f,
and ef24i.f for a log of the changes. The main changes are use of the hardware
UART, inclusion of target-resident assenbly words and the repositioning of
certain buffers and system vari ables used by Forth. Milti-tasking words and
buffered interrupt-driven serial i/o words are in the file nulti3.f and are not
currently present at boot. Milti-tasking words are docunented by comrents in the
file nulti3.f. In addition, sonme words were added in neta24i.f to facilitate

promburning etc. — see “prom” and “image.” The details of the boot nmethod have
changed. Presently booting can occur from EEPROM or serially. To be docunented
| ater. Changes near the end of neta24i.f relate to booting. -- WRC)

Met aconpiler is a termused by Forth progranmmers to describe the process of

buil ding a new Forth systemon an existing Forth system The new Forth system
may run on the sane platformas the old Forth system It may be targeted to a
new platform or to a new CPU. The new Forth system nmay share a | arge portion
of the Forth code with the old system and hence the termnetaconpilation. 1In a
sense, a netaconpiler is very sinmlar to a conventional cross
assenbl er/ conpi |l er.

The P24 eForth metaconpiler is contained in the source code file META24.F, which
runs under Wn32Forth, a public domain Forth for Wndows 95/98/2000/ NT. It
calls on the following files to build the P24 eForth system

ASMR4. F P24 assenbl er
KERN24. F Kernel words in P24 eForth
EF24. F H gh | evel words in P24 eForth
K24. F Wrds to replace assenbly nacros
In this chapter, | take the source code in META24.F and explain the functions of

the Forth words which build the eForth system
4.1 Start Up the Metaconpil er

(Copyrighted by eMAST Technol ogy Corp, 2000)
(All rights reserved)

P24 MISC Processor Manua 27

STEREO-CIT-005.A

comrent :
met a24.f 07nov00cht, change for P24, p24c
02dec00cht, interpreter ok, debuggi ng conpiler

This neta-conpiler was originally witten by Chuck More to build
Forth systenms for the MiP21 mcroprocessor. It can be easily
changed and used to conpile code for any CPU

This file loads all the source code and construct an inage of P24
whi ch can be ported to VHDL for Xilinx XCV300/1000 FPGA. It runs
under Wn32Forth, a public domain Forth system authored by Andrew
McKewan and Tom Zimer. |t can be downl oaded fromthe web, at
wwv. forth. org, under the category of Conpiler/Wndows. dick on
t he downl oad button, and it will be downl oaded to your conputer
and automatically installed.

Run W n32Forth from your desktop, or from Start/Program Wn32Forth and
you will see a wi ndow opened. Open the WnView editor fromthe File
menu. Open the file META24.F through the directory tree. Then
click back the Wn32Forth w ndow and type:

fl oad neta24
Youu will see the list of all the words compiled into the P24
target image. Type

show am
to show the i mage dunped out in hexideciml. Type

bram
to see the image dunped in a form acceptable by Xilinx VHDL. Cut
and paste this imge into your VHDL code and synt hesize the P24
system

4.2 Tools of Metaconpiler

\ create two vocabul aries. ASM24 will contain the assenbl er woprds
\ and the words in the P24 target. SIM24 will contain words which
\ build a cycl e-based sinulator to exercise code in the P24 target.

VOCABULARY ASM24
VOCABULARY SI M4

\ following are tools words added to the baseline Forth system
ONLY FORTH ALSO DEFI NI TI ONS

\ turn off the warnings normally supplied by Wn32Forth on

\ duplicated nanes and stack changes. They clutter the synbol
\ table.

HEX

WARNI NG OFF

" NOOP | S STACK- CHECK

\ type 'debuggi ng? on' and you can pace the neta-conpiler by
\ hitting SPACE for the next steps. H't RET to stop.

\ This is useful when you want to locate errors before a ful
\ conpilation.

vari abl e debuggi ng?

debuggi ng? of f

P24 MISC Processor Manua 28

STEREO-CIT-005.A

\ .HEAD prints teh nane of a new word to be conpil ed.
: .head (addr -- addr)

>IN @20 word count type space >IN !

dup .

\ CRis redefined so you can step through the conpilation by
\ setting debuggi n? on.
: CRCR

debuggi ng? @

if .s KEY OD = abort™ done"

t hen

\ Here is a group of Forth words which clash with words in the
\ target. You can use the aliases to ensure that you stil
\ has the behavior of the original Forth words.
b alias forth'

" dup alias forthDUP

drop al i as forthDROP

over alias fort hOVER

swap al i as fort hSWAP

'@ alias forth@

'l alias forth!

and alias forthAND

o+ alias forth+

- alias forth-

" word alias fort hWoRD

" CR alias CRR

o alias forth.(

count alias forthCOUNT

\ Chuck Moore preferred this nane for XOR
D -OR XOR

RAMis a large array to hold the binary i mage of P24 target.
P24 is a 24-bit CPU. One 24 bit programword is conpiled into
a 32-bit word in this array.

RESET cl ears the RAM arr ay.

RAM@ (a) uses a word address to fetch a programword in RAM
RAM (na) stores a word n into RAM at address a.

CREATE ram 8000 ALLOT

: RESET ram 8000 ERASE ; RESET

. RAM@ 4 * ram+ @;

RAM 4 * ram+ !

\
\
\
\
\
\

FOUR di spl ays four consecutive words in target.
SHOW di spl ays 128 words in target fromaddress a. It also returns
a+128 so you can SHOWt he next block of 128 words.
SHOWRAM di spl ays the entire inmage, 2048 words.
FOUR 4 0 DO DUP RAM@7 U R 1+ LOOP ;
SHOW (a) 10 0 DO CR DUP 7 .R SPACE
FOUR SPACE FOUR LOOP ;
showam 0 Oc 0 do show | oop drop ;

- e e — —

\ UD. displays a 24-bit word in 8 digits with | eadi ng zeros.

P24 MISC Processor Manua 29

STEREO-CIT-005.A

\ B. displays one byte in two digits.
\ C displays nibble in one digit.

STRING displays the attribute init string in the VHDL format
required by Xilinx Foundation synthesizer. The string
"attribute INIT_" is tenporarily replaced by "qq" to avoid

I ines broken by Forth output routine. Wen the whole
attribute bl ocks are pasted into the VHDL code, "qq" mnust

be globally replaced by "attribute INIT_".

\ EI GHT displays one line of menory attribute for VHDL
\ BLOCKRAM di spl ays one bl ock of nmenory attributes for VHDL
\ BRAM dunps the entire menory bl ocks for VHDL
cud. O <# # # #H###H#H# H#> type ;

b. 0 <# # # #> type ;

c. O <# # #> type ;
: string. (a) 8/ 10 /nod swap
\ ."oattribute INNT_" b.

aq” b.

of memory" OF and c.
" label is " 22 emt ;
ei ght 8 + dup 8 0 DO 1 - DUP RAM@ud. LOOP DROP ;
bl ockram (a) 10 0 DO CR DUP string.

eight 22 emt 3B emt LOOP cr ;

BRAM base @hex 0 OF O do bl ockram | oop drop base ! ;

4.3 Calling O her Building Blocks

\ Now we compile the structured, optimzing assenbler for P24.
CR .(include asnk4)
i ncl ude ok24

\ Now we conpile the kernel portion of the P24 eForth system
$18 org
CR .(include eforth kernel)

i ncl ude kern24

\ This set of words will be used to build high | evel control
\ structures in the body of eForth system
\ BEGA N ... AGAIN
\ FOR ... NEXT
\ FOR AFT ... THEN NEXT
\ LITlet LD to assenble a literal
\ $LIT conpiles a counted ASCI| string, packed three bytes to
\ a 24-bit program word.
: again (a --)
junp ;
for (-- a)
push begin ;
next (a--)
doNEXT junp ;
<next > next ;
aft (a -- a a")
fort hDROP begin O junp begin forthSWAP ;
LIT(d--)
[di ;

P24 MISC Processor Manua 30

STEREO-CIT-005.A

$LIT (--)
22 fort hWORD f ort hCOUNT
forthDUP ,B (conpile count)
0 DO
forthCOUNT ,B (conpile characters)
LooP
f or t hDROP

\ ;; terminates a high level colon word with a ret.

\ WAIT pauses the execution. Restart by any key. This is

\ a cheap breakpoi nt mechani sm now replaced by the sinulator
" EXIT alias ;

\' " WAIT alias ;; \ debugger

\ CREATE builds a new array word. doVAR returns the array address.

\ VARI ABLE builds a variable in P24 target.

: CREATE makeHead begin . head CONSTANT doVAR DCES> forth@call ;
VARl ABLE CREATE 0 #, ;

\ Ready to conpile the high level portion of the P24 eForth.
CR .(include eforth24)
i ncl ude ef 24

\ Conpile Forth words used as nacros in assenbler, but now needed
\ so the Forth interpreter and conpil er have access to these

\ functions.

CR

i ncl ude k24

4.4 Boot Code

\ Build the boot code starting at location 0. This piece of code
\ initializes the variables in RAM nenory and then junps to COLD.
0 ORG
10 LIT 704 LIT 6 LIT
forth' COLD >body forth@LIT
push push
anew H forth@
push sta | dp push
| da pop pop sta
stp lda
<next >
pops pops ret

\ Build the table of initial values for the variables to be
\ copied to RAM nmenory on booti ng.

10 ORG

730 #,

O0A #,

|l astH forth@ #,

780 #,

| astH forth@ #,

forth' $I NTERPRET >body fort h@ #,

forth QU T >body forth@ #,

P24 MISC Processor Manua 31

STEREO-CIT-005.A

Chapter 5 The Optim zing P24 Assenbl er

This ASM24. F file contains a Structured, Optimnzed Assenbler for P24
CPU. It packs up to four machine instructions into one 24-bit
programword. It also builds structures simlar to those in

high I evel Forth. The structures are build in a single pass,

wi t hout | abel s.

P24 eForth adopts the Subroutine Thread Mddel, in which the col on
words contain lists of subroutine calls, instead of l|ists of
addresses. Using this nodel, the assenbl er assunes the duties

of the conpiler. Another advantage of the Subroutine Thread
Model is that machine instructions can be assenbled in-line

with the col on words.

5.1 Assenbly Tool s

\ Put all the assenbly words and words in the P24 target into
\ the ASM24 vocabul ary.

ONLY FORTH ALSO ASwe4

ASM24 DEFI NI TI ONS

\ Hpoints to the next free location in the target inmage to
\ receive new code or data.
\ LOC marks a target location to be reference later. It is not
\ used in the P24 system
VARl ABLE H
LOC CONSTANT DCES> @ H! ;

\ LASTH contains the link field address of the |ast word
\ to build the linked |list of Forth words.
variable lastH O |astH ! \ init linkfield address |fa

\ NAMER! stored n into the next location in target.
\ It was useful if you want to assenble nanes in a separated
\ nanes dictionary.

nameRl (n --)
H @ RAM \ store double to code buffer
1 H+! \" bunp naneH

COWPI LE- ONLY marks the current word so it can only be conpil ed
in a colon wrd. It cannot be executed interactively.

| MVEDI ATE marks the current word so it will be executed in

a colon word. Al structure building wirds are so marked.
compi |l e-only 400000 |astH @RAM@-OR | astH @ RAM ;

i medi at e 800000 lastH @ RAM@-OR | astH @ RAM ;

- e — —

Derived from Chuck Moore's P21 20 bit assenbl er

H selects one of four masks to assenble a machine instruction
into one of the four slots in a 24-bit program word.

HWpoints to the programword into which new machi ne instructions
are to be assenbled. H may advance from HWas literal val ues

— - -

P24 MISC Processor Manua 32

STEREO-CIT-005.A

\ are assenbled follow ng the program word.

\ Bl points to one of the 3 bytes in a 24-bit programword. It
\ allows the assenbler to pack 3 ASCI| characters into one word.
VARl ABLE Hi VARI ABLE Hw

VARI ABLE Bi (for packing)

\ ALIGN forces the next instruction to be assenbled into the next
\' word.
\ ORG(a) changes Hto a, to start assenbling at a new | ocati on.
. ALIGN 10 H ! ;

ORG DUP. CRH! ALIGN;

\ MASK contains four mask patterns to assenble a machi ne instruction
\ into one 6-bit slot of a programwrd. The mask is selected by
\ H.
\ #, (n) assenbles ninto the next free |ocation pointed by H
\ Advance H afterwards.
\ ,W(n) assenbles a machine instruction to the next free sl ot
\ in the current programword pointed to by HW
\ ,1 (n) assenbles a machine instruction. It the current word
\ is full, assenble the instruction into the next word.
\ ,B(¢) packs a character c into the current word. Uses Bl to
\ determ ne the character postion in a 24-bit word. Pack it to
\ the next word if the current word is full.
CREATE mask FC0000 , 3FO0O0 , FCO , 3F,
D #, FFFFFF AND H @ RAM 1 H +! ;
Y Hv @ RAM@ -OR FFFFFF AND Hv @ RAM

o H @10 ANDIF OH ! H@Hw~v! 0 # THEN

H @mask + @AND ,w 4 H +!

, B (c)B @0=IF1B ! H@Hwv! 0O #, 10000 * ,w EXIT THEN
BB @1 =1F 2 Bi ! 100 * ,w EXIT THEN
0B ! ,w;

5.2 Transfer Instruction Assenbl er

\ INST A defining word to define a single slot nachine instruction.

When the machine instruction word is executed, it assenbles the
desired machine instruction into the current programword. |If
the current word is full, start a new programwrd. The constant

contained in the machine instruction word has four identical
machi ne code patterns in the four slots, so that the word ,|I
can select one of themand add it to the current program word.
NOP machine instruction word has 1E in all four slots. They
make up the 24-bit pattern 79E79E

: INST CONSTANT DCES> @ , |
79E79E | NST nop

e o o e e e —

\ ANEWstarts a new programword by filling the current word with
\ NOPs. It is required when we have to assenble a 4-sl ot
\ instruction |like CALL, BZ, or BNZ
: anew BEGNH @10 AND 0= WH LE nop REPEAT 0 Bi !
H@Hw'! ;

\ JMP A defining word to assenble a 4-slot long instruction. The

\ machine instruction thus defined will take an address on the
\ stack and assenble the |east significant 18 bits of the address

P24 MISC Processor Manua 33

STEREO-CIT-005.A

\

e e e e o —

— -

into the address field of the instruction.
JMP CONSTANT DOES> @ anew SWAP 3FFFF AND -OR #, ALIGN ;

BEA N starts a new programword and marks its address on stack.
-;' termnates a colon word by changing the | ast subroutine
call into a junp. This is tail-recursion, which saves the
return instruction at the end of a col on word.
LDI (n) assenbles a Load-I|medi ate nachi ne instruction and
add the literal value to the next word.
begin anew H @;
- Hv @ RAM@ DUP $FCO000 AND 100000 =

| F 100000 - OR Hw @ RAM ELSE DROP THEN ;
| di 28A28A |1 #, ;

CALL assenbles a 18-bit call instruction to a location in the
current page of 256K words.

JUWP assenbles a 18-bit junp instruction to a location in the
current page of 256K words.

BZ assenbles a 18-bit conditional branch to a location in the
current page of 256K words. Branch on T=0.

BNC assenbles a 18-bit conditional branch to a location in the
current page of 256K words. Branch on Carry Not Set.

UNTI L assenbl es a branch on T=0.

-UNTIL assenbl es a branch on no carry.

100000 JMP cal |
0 JMP junp 80000 JMP bz C0000 JMP bnc

e o o e o e e o e o o —

— — - —

80000 JMP until CO000 JMP -until

The following words build structures in assenbly code words,
much i ke those in the high I evel code. Since we use the
Subroutine Thread Mddel for colon words, these structure words

will be used in the colon words as well. The structures are:
IF ... THEN
IF ... ELSE ,,, THEN
SKIP ... THEN
BEGN ... AG AN
BEG N ... UNTIL
BEGN ... WVHLE ... REPEAT

-IF, -WHILE, -UNTIL are simlar to IF, WH LE, UNTIL, except
that they assenbl e BNC i nstead of BZ.

if begin 0 bz ;

-if begin 0 bnc ;

skip begin 0 junp ;

t hen DUP >R >R begin 3FFFF AND R> RAM@-OR R> RAM ;
el se skip SWAP then ;

whi | e if SWAP ;

-while -if SWAP ;

repeat junp then ;

again junp ;

.3 Single Slot Instructions

Here is the list of all the single slot nachine instructions.

RET returns from subroutine call.

LDP | oads a word and pushes it to T. Address of word is in A
A i s auto-increnented.

P24 MISC Processor Manua 34

STEREO-CIT-005.A

LD load a word and pushes it to T. Address of word is in A

STP pops a word fromT and stores it to nenory. Address of
word is in A A is auto-increnented.

ST pops a word fromT and stores it to nenory. Address of
word is in A

COM conpliments T, ones conplinent.

SHL left shifts T by one bit.

SHR right shifts T by one bit. Arithnetic right shift.

ML rmultiply step

XOR pops data stack and XORs it to T.

AND pops data stack and ANDs it to T.

DV divide step.

ADD pops data stack and ADDs it to T.

POP pushes T on data stack, and pops return stack to T.

LDA pushes T on data stack, and copy Ato T.

DUP pushes T on data stack.

PUSH pushes T on return stack, and pops data stack to T.

STA Copies T to A and pops data stack to T.

\ DROP pops data stack to T.

e T e e T e o o e o o m — — —

41041 I NST ret
249249 I NST |dp 2CB2CB INST Id 34D34D | NST stp 3CF3CF | NST st
410410 I NST com 451451 | NST shl 492492 | NST shr 4D34D3 | NST rmul
514514 | NST xor 555555 | NST and 596596 | NST div 5D75D7 | NST add
618618 | NST pop 659659 | NST | da 69A69A | NST dup
71C71C I NST push 75D75D INST sta (79E79E INST nop) 7DF7DF I NST drop

5.4 M scel | aneous Assenbly Tool s

\ POPS alias of DROP, useful after high |level DROP is defined.
\ PUSHS alias of DUP, useful after high |evel DUP is defined.
pops drop ;
pushs dup

\ LJUW a long junp to a 24-bit address. Pushes the address
\ on the return stack and then execute RET.

[jump ' >body @I di \ get address of target word

push ret ; \ long jump
\ (MAKEHEAD) builds a header for a new word. First builds the
\ link field using LASTH, and then packs the nane count and nane
\ into the nane field, three bytes per word.
\ MAKEHEAD bui |l ds a header while retains the word pointer so
\ that the name string is still available to be printed.
: (makeHead)

anew

20 word \ get nane of new definition

| astH @ naneR! \ fill link field of |ast word

H@lastH ! \ save nfa in |astH

forthdup c@,B \ store count

count 0 do

count , B \ fill name field
| oop forthdrop anew
makeHead

>IN @>R \ save interpreter pointer

P24 MISC Processor Manua 35

STEREO-CIT-005.A

(makeHead)
R> >IN ! \ restore word pointer

\ $LIT packs a counted string into the next avail abl e space
\ in the target inmage, three bytes to a word.

$LIT (--)
anew
22 WORD
forthDUP c@,B (conpile count)
count 0 DO
count ,B (conpile characters)
LOOP

forthDROP anew ;
\ ': builds a new subroutine in the target w thout a header

\ CODE builds a new code word in the target with a header.

\ builds a new colon word in the target with a header. As

\ we are using the Subroutine Thread Mddel, :: is the sane as

\ CODE, and colon words shared all the structure building tools
\ with code words.

' begin .head CONSTANT DCES> @ call ;

CCDE nmakeHead ': ;

;. CCDE ;

Chapter 6. The P24 Kerne

The KERN24.F file contains nost of the words which are witten

in assenbly for speed considerations. P24 eForth is optimnm zed

as all the words which can be witten in assenbly are so done.
However, much nore optimzation is achieved by a set of macros,
which try to convert the nost commonly used high |l evel Forth

words into machine instructions and packs these nachi ne instruction
as tightly as possible. The end results are that the code size

is significantly reduced and the execution speed greatly increased.

The use of macros will be further explained along with the code.
The code words in this file al se serve as progranm ng exanpl es

for the optimal use of the P24 CPU. It is worth you while to study
them carefully, and use them as tenpl ates when you |like to convert
hi gh | evel application words into assenbly.

The Forth Virtual Engine is:

T top of stack
S data stack 16 | evel s
R return stack 16 | evel s

Both the data and return stacks are in CPU

The A register is used by the nenory fetching and storing
instructions to provide address to the external nenory. When
not used to address nenory, A can be used as a scratched
register.

P24 MISC Processor Manua 36

STEREO-CIT-005.A

In the MJUL and DIV instructions, the A register serves as the
extension to the T register to hold the |l ower half of the partial
product or the divident.

Subroutine thread nodel elimnates IP, doColon, and EXIT.

16 | evel s of stacks are enough for nost applications. They wll
wrap around when exhaust ed.

Menory al | ocati on:

0 Boot code

10 Initial variables
18 Ker ne

9A Forth words

700 RAM vari abl es
710 Text buffer

730 TI B

780 User dictionary
TFF End of nenory

6.1 System Vari abl e

Al the systemvariables are defined as macros. They will be
assenbled as literals in the formof LDl instructions. On
execution, they will return their respective addresses on the
data stack. It is assuned that the target system has RAM starting
fromlocation $700. For a different target system you have

to change the locations in these macros.

— - -

HLD points to buffer for output numeric string.

SPAN variable to hold the Iength of input text string.
> N offset to the text string currently being interpreted.
#TIB l ength of the input text string

"TIB location of the termi nal input buffer.

BASE base for nunber conversions

CONTEXT pointer to start dictionary searches

CP points to the top of the dictionary

LAST points to the name field of the | ast word

"EVAL points to $I NTERPRET or $COWPI LE to eval uate words
" ABORT points to error recovery routine

TEXT points to text buffer to unpack strings

tnp a scratch pad vari abl e.

hex

CRR .(Systemvariables) CRR

: HLD 700 Idi ; \ scratch

: SPAN 701 Idi ; #chars input by EXPECT

>IN 702 Idi ; i nput buffer offset

#TIB 703 | di ; #chars in the input buffer
"TIB 704 | di ; TIB

BASE 705 Idi ; \ nunber base

— e o — — —

— — -

CRR
: CONTEXT 706 Idi ; \ first search vocabul ary
CP 707 Idi ; \ dictionary code pointer
LAST 708 I di ; \ ptr to |last nane conpil ed

P24 MISC Processor Manua 37

STEREO-CIT-005.A

"EVAL 709 |di ; \ interpret/conpile vector
" ABORT 70A I di ;

TEXT 710 I di ; \ unpack buffer

tnp 70B I di ; \ ptr to converted # string

()]

.2 Assenbly Macros for Code Optim zing

Many Forth words have correspondi ng P24 machi ne instructions
or can be represented by a short sequence of P24 machi ne
instructions. |Instead of representing themin subroutines,
they are defined as macros, which invoke the assenbl er
mmeunoni cs to pack as many machine instructions to program
wor ds.
Qoviously, if a Forth words can be translated to | ess than
four machine instrucitons, there are gains in shorter code
sizes and faster execution speed. However, there are also
significant gains when a Forth word is defined as a 4 machi ne
i nstruction macro, because it may continue the packing from
the previous word to the next word.
These nmacros together with the machi ne instructions

DUP, DROP, AND, XOR
tend to pack the code tightly.
CR .(macro words) CR

e e e e o m — — — —

EXIT ret ;
EXECUTE (a) push ret ;
' (na--) sta st ;

@(a- n) stald;

R> (- n) pop;

R@(- n) pop dup push ;

>R (n) push ;

SWAP (n1 n2 - n2 nl)
push sta pop |lda ;

OVER (nl n2 - nl n2 nl1)
push dup sta pop

| da ;
2DROP (ww --)
drop drop ;
+ (ww-- w) add
NOT (w-- w) com;
NEGATE (n -- -n)

coml |di add
1- (a-- a)
-1 Idi add ;
1+ (a-- a)
1 1di add
BL (-- 32)

20 Idi ;
+ (na--)

sta | d add st
- (ww-- w)
comadd 1 | di add

6.3 Forth Wrds Coded in Assenbl er

P24 MISC Processor Manua 38

STEREO-CIT-005.A

\ Foll owi ng words are conplicated and have to be defined as

\ code word.

\ doVAR starts a variable or an array.

\ foll owi ng doVAR.

\ doNEXT term nates a FOR NEXT | oop.

It returns the address

t decrenents the counter

\ on the return stack. It exits the |oop when the count is O.
CR .(kernel words) CR
CODE doVAR
pop ret
CODE doNEXT
pop pop dup \ decrenent count
if -1 1di add push
push ret \ if index is not 0, |oop back
t hen
drop 1 Idi add \ index is 0, exit loop and continue
push ret
\ Following are Forth words which are too | ong for nacros,
\ yet still easily expressible in machine instructions.
\ They are all commonly used Forth words.
\ UM%+ (nn-- sumcarry) is a special word in eForth to
\ provide carry in addition. However, it is not used here
\ because carry is readily accessible using -if or BNC
\ Note that BZ renoves the flag tested fromthe stack, while
\ BNC does not disturb the data stack. Thus BZ can be used
\ to code IF directly, and BNCw Il let -IF to test T repeatedly
\ using the SHL instruction
CR
CODE O< (n - f)
shl
-if drop -1 1di ret
t hen
dup xor (O Idi)
ret
CODEOR(nn-n)
com push com
pop and comr et
CODE UW (nn- ncarry)
add
-if 1 1di ret
t hen
dup dup xor (0)
ret
CODE ?DUP (w-- ww | 0)
dup
if dup ret then
ret
CODE ROT (wl w2 w3 -- w2 w3 wl)
push push sta pop
pop | da ret
CODE 2DUP (Wl w2 -- wl w2 wl w2)
dup push push
dup sta pop | da pop
ret
CR
P24 M1SC Processor Manual 39

STEREO-CIT-005.A

CODE DNEGATE (d -- -d)
com push com 1 |di
add
-if pop ret
t hen
pop 1 Idi add ret

CODE ABS (n -- +n)

dup shl
-if drop com1 Idi add
ret
t hen
drop ret
CR
CODE = (ww-- 1)
xor
if dup dup xor ret then
-1 1di ret

CoOE 2! (da--)
sta push stp
pop st ret
CODE 2@(a -- d)
sta ldp Id ret
CODE COUNT (a -- a+l n)
sta | dp push Ida
pop ret

6.4 Packi ng and Unpacki ng Text Strings

\ B> adds one byte at b to the word at a. It shifts the
\ existing data in a left by 8 bits. Returns b+l and a,
\ and is ready to pack in the next byte.
B> is used by PACK$ to pack a byte string into a packed
string.
>B unpacks three bytes in a and puts themat b. Returns
a+l and b+3 so it is ready to unpack the next word. The
first byte unpacked is also return as a count, which is
useful when this word is the first word of a packed string.
>B is called by UNPACK$ to convert a packed string to a
counted byte string.
CR (pack B> and unpack >B strings)
CODE B> (b a-- b+l a)
push sta [dp push
| da pop pop sta
Id

—

shl shl shl sh
shl shl shl sh
add st lda ret
CODE >B (a b -- at+l b+3 count)
push sta | dp push
| da pop pop (atl n b) sta
dup push
$FF I di and pop
$FFFFO0 | di and $FF | di xor
shr shr shr shr
shr shr shr shr

P24 MISC Processor Manua 40

STEREO-CIT-005.A

dup push

$FF 1 di and pop

$FFFFO0 | di and $FF Idi xor
shr shr shr shr

shr shr shr shr

$FF 1 di and dup push

stp stp stp (a+tl c)

| da pop ret

Chapter 7. High Level Wrds in P24 eForth

The file EF24.F contains all the high |l evel words in P24 eForth.

This inplenmentation follows closely the eForth nodel. The
foll owi ng set of words are renoved because they are not absolutely
necessary for enbedded applications. 1In this inplementation

the size constrain is severe, and the exi stence of every word
must be justified rigorously.

Wrds renoved fromthe eForth nodel
CATCH, THROW PRESET, XIOQ FILE, HAND, |I/O
CONSOLE, RECURSE, USER, VER, H, 'BOOT

Mbst of the user variables are elim nated:
SPO, RPO, '?KEY, '"EM T, 'EXPECT, 'TAP, 'ECHO
' PROWPT, CSP, 'NUMBER, HANDLER, CURRENT, NP

Only these user variables remain and are nmacros:
HLD, SPAN, >IN, #TIB, 'TIB, 'EVAL, BASE, tnp
CP, CONTEXT, LAST, 'ABORT, TEXT

The P24 eForth system can be summarized in the foll owi ng words
and their pseudo code:

COLD boots Forth, print sign-on nessage and junp to QU T
QUIT repeats the sequence: accepts a line of text and executes
the conmmands in sequence. The pseudo code is:
QUI T BEG N QUERY EVAL AGAIN ;
QUERY accepts one line of text of 80 characters or term nated
by a carriage-return.
EVAL parses out tokens in the text and eval uates them
EVAL BEG N TOKEN WH LE ' EVAL @XECUTE REPEAT . K
TOKEN parses out one word fromthe input text.
"EVAL contains $I NTERPRET in the interpret node or $COWI LE
in the conpiling node.
@=XECUTE executes either $I NTERPRET or $COWPI LE
. X prints out the "OK" nessage.
$I NTERPRET (a) searches the dictionary for a word of the
text string at a. If the word exists, execute it.
El se, convert the string into a nunber on the stack
Failing to convert the string to a nunber, prints an
error nessage and abort to QU T.
$I NTERPRET NAME? | F EXECUTE ELSE NUMBER?
| F ELSE ERROR THEN THEN ;
$COWPI LE (a) searches the dictionary for a word of the
text string at a. |If the word exists, conpile it.

P24 MISC Processor Manua 41

STEREO-CIT-005.A

El se, convert the string to a nunber and compile the
nunber as a literal. Failing the conversion, prints
a message and abort to QUIT.
$COWPI LE NAME? | F , ELSE NUMBER?
| F LI TERAL ELSE ERROR THEN THEN
NAMVE? calls 'find to locate a word of the name parsed out
out the input text string.
NUVBER? (a) converts the text string at a to a nunber.
ERROR prints the offending text string and aborts to QU T.
LITERAL (n) conpiles n as a literal into the current word
bei ng conpi | ed.

The above words serve as a top-down map of the eForth operating
system The eForth system source code builds up to QU T and
COLD. Most words in EF24.F are necessary in the building
process. The eForth systemcan be viewed as a very sophisticated
application of P24. Mbst applications are much sinplier than
eForth system You can nodel your application code to eForth,
and use all the tools contained therein.

8.1 Serial Port

\ 50us delays 52 us, half of a bit at 9600 baud.
\ 100us del ays 104 us, one bit frame at 9600 baud.

\ EMT (¢) sends character c to the serial output port.

\ KEY (-- ¢) waits for a character fromthe serial input port.
\ The serial ports are actually connected to the T register

\ The No-Cost UART
\ On executing SHR instruction, the |least significant bit in
\' T, T(0), is shifted to a flip-flop, whose output is
\ connected to the serial output port. At the sane tine
\ the state of the serial input port is latched into the
\ carry bit, which is bit T(24). Repeating SHR 8 tines,
\ a character is sent out. One character is captured by
\ waiting for the start bit on the serial input port, and then
\ test the port at the intervals of 100 us.
\ One nust be very careful in using the SHR instruction
\ In order not to disturb the output port, you should al ways
\ set T(0) to a 1 before executing SHR. This way, the seria
\ output port stays at the mark |evel
CRR .(Chararter 10) CRR
CCODE 50us
2 Idi skip
CODE 100us
1 1di
t hen
sta -138 |di
begi n | da add
-until
drop
ret

CODE EMT (¢ --)

P24 MISC Processor Manua 42

STEREO-CIT-005.A

$7F Idi and
shl $FFFFO1 |di xor
$0A | di
FOR shr 100us NEXT
drop ret
CODE KEY (-- ¢)
$FFFFFF | di
begi n shr
-until
r epeat (wait for start bit)
50us
7 1di
FOR
100us shr
-if $80 Idi xor then
NEXT
$FF I di and
100us ret

8.2 Simple Uility Wrds

\ These conmon functions are too conplicated to code in machi ne
\ instructions, and are left in the high |l evel form
CRR . (Common functions) CRR
o Wk (uu--1t) 2DUP XOR 0< | F SWAP DROP 0O< EXIT THEN - O< -;'
<(nn--1) 2DUP XOR O< | F DROP 0< EXIT THEN - 0O< -;'
MMX (nn--n) 2DUP < | F SWAP THEN DROP ;
MN(nn--n) 2DUP SWAP < | F SWAP THEN DROP ;
WTHIN (uul uh --t) \ ul <= u < uh
OVER - >R - R> W -

8.3 Di vi si on

\ UM MDD and /MOD share the sane body to do division of a 48-bit

\ divident by a 24 bit divisor, using the DV machine instruction.

\ The higher half of the divident is placed in T and the | ower
half is placed in A The divisor is negated and placed on the
data stack below T. The negated divsor is added to T in the
adder. If a carry is generated, indicating that T is big enought
to subtract the divisor, The sumis accepted into T, and then T-A
conbination is shifted left by one bit. The nost significant bit
in Ais shifted into T(0), and Carry is shifted into A(O).
If the adder does not generate a carry, the subtraction wll not
be done. The T-A conbination is shifted left by one bit, and
a 0is shifted into A(O).

— -~ —

—

The above divide step DIV instructions is repeated 25 tines to
generate the proper quotient in A The remainder is in T, if it
is shifted right by one bit.

—

The only restriction in this division procedure is that the divisor
and the divident nust be positive. It cannot handl e negative

di visor or negative divident. This is not a serious limtation
because the special word M MOD does signed division by first
convert both divisor and divident to postive nunbers for division

— - - —

P24 MISC Processor Manua 43

STEREO-CIT-005.A

\ operations, and then place appropriate signs in front of quotient
\ and remai nder.

UM MOD, /MOD, /, and MOD all assunme that divisors and dividents
are positive. In the eForth system this is not a problem
Nevert hel ess, users nust be aware of this limtation when witing
code which rmust handl e negative nunbers.
CRR .(Dvide) CRR
CODE UM MDD (ud u -- ur uq)

com1l | di add sta

push | da push sta

pop pop

skip
CODE/MD(nn--r14g)
com1l Idi add push

— — -

sta pop O Id

t hen

div div div div
div div div div
div div div div
div div div div
div div div div
div div div div

div 1 Idi xor shr
push drop pop |da

ret
CODEMD (nn--r)
/ MOD
drop ret
CODE/ (nn--q)
/ MOD

push drop pop ret
MMOD(dn--r1q) \ floored
DUP 0< DUP >R
| F NEGATE >R DNEGATE R>
THEN >R DUP 0< |IF R@+ THEN R> UM MOD R>
| F SWAP NEGATE SWAP THEN ; ;

8.4 Mul tiplication Wrds

\ UM& multiplies two unsigned 24-bit integers and produces a

\ 48-bit product. The multiplier is placed in A register, and
\ the multiplicant is placed on the data stack below T. T is
\ cleared to zero. The MJL machine instruction | ooks at A(O)

bit. If it is a one, the multiplicant is added to T, and
the T- A conbination is shifted to the right by one bit.
Carry us shifted into T(23). It A(O) is a zero, the nultiplicant

is not added. The T-A conbination is shifted to the right, and
a zero is shifted into T(23).

After the MJL instruction is repeated 24 tines, a 48-bit product
is produced in the T-A conbination. T has the nore significant
hal f and A has the less significant half of the product.

— — — — — —

\ Both U and * do the unsigned multiplication. M does signed
\ multiplication. For correctness, * should call M to do the
\ multiplicant. However, here * calls UW for speed. You should

P24 MISC Processor Manua 44

STEREO-CIT-005.A

\ be aware of this property in your applications. As the eForth
\ systemonly does unsigned nultiplications, it is not a problem
CRR .(Miltiply) CRR
CODE UM (u u -- ud)
sta 0 Idi
mul mul mul nul
mul mul mul nul
mul mul mul nul
mul mul mul nul
mul mul mul nul
mul mul mul nul
push drop | da pop
ret
*(nn--n) UWw DROP ;;
M (nn--d)
2DUP XOR 0< >R ABS SWAP ABS UM R> | F DNEGATE THEN ; ;
*MD(nnn--rq) >RM R MMD -;'
*(nnn--q) *MD SWAP DROP ;;

8.5 Menory Access Wrds
8.6
\ >CHAR filters out non-printable characters for TYPE.
\ It thus ensures that TYPEi ng a non-printable character
\ will not choke the printer.
CRR .(Bits & Bytes) CRR
>CHAR (¢ -- ¢)
$7F LIT AND DUP $7F LIT BL WTHI N
IF DROP (CHAR _) $5F LIT THEN ;;

CRR . (Menory access) CRR
HERE (-- a) CP @;;
PAD (-- a) CP @50 LIT + ;;
TIB(--a) 'TIB@;;

CRR
@XECUTE (a --) @?DUP | F EXECUTE THEN ;;
CMWVE (bbu--)
FOR AFT >R DUP @R@! 1+ R> 1+ THEN NEXT 2DROP ::
FILL(buc --)
SWAP FOR SWAP AFT 2DUP ! 1+ THEN NEXT 2DROP ;;

8.6 String Packi ng and Unpacki ng Wrds

\ PACK$ packs the string at b with Iength u into nenory | ocated
\ at a, three bytes to a 24-bit programword. It calls B>to
\ do the packing. This packing function greatly reduces the
total size of the P24 code immage. The packing al so speeds
up the dictionary searches because three bytes are conpared
at once. The systemscratch variable TMP is used to store
the byte count which directs the bytes to their proper

| ocation. After the byte string is fully packed, the |ast
packed programword is left justified and enpty slots are
filled with NUL bytes.

: PACK$ (bua--a)\ null fill

dup push

e e o e o — —

P24 MISC Processor Manua 45

STEREO-CIT-005.A

11di tnp sta st
sta dup push st
| da pop
FOR AFT (b a)
B>
tnp sta Id
IFId 1 I1di xor
| F dup dup xor st
11di add
ELSE 2 | di st
THEN
ELSE 1 Idi st
THEN
THEN NEXT
tnp sta Id
IF1d 2 Idi xor
IF sta Id
shl shl shl shl
shl shl shl shl
st lda
THEN
sta |d
shl shl shl sh
shl shl shl sh
st | da
THEN
drop drop pop

UNPACK$ unpacks a packed string at a into a counted byte string
at b. It calls >B to unpack a 24-bit word into three bytes.
It allows names of words to be printed, and in-line packed strings
to be accessed as byte strings.
© UNPACK$ ((ab--Db)
DUP >R (save b)
>B $1F LIT AND 3 LIT /
FOR AFT
>B DROCP
THEN NEXT
2DRCP R>

- e e — —

8.6 Nunber Qutput Wbrds

\ All nunmbers in P24 are stored internally as 24-bit binary patterns.
\ To nake the nunbers visual to the user, they are converted to
\ strings of digits to be printed. A nunber is converted one digit
\ at atine. It is divided by the value stored in BASE, and the
remai nder is converted to a digit by DDA T. The quotient is
di vided further by BASE to build a conplete nuneric string
suitable for printing. The output nuneric string is built
backward bel ow the nmenory buffer at PAD, using HLD as the pointer
nmovi ng backward. Additional formating characters can be inserted
into the output string by HOLD

—— — - -

\ This nuneric output nechanismis extrenely flexible and can produce

P24 MISC Processor Manua 46

STEREO-CIT-005.A

\ nunbers in a wide variety of formats for tables and arrays. It also
\ allows the user to display nunbers in any reasonabl e base, |ike
\ decimal, hexideciml, octal, and binary, anong other non-conventional

\ bases.
CRR .(Nuneric Qutput) CRR \ single precision
DAT (u--—c)
9 LIT OVER < 7 LIT AND +
(CHAR O) 30 LIT + ;;
EXTRACT (n base -- n c)
O LIT SWAP UM MDD SWAP DIG T -
<# (--) PADHD! ;;
HOLD (¢ --) HLD @1- DUP HLD ! ! ;;
(u -- u) BASE @EXTRACT HOLD -;'
0 #S (u -- 0) BEG N # DUP WH LE REPEAT ;;
CRR
0 SIGN(n--) 0O<IF(CHAR -) 2D LIT HOLD THEN ;;
#> (w-- b u) DROP HLD @PAD OVER - ;;
str ((n-- bu) DUP >R ABS <# #S R> SIGN #> -;'
HEX (--) 10 LIT BASE ! ;;
DECIMAL (--) OALIT BASE ! ;;

8.7 Nunber [nput Wbrds

Nunbers are entered into P24 as strings of digits, delimted by
spaces and other white characters |ike CR, TAB, NUL, etc.
Nuneric strings are converted to internal binary form by
multiply the digits, nost significant digit first, by the val ue
\ in BASE and accunul ate the product until the digits are exhausted.

—— -

\ NUMBER? does the conversion. It allows a leading $ to
\ indicate that the nuneric string is in hexidecimal. It also
\ allows a leading - sign for negative nunbers.
CRR .(Nuneric Input) CRR\ single precision
: DAT? (¢ base -- u't
>R(CHARO) 30 LIT- 9 LIT OVER <
IF7 LIT- DUPOALIT < ORTHENDUP R> Wk -;'
: NUMBER? (a-- nT| a F)
BASE @>R O LIT OVER COUNT (a O b n)
OVER @(CHAR $) 24 LIT =
I|F HEX SWAP 1+ SWAP 1- THEN (a 0 b' n'")
OVER @(CHAR -) 2D LIT =>R (a 0 b n)
SWAP R@- SWAP R@+ (a 0 b" n") ?DUP
IF1- (a0bn)
FOR DUP >R @BASE @Dl d T?
VWH LE SWAP BASE @* + R> 1+
NEXT DROP R@(b ?sign) | F NEGATE THEN SWAP
ELSE R> R> (b index) 2DROP (digit nunber) 2DROP O LIT
THEN DUP
THEN R> (n ?sign) 2DROP R> BASE ! ;;

This is the set of words displaying characters to the output

devi ce.

D% is an internal systemword whi ch unpacks a packed string conpil ed
in-line with programwords. It digs up the starting address of the
packed string on the return stack, unpacks the string to |location a,
and then nove the return address passing the packed string. Then,

—— — — -

P24 MISC Processor Manua 47

STEREO-CIT-005.A

\ the execution can continue, skipping the packed string in-line.

$"| is conpiled before a packed string. |t unpacks the string and
returns the address of the TEXT buffer where the unpack string is
st or ed.
."| is also conpiled before a packed string. It unpacks the string
and displays it on the output device.
CRR .(Basic I1/0) CRR
SPACE (--) BLEMT -;'
CHARS (+h ¢ --)
SWAP O LIT MAX
FOR AFT DUP EM T THEN NEXT DRCP ;;
SPACES (+n --) BL CHARS -;'
: TYPE (b u --
FOR AFT DUP @ >CHAR EM T 1+
THEN NEXT DROP ;;
0 R(--) (=0)
OALITODLITEMT EMT -;'
do$ (-- a)
R> R@ TEXT UNPACK$
R@ R> @ $3FFFFF LI T AND $30000 LIT / 1+ +
>R SWAP >R ;;

— — — - —

a
-) do$ CQUNT TYPE -;'
n
R> OVER - SPACES TYPE -;'

+)
#> R> OVER - SPACES TYPE -;'
(-) <# #S #> SPACE TYPE -;'
. (no--

BASE @OA LIT XOR

IF U EXIT THEN str SPACE TYPE -;'

?(a--) @. -}

8.7 Word Parser

\ TOKEN parses out the next word in the input stream delimted by

\ spaces. The word is packed and placed on the top of the dictionary,
\ sothat it can be used to do dictionary searches, and becones the

\ nane field if the word just happed to be the nane of a new

\ definition.

\ PARSE allows the user to specify the delimting character to parse
\ out the next word in the input stream It calls 'parse' to do the
\ dirty work.

'parse’ scans the input stream and skips the | eading blanks if
SPACE is the delimting character. The parsed word starts with
the next non-delimting character and is term nated by the next
delimting character. 1t returns b the begi nning address of the
parsed word, u the Iength of the remaining characters in the input
stream and delta the length of the parsed word. It is a very
long word with many nested and interlaced structures. It is a
chal | enge even to the very experienced Forth programmers.

CRR .(Parsing) CRR

(parse) (buc-- budelta; <string>)

— — — — — -

P24 MISC Processor Manua 48

STEREO-CIT-005.A

tmp ! OVER >R DUP \ b u u

IF 1- tnp @BL =
I F \ bu \ "skip
FOR BL OVER @ - 0< NOT
VH LE 1+
NEXT (b) R> DROP O LIT DUP EXIT \ all delim
THEN R>

THEN OVER SWAP \ b'" b' u" \ 'scan'
FORtmp @QOVER @- tnmp @BL =
| F 0< THEN WHI LE 1+
NEXT DUP >R
ELSE R> DROP DUP 1+ >R
THEN OVER - R> R> - EXIT
THEN (b u) OVER R> - ;;
: PARSE (¢ -- b u; <string>)
>R TIB >N@+
#TIB @>IN @-
R> (parse) >IN +! ;;
: TOKEN (-- a ;; <string>)
BL PARSE 1F LIT M N 2DUP
DUP TEXT ! TEXT 1+ SWAP CMOVE
HERE 1+ PACK$ -;'
 WORD (¢ -- a; <string>)
PARSE HERE 1+ PACK$ -;'

8.8 Dictionary Search

\ "find" follows the linked list in the dictionary, and conpares
\ the nanmes of each conpiled word with the packed string stored
\ at a. va points to the starting nanme field of the dictionary.
\ If amtch is found, it returns the execution address (code
\ field address) and the nane field address of the matching word
\ inthe dictionary. |If it failed to find a match, it returns
the address of the packed string and a 0 for a fal se fl ag.

—

"find" runs through the dictionary very quickly, because it
conpares the length and the first two characters in the nanes.
Most Forth words are unique in these three characters. For
words with the sanme |l engths and identical first two characters,
"find calls SAME? to determ ne whether the remaining characters
of the packed strings nmatch.

NAME> converts a nane field address na to a code field address xt.

— — — — —

CRR .(Dictionary Search) CRR
7 NAME> (na -- xt)
DUP @ $3FFFFF LI T AND
$30000 LIT / + 1+ ;;
: SAME? (aau--aaf\ -0+)
$30000 LIT /
FOR AFT OVER R@+ @
OVER R@+ @ - ?DUP
|F R> DROP EXIT THEN

THEN NEXT

O LIT;;

find (ava-- xt na| aF)
SWAP \ va a

P24 MISC Processor Manua 49

STEREO-CIT-005.A

8.

—

DUP @tnmp ! \ va a \ get cell count
DUP @ >R \ va a \ count
1+ SWAP \ a va

BEGN @DUP \ a' na na
IF DUP @$3FFFFF LI T AND
R@ XOR \ ignore lexicon bits
IF 1+ -1 LIT
ELSE 1+ tnp @ SAME?
THEN
ELSE R> DROP SWAP 1- SWAP EXIT \ a F
THEN
WH LE 1- 1- \ a' la
REPEAT R> DRCP SWAP DRCP

1- DUP NAME> SWAP ::

NAME? (a -- xt na| a F)

" CONTEXT find -:'

9 Term nal | nput

\ "H processes the Back Space encountered in the input stream It
\ backs up the character pointer and erased the character preceedi ng

t he Back Sapce.

TAP echoes an input character and deposit it into the term nal

i nput buffer.

kKTAP Detects a Carriage Return to termnate the input stream It
also calls "H to process a Back Space, and TAP to process ordi hary
characters.

These words allows the interpreter to handl e a human user on the
terminal snmoothly, and friendly.

CRR .(Terminal) CRR

— e -

"H(bbb--bbb)\ backspace
>R OVER R> SWAP OVER XOR
IF (=BkSp) 8 LITEMT

1- BL EMT \ distructive
(=BkSp) 8 LIT EMT \ backspace
THEN ; ;
TAP (bot eot cur c -- bot eot cur)

"DUP EMT OVER | 1+ ::

kKTAP (bot eot cur c¢ -- bot eot cur)

DUP (=Cr) OD LIT XOR

IF (=BkSp) 8 LIT XOR
|F BL TAP ELSE “H THEN
EXIT

THEN DROP SWAP DROP DUP

QUERY accepts a line of characters typed in by the user and
put themin the termnal input buffer for interpreting or
compiling. The line is termnated at the 80th input

character or a Carriage Return

"accept' waits for input characters and place themin the
termnal input buffer at b with length u. It returns the
same buffer address b with the length of the character string
actual ly received.

EXPECT receives the input stream and stores the length in the
vari abl e SPAN.

P24 MISC Processor Manua 50

STEREO-CIT-005.A

CRR
accept (bu-- bu)
OVER + OVER
BEG N 2DUP XOR
VWH LE KEY DUP BL - 5F LIT W<
| F TAP ELSE kTAP THEN
REPEAT DROP OVER - ;;
: EXPECT (b u --) accept SPAN! DROP ;;
: QUERY (--)
TIB 50 LIT accept #TIB !
DROP O LIT >IN ;;

8.10 Error Handling Words

\ ABORT actually executes QU T, which is defined nmuch | ater.

\ Here it is defined as a vectored execution word which gets

\ the execution address in the systemvariable ' ABORT. This

\ nechani sm al so gives the user sone flexibility in how the
\ application should handle an error condition.

\ abort" aborts after a warning nessage is displayed.

ERROR prints the character string store in the TEXT buffer
before aborting. The TEXT buffer contains the word just
parsed out of the input stream This is the word which
the interpreter/conpiler fail to recognize. The natural
error message is this word followed by a ? mark.

CRR .(Error handling) CRR

:: ABORT (--) 'ABORT @XECUTE ;;

abort"™ (f --)

| F do$ COUNT TYPE ABORT THEN do$ DROP ;;

ERROR (a --)

SPACE TEXT COUNT TYPE

$3F LIT EMT CR ABORT

—— - —

8.11 Text Interpreter

\ $I NTERPRET interprets the word just parsed out of the input
\ stream It searches the dictionary for this word. If a match
\ is found, executes it, unless the word is marked as a
\ conpile-only word. It a match is now found in the dictionary,
\ convert the word into a nunber. |If successful, the nunber is
\ left on the data stack. |If not successful, exit with ERROR
CRR .(Interpret) CRR

$I NTERPRET (a --)

NAMVE? ?DUP

| F @400000 LIT AND

ABORT" S$LIT conpile only" EXECUTE EXIT

THEN DROP TEXT NUMBER?

IF EXIT THEN ERROR

L

forth' $INTERPRET >body forth@LIT 'EVAL !

;| MVEDI ATE
LK (--)

forth' $I NTERPRET >body forth@LIT 'EVAL @=

P24 MISC Processor Manua 51

STEREO-CIT-005.A

IF."] $LIT OK' CR

THEN ; ;

: EVAL (--)

BEG N TOKEN DUP @

VH LE ' EVAL @XECUTE \ ?STACK
REPEAT DROP . XK -;'

CRR .(Shell) CRR
S QUIT (--
(=TIB) $730 LIT 'TIB !
[BEG N QUERY EVAL AGAI N

CRR .(Conpiler Primtives) CRR

o (-- xt
TOKEN NAME? | F EXIT THEN
ERROR

ALLOT (n --) CP +! ;;

, (w--) HEREDUP 1+ CP ! I ;;
[COWPILE] (-- ; <string>)

' $100000 LIT OR, -;" | MVED ATE

CRR
COWILE (--) R> DUP @, 1+ >R ;;
LI TERAL $29E79E LIT , |,
- | MVEDI ATE
© %, (--) (CHAR ™)
22 LIT WORD @ 1+ ALLOT -;°

CRR .(Nane Conpiler) CRR
PUNIQUE (a -- a)
DUP NAME?
| F TEXT COUNT TYPE ."| $LIT reDef "
THEN DRCP ; ;
$,n(a--)
DUP @
| F ?2UNI QUE
(na) DUP DUP NAME> CP !
(na) DUP LAST ! \ for OVERT

(na) 1-
(la) CONTEXT @SWAP ! EXIT
THEN ERROR

8.12 Compiler

\ $COWPI LE conpiles the word just parsed out of the input
stream It searches the dictionary for this word. |If a match
is found, conmpiles it, unless the word is marked as an
i mMmediate word. An imrediate word is executed by the conpiler.
If a mtch is not found in the dictionary, convert the word into
a nunber. If successful, the nunber is conpile as a literal.
If not successful, exit with ERROR

CRR . (FORTH Conpiler) CRR

$COWILE (a --)

NAMVE? ?DUP

| F @$800000 LI T AND
| F EXECUTE

\
\
\
\
\
\

P24 MISC Processor Manua 52

STEREO-CIT-005.A

ELSE $3FFFF LI T AND $100000 LIT OR,
THEN EXIT

THEN DROP TEXT NUMBER?

IF LITERAL EXIT

THEN ERRCR

OVERT (--) LAST @CONTEXT ! ;;

s (--)

$5E79E LIT , [OVERT -;' | MVEDI ATE
o1 C--)

forth' $COWPI LE >body forth@LIT 'EVAL ! ;;
o1 (-- ; <string>)

TOKEN $,n] -;'

8.13 Debuggi ng Tool s

CRR .(Tools) CRR

o dmt ((bu--b)

OVER 7 LIT U R SPACE

FOR AFT DUP @7 LIT U R 1+
THEN NEXT ;;

: DUMP (b u --

BASE @>R HEX 8 LIT /
FOR AFT CR 8 LIT 2DUP dmt
THEN NEXT DROP R> BASE ! ;;

CRR
>NAME (xt -- na | F)
CONTEXT
BEG N @ DUP
VH LE 2DUP NAME> XOR
IF 1-
ELSE SWAP DROP EXI T
THEN
REPEAT SWAP DRCP ; ;
: .ID(a--)
TEXT UNPACK$
COUNT $01F LI T AND TYPE SPACE -;'

CRR
SEE (-- ; <string>)
" CR
BEG N
20 LIT FOR
DUP @ DUP FCO000 LIT AND
DUP
I F 100000 LIT XOR THEN
IF U SPACE
ELSE 3FFFF LI T AND >NAME
?DUP | F .1 D THEN
THEN 1+
NEXT KEY OD LIT = \ can't use ESC on term nal
UNTI L DROP ;;
:0 WORDS (--)
CR CONTEXT
BEGA N @ ?DUP
VWH LE DUP SPACE .ID 1-

P24 MISC Processor Manua 53

STEREO-CIT-005.A

REPEAT ; ;
CODE .S (dunmp all 17 stack itens)
PAD sta stp
Stp stp stp stp
Stp stp stp stp
Stp stp stp stp
Stp stp stp stp
DRCP PAD $10 LIT
FOR DUP ? 1+ NEXT
DROP PAD @CR -

8.14 Start Up

CRR . (Hardware reset) CRR

DI AGNCSE (-)
$65 LIT
\' '"F prove Uw 0< \ carry, TRUE, FALSE
OLITO<-2LITO< \ 0 FFFF
Uwv DROP \ FFFF (-1)
3 LIT Uw UM+ DROP \ 3
$43 LI T Uv+ DROP \ ' F
\ "0 logic: XOR AND OR
$4F LIT $6F LIT XOR \' 20h
$FO LI T AND
$4F LIT OR

\ 'r' stack: DUP OVER SWAP DRCP
8 LIT 6 LIT SWAP
OVER XOR 3 LIT AND AND
$70 LI T UM+ DROP \ '
\ "t'-- prove BRANCH ?BRANCH
O LITIF $3F LIT THEN
-1 LITIF $74 LIT ELSE $21 LIT THEN

\ 'h" -- @! test meneory address
$68 LIT $700 LIT !
$700 LIT @

\' 'M -- prove >R R> R@
$4D LIT >R R@ R> AND

\ "I -- prove 'next' can run

1 LIT $6A LIT FOR 1 LIT UW DROP NEXT

CRR
;2 CAD(--)

di agnose

CR."| SLIT P24 v"

66 LIT <# # # (CHAR .) 2E LIT HOLD # #> TYPE
CRQIT

8.15 Control Structure Wrds

CRR .(Structures) CRR

IR (-- A) HERE $80000 LIT , -;' | MVEDI ATE
FOR (-- a) $71E79E LIT , HERE -;' | MVEDI ATE
BEGN (-- a) HERE -;' | MVED ATE

AHEAD (-- A) HEREO LIT, -;' I MVED ATE

P24 MISC Processor Manua 54

STEREO-CIT-005.A

CRR
AGAIN (a--), -;' |MED ATE
THEN (A --) HERE SWAP + :; | MVEDIATE
NEXT (a --) COVPILE doNEXT , -;' |MVEDI ATE
UNTIL (a--) $80000 LIT + , -;' | MVED ATE

CRR

1 REPEAT (A a --) AGAIN THEN -;' | MVEDI ATE
AFT (a -- a A) DROP AHEAD BEG N SWAP ;; | MVEDI ATE
ELSE (A -- A) AHEAD SWAP THEN -;' | MVEDI ATE
WHILE (a-- Aa) IF SWP ;; | MVEDI ATE

8.16 Redefine Macro Wrds
CRR .(macro words) CRR

CODE EXIT pop drop ret
CODE EXECUTE push ret
CODE | sta st ret
CODE @sta Id ret

CRR

CODE R> pop sta pop | da push ret

CODE R@ pop sta pop dup push | da push ret
CODE >R sta pop push |da ret

CRR
CCODE SWAP
push sta pop lda ret
CCDE OVER
push dup sta pop
| da ret
CODE 2DROP
drop drop ret

CRR
CODE + add ret
CODE NOT comret

CODE NEGATE

coml |di add ret
CCDE 1-

-1 1di add ret
CODE 1+

11di add ret
CRR
CODE BL

20 Idi ret
CODE +!

sta | d add st
ret
CCDE -
comadd 1 | di add
ret

CRR
CODE DUP dup ret

P24 MISC Processor Manua 55

STEREO-CIT-005.A

CODE DROP drop ret
CODE AND and r et
CODE XOR xor ret
CODE COM com r et

8.17 Final System Wirds

CRR
ABORT" (-- ; <string>) COWILE abort" $," ;; | MVED ATE
$" (-- ; <string>) COWILE $"| $," ;; | MED ATE
" (--; <string>) COWILE ."| & " ;; | MED ATE
CODE (-- ; <string>) TOKEN $,n OVERT -;'
: CREATE (-- ; <string>) CODE doVAR ;;
VARl ABLE (-- ; <string>) CREATEO LIT , -;'
CRR
o .((--) 29 LIT PARSE TYPE -;' | MVEDI ATE
\' (--) #TIB @>IN! ;; | MVED ATE
(29 LIT PARSE 2DROP ;; | MVEDI ATE

| MVEDI ATE $800000 LIT LAST @ @OR LAST @! ;;

CRR

Chapter 9. P24 Cycle-Based S nul ator

An accurate and fast logic simulator is extrenely valuable in the design and

testing of a new CPU. It is also very useful in separating the hardware design
from software devel opnent, so that hardware and software can be devel oped
simul taneously. This P24 sinulator served well in the process of building the

P24 CPU and the eForth system which proves that the hardware-software system
wor ks correctly.

This P24 sinulator faithfully replicates the | ogic behavior of the P24 CPU on a
cycle by cycle basis. As the P24 CPU is conposed of a set of registers and two
stacks, and the registers and stacks acquire new contents only on the rising
edge of the master clock, it is very sinple to enmulate this behavior

Each regi ster and each level in the two stacks are represented by two 32-bit
words. The first word contains the current value of the register, and the
second word contains the value to be latched into the register on the next

ri sing edge of the master clock. This sinple nmechanismvery conveniently
replicates the behavior of a synchronously clocked flip-flops, and fornms the
basi s of the P24 sinul ator.

Two | arge arrays are opened to host these 32-bit word sets. The FROM array
contains the current values of all the registers and all the stack levels, and
the TO array contains the new values to be stored into the registers and stacks
on the next clock. The rising edge of the clock forces the entire TO array to
be copied into the FROM array, and these is functionally one machine cycle. The
mul tiplexers in P24 are replaced by Forth words which performthe |ogic
functions and update values in the TO array.

P24 MISC Processor Manua 56

STEREO-CIT-005.A

The Sl ot Machi ne, which fetches a programword from nenory, and sequences the
execution of the four machine instructions in this word, is sinulated by a 32-
bit counter. The less significant 3 bit in this counter steps through slots 0O
to 4 in 5 clock cycles. Then this 3-bit field is cleared to zero and the upper
29-bit counter is incremented. Therefore, the upper 29-bit field in the counter
gi ves an accurate programword count.

The nost interesting feature of this P24 simulator is that it can vector the KEY
and EMT function to the equival ent Wndows function, so that the sinmulator can
actually run P24 eForth interactively, and produces the identical output as the
actual P24 conmputer would do on a terminal. Now that it was proven that the
simulator runs identically to the actual P24 computer, the sinulator can be used
for software devel opment, in place of a real P24 conputer.

The sinulator code is in SIM4.F. It nust be | oaded after META24.F, which
builds a P24 eForth systemin the array RAM The sinul ator reads program words
fromthe RAM nenory and execute the instructions contained in these program
wor ds.

9.1 The Registers and the Stacks

\ Put all simulator words in SI M4 vocabul ary. They are thus distinguished
\ fromwords of the sane nanes in the FORTH and ASMR4 vocabul ari es.
ONLY FORTH ALSO SI W24 DEFI NI TI ONS

Stacks are limted to 16 |l evels, and act like circular buffers
Programare limted to 32KB, or 8KW the size of RAM array

CLOCK has a 29-bit programword count filed and a 3-bit SLOT field
The SLOT field sequences programword fetch and execution of up to
four instructions in the program word.

(REA STER) a pointer to switch between FROM array and TO array
BREAK br eakpoi nt address

REQ STER t he base address of either FROM or TO array

FROM f orces accessing registers in the FROM array

TO forces accessing registers in the TO array

DECI MAL

—

15 CONSTANT LIMT (stack depth)

$1FFF CONSTANT RANGE (size of nenory array)

VARI ABLE CLOCK (slot isinthe last 3 bits)
VARI ABLE (REA STER) (where registers and stacks are)
VARI ABLE BREAK (address of break point)

(On the rising edge of clock, copy TO array to FROM array.)
REG STER (REGQ STER) @;
FROM PAD (REG STER) ! ;
TO PAD $180 + (REGQ STER) ! ;

program count er
accumul at or
top of return stack
address register
instruction |atch
machi ne instruction storage
RP return stack pointer
SP data stack pointer

5_)>:U—|'U

N

— -

P24 MISC Processor Manua 57

STEREO-CIT-005.A

\ RSTACK returns address of top of return stack
\ SSTACK returns address of top of data stack

: REQ STER ;

REG STER 4 + ;

REG STER 8 + ;

REG STER 12
REG STER 24
REG STER 28
REG STER 29
REG STER 30
REG STER 31
REG STER 32
REG STER 33
SP REG STER 34 ;
RSTACK RP C@LIMT AND CELLS REQ STER + $40 + ;
SSTACK SP C@LIMT AND CELLS REG STER + $80 + ;

A WNEFEO >0

+ 4+ + + ++ ++ +

9.2 Machi ne Cycl es

Here are a set of words supporting the sinulator.

\ CYCLE simulate rising edge of master clock. Copy TO array to FROM array.
\ NEXT forces fetching the next programword

\ RPUSH push a integer d on return stack

\ RPCPP pop return stack and | eave the integer on the Forth stack

\ SPUSH push a integer d on data stack

\ SPOPP pop data stack and | eave the integer on the Forth stack

\ CONTINUE fetch next programword and deposit the 4 nmachine instructions

\ inll-14

CYCLE TO P FROM P $180 CMOVE 1 CLOCK +!
NEXT CLOCK @7 OR CLOCK !
RPUSH (d -- , push d on return stack)

FROMR @RP C@1 + LIMT AND TORP CI RSTACK ! R'!
RPOPP (-- d, pop d fromreturn stack)

FROM R @RSTACK @RP C@1 - LIMT AND TORP C R'!
SPUSH (d -- , push d on data stack)

FROMT @SP C@1 + LIMT AND TO SP CI SSTACK ! T !
SPOPP (-- d, pop d fromdata stack)

FROM T @SSTACK @SP C@1 - LIMT ANDTOSP C T ! ;
conti nue

FROM P @DUP 1+ TO RANGE AND P !

RAM@ DUP | !

64 /MOD SWAP |4 C

64 /MOD SWAP |3 C

64 /MOD SWAP |2 C

63 AND 11 C

9.3 Machi ne I nstructions

Machi ne instructions in the sinulator take current values in the FROM registers
and stacks and conpute the desired new val ues and deposit themin the TO
registers. Their functions in the real P24 CPU are performed by multipl exers
and logic circuits. Nevertheless, these instructions truthfully describe the
behavi or of all the machine instructions.

P24 MISC Processor Manua 58

STEREO-CIT-005.A

jmp FROM | @RANGE AND TO P ! NEXT ;
call FROMP @RPUSH jnp ;
ret RPCOPP TO RANGE AND P !
NEXT ;
jz SPOPP $FFFFFF AND | F NEXT EXIT THEN
Jmp
jnc FROM T @ $1000000 AND | F NEXT EXIT THEN
Jm
FROM A @ RANGE AND RAM@ SPUSH ;
p I d
FROMA @1+ TOA! ;
| di FROM P @1+ RANGE AND TO P !
FROM P @ RANGE AND RAM@ SPUSH ;
st SPOPP FROM A @ RANGE AND RAM ;
stp st
FROMA @1+ TOA! ;
com FROM T @ $FFFFFF AND $FFFFFF XOR TO T ! ;
shr FROM T @2/ $FFFFFF AND TO T ! ;
shl FROM T @2* $1FFFFFF AND TO T ! ;
nul FROM A @1 AND
|F SSTACK @ T @+ $1FFFFFF AND
ELSE T @ THEN
DUP 1 AND >R 2/ TO T !
FROM A @ $FFFFFF AND 2/ R> | F $800000 OR THEN TO A !
andd SPOPP TO T @AND $FFFFFF AND T ! ;
xorr SPOPP TO T @XOR $FFFFFF AND T !
div FROM SSTACK @ $FFFFFF AND T @ $FFFFFF AND +
DUP $1000000 AND DUP >R
| F ELSE DROP T @ THEN $FFFFFF AND
2* (diff) A @$800000 AND IF 1+ THEN TO T !
FROM A @ 2* $FFFFFF AND R> I F 1+ THEN TO A ! ;
add SPOPP $FFFFFF AND TO T @ $FFFFFF AND + TO T ! ;
popr RPOPP SPUSH ;
pushs FROM T @ SPUSH ;
lda FROM A @ SPUSH ;
pushr SPOPP RPUSH ;
sta SPOPP TOA'! ;
pops SPOPP DRCP ;
nop NEXT ;

\ GET forces the simulator to get a key fromthe keyboard under Wndows OS
\ PUT forces the simulator to send a character to the display w ndow
. get KEY DUP $1B = ABORT" done"
SPUSH ret ;
put SPOPP $7F AND EMT ret ;

\ EXECUTE decodes a machine instruction and perforns the required operations.
HEX

execute (code --)
DUP 0 =1F DROP jnmp EXIT THEN
DUP 1 =1F DROP ret EXIT THEN
DUP 2 =1FDROCP jz EXIT THEN
DUP 3 =1F DROP jnc EXIT THEN
DUP 4 = |F DROP call EXIT THEN

P24 MISC Processor Manua 59

STEREO-CIT-005.A

DUP 6 = |F DROP get EXIT THEN
DUP 7 = |F DROP put EXIT THEN
DUP 9 = |IF DROP Idp EXIT THEN
DUP OB = |F DROP | d EXIT THEN
DUP OA = |IF DROP Idi EXI T THEN
DUP OD = |F DROP stp EXIT THEN
DUP OF = | F DROP st EXIT THEN
DUP 10 = | F DROP com EXIT THEN
DUP 11 = | F DROP shl EXIT THEN
DUP 12 = | F DROP shr EXIT THEN
DUP 13 = IF DROCP mul EXIT THEN
DUP 14 = | F DROP xorr EXIT THEN
DUP 15 = | F DROP andd EXIT THEN
DUP 16 = |F DROP div EXIT THEN
DUP 17 = | F DROP add EXIT THEN
DUP 18 = | F DROP popr EXIT THEN
DUP 19 = |F DROP |lda EXIT THEN
DUP 1A = | F DROP pushs EXIT THEN
DUP 1C = | F DROP pushr EXIT THEN
DUP 1D = |F DROP sta EXIT THEN
DUP 1E = | F DROP nop EXIT THEN
DUP 1F = | F DROP pops EXIT THEN
CR. ." illegal code" ABORT
9.4 I nstructi on Execution

\ . STACK displays the contents of a stack.
\ . SSTACK di spl ays the contents of data stack
\ . RSTACK di splays the contents of return stack.
\ . REG STERS di spl ays contents of all the relevant registers
\ S show all the registers and stack at this cycle
\ SYNC executes the current machine instruction using CLOCK to determn ne which
\ slot is being executed.
\ Cruns one clock cycle and displays all the registers and stacks.
\ RESET cl ear both FROM and TO arrays, sinulating the hardware reset.
\ Grun and stop at the address given on the Forth stack. This is a much nore
\ efficient way to set breakpoints and then run till breakpoint is triggered.
\ It allows the user to execute a large portion of the program and stop only
\ on specified | ocation.
\ PUSH push a new integer into the T register and push the data stack
\ POP discard the contents in T and pop data stack back into T.
.stack (add #) 0 ?DODUP @. 4 - LOOP DRCOP CR ;
.sstack ." S" T @. SSTACK SP C@. stack ;
.rstack ." R" R@. RSTACK RP C@. stack ;
.registers ." P="P@. ." 1= 1 @.
1= 11 Ca. Lt 12=" 12 C@.
13" 13 Cc@. " 14=" 14 C@. CR
A" A@. CRG
S CR." CLOCK=" CLOCK @. .registers
.sstack .rstack ;

sync CLOCK @7 AND
DUP O I F conti nue DROP EXIT THEN
DUP 1 | F |1 C@execute DROP EXIT

THEN

P24 MISC Processor Manua 60

STEREO-CIT-005.A

DUP 2 =1F 12 C@execute DROP EXIT
THEN
DUP 3 =1F 13 C@execute DROP EXIT
THEN
DUP 4 = 1F 14 C@execute THEN
DROP NEXT ;
C sync CYCLE S ;
reset FROM P 300 ERASE 0 CLOCK ! ;
reset
G (addr --)
CR ." Press any key to stop." CR
BREAK !
BEG N sync P @BREAK @ =
IF CYCLE CEXIT
ELSE CYCLE
THEN
KEY?
UNTIL ;
PUSH (d) pushs TOT ! ;
POP pops ;

9.5 User Interface

This simulator has very sinple text based user interface. The npbst used
commands are C for single steps, RUNto continue stepping with any key and
termnated by ESC. If the target address is know, then Gis a convenient
choice. P allows the user to start sinulating at any address.

: D P @1- FOUR FOUR ;
: M SHOW ;
RUN CR ." Press ESCto stop." CR
BEG N C KEY 1B = UNTIL ;
P RANGE AND DUP FROM P ! TOP ! ;

HELP CR ." eM4 Sinul ator, copyright eMAST Technol ogy, 2000"
" C execute next cycle"

S: show all registers”

D: display next 8 words"

." addr M display 128 words from addr”

addr P: start execution at addr”

." addr G run and stop at addr”

RUN: execute, one key per cycle"

99999999

9.6 Si mul ati ng Running Forth System

The sinulator is the nost effective in debuggi ng short sequences of program
words to verify that the sequences are executed correctly. After the P24
machi ne i nstructions are verified, one can use the G conmand to execute a | ong
stretch of programand break only at specific locations. This allows |arge
segnent of programs to be tested.

The sinulator can run eForth systemif KEY and EMT are vectored to the keyboard
i nput and screen display in Wndows. This is acconplished by defining two new

P24 MISC Processor Manua 61

STEREO-CIT-005.A

machi ne instructions GET and PUT with the proper Wndows interface. GET and PUT
is then patched into KEY and EMT in the target menmory. Now, executi ng:

800 G
will start the P24 eForth running, because 800 is a location it will never
reach. |In the neantime, the user can interact with the eForth in the sinul ator

i ke using any other eForth system

It is possible to build this sinmulator into a full P24 program devel opnent
system by vectoring input streans fromtext files maintai ned under W ndows.
This, however, will have to wait in the next revision of the sinulator

(patch KEY and EMT to run eForth interactively)
180000 B7 RAM
100000 AA RAM

9.7 Runni ng P24 Si nul at or

From W ndows, |oad Wn32Forth by clicking its icon on the desktop, or run it in
the Start/Prograns/ Wn32Forth/ Wn32Forth. Wn32Forth opens a window. dick
File/ OpenFile and navigate to the directory in which all the P24 files are
stored. Select one of the files, say META24.F, and an WnVi ew wi ndow i S opened
di spl aying the META24.F file.

Go back to the Wn32Forth wi ndow, and type:

Fl oad neta24
You will see a list of nanes and conpil ed addresses scrolling on the screen
This list of names and addresses are very useful in running the sinulator. You
can interpret the addresses and determ ne which word is being executed, and you
can sel ect specific words to simulate.

You can inspect the conpiled target inmage by typing:

0 show

show

show . ..
to dunp the menory, 128 words at a tine. SHOWw Il change the starting address
so that you can use it to dunp consecutive blocks of target menory wi thout
giving the address explicitly.

Load sinulator file by typing:
Fl oad si nk4

Type HELP to see all the useful commands in the sinulator. Then use C, RUN, G
P commands to step through prograns you want to debug.

Type BRAM to dunp the target nenory in a formacceptable to the VHDL synt hesi zer
in the Foundati on FPGA devel opnent system The eForth system can be synthesized
with the P24 core, and run in XCV300 FPGA or its |large cousins fromXilinx.

P24 systemis still undergoing nodifications and enhancenents. Check with eMAST
Technol goy or Ofete Enterpries for |atest updates.

P24 MISC Processor Manua 62

