
SPP EPI-Hi Flight Software Development Plan

 Page i

DRAFT

Solar Probe Plus
EPI-Hi Instrument

Flight Software Development Plan

Document No. TBD
Version 03

Date: 2013-09-06

Authors: Andrew Davis

Custodian: Andrew Davis

Space Radiation Laboratory

California Institute of Technology

Pasadena, California

SPP EPI-Hi Flight Software Development Plan

 Page ii

Signature Page

Prepared By:

______________________________ _____________
Andrew Davis, Caltech Science Ops lead date

Approved by:

_______________________________ _____________
TBD date

Concurred by:

_________________________________ _____________
Rick Cook, SPP EPI-Hi systems engineer date

SPP EPI-Hi Flight Software Development Plan

 Page iii

CHANGE LOG

DATE SECTIONS
CHANGED

REASON FOR CHANGE (ECR) REVISION

2013-02-11 All -- Initial preliminary
draft

2013-05-01 All Respond to Project comments Version 02
2013-09-06 2.1 Minor updates, new block diagram Version 03 (Baseline)

SPP EPI-Hi Flight Software Development Plan

 Page iv

Table of Contents

1. Overview .. 1
1.1. Introduction .. 1
1.2. Document Conventions .. 1
1.3. Applicable Documents ... 1

2. Host System and Interfaces .. 2
2.1. System Overview ... 2
2.2. MISC Microprocessor .. 2

2.2.1. Memory Map .. 3
2.2.2. Operating System .. 3
2.2.3. Boot Loader and MRAM .. 3
2.2.4. I/O Bus (G-Buss) Peripherals ... 4

2.3. External Interfaces .. 4
2.3.1. Interface between the EPI-Hi DPU and the spacecraft 4
2.3.2. Interface between the DPU MISC and the LET1, LET2, and HET MISCs 4

3. Flight Software Tasks ... 5
3.1. Heritage and Reuse .. 6

4. Software Development Plan ... 6
4.1. Top-down Software Development Phases ... 7

4.1.1. Requirements Definition and Analysis Phase ... 7
4.1.2. Design Phase ... 7
4.1.3. Implementation Phase ... 7
4.1.4. System Testing and Acceptance Phase ... 8

4.2. Development Environment and Equipment Needed... 8
4.3. Product Assurance ... 8

4.3.1. Software Version Control/Backup Plan .. 8
4.3.2. Software Acceptance Test Plan .. 9
4.3.3. Software Configuration Management ... 10
4.3.4. Risk Assessment ... 10
4.3.5. Software Maintenance after Delivery ... 10

5. Management Plan ... 11
5.1. Build Plan ... 11
5.2. Software Reviews.. 11
5.3. Documentation Deliverables.. 12
5.4. Staff and Schedule ... 12

Appendix A Acronyms ... 13

SPP EPI-Hi Flight Software Development Plan

Page 1

1. Overview

1.1. Introduction
Four microprocessors are dedicated to controlling, interfacing, and acquiring data from
the three telescopes comprising the EPI-Hi instrument (Energetic Particle Instrument -
High). This document defines the development plan for the flight software that will reside
in these microprocessors.

Flight software for the EPI-Hi instrument microprocessors will be developed at the
Caltech Space Radiation Laboratory (SRL). Previously, the Caltech group developed the
flight software for the SIS and CRIS instruments on ACE, the SEP instrument suite on
STEREO, the NuSTAR X-ray telescope mission, and for several balloon instruments.

1.2. Document Conventions
Parameters encompassed by brackets such as [25]: The parameter is To Be Confirmed
(TBC) and may be changed as the mission is refined. To Be Determined items are
highlighted in red, and labeled TBD. To Be Resolved items are highlighted in red, and
labeled TBR.

1.3. Applicable Documents
Ref. 1 EPI-Hi Science Requirements Document
Ref. 2 ISIS Level 3 Requirements Document
Ref. 3 ISIS Level 4 Requirements Document
Ref. 4 EPI-Hi Flight Software Requirements Document
Ref. 5 SPP General Instrument Specification (GIS)
Ref. 6 P24 MISC Processor Manual
Ref. 7 EPI-Hi Flight Software Design Document
Ref. 8 EPI-Hi Inter-MISC command/data interface Document
Ref. 9 EPI-Hi Data Format Document
Ref. 10 EPI-Hi Flight Software Test Plan
Ref. 11 EPI-Hi Commanding and User Manual
Ref. 12 ISIS Risk Management Plan

Note: Official document IDs for these references are TBD

SPP EPI-Hi Flight Software Development Plan

Page 2

2. Host System and Interfaces

2.1. System Overview
The microprocessors used for the EPI-Hi instrument will be the FPGA-based P24 MISC
(Minimal Instruction Set Computer), described below and in the P24 MISC Processor
Manual (Ref. 6). The EPI-Hi MISCs are named:

• Data Processing Unit (DPU) MISC
• Low Energy Telescope 1 (LET1) MISC
• Low Energy Telescope 2 (LET2) MISC
• High Energy Telescope (HET) MISC

Data from the MISCs associated with the LET1, LET2 and HET telescopes (the
peripheral MISCs) will be gathered by the DPU MISC and formatted for transmission to
the spacecraft (per the SPP GIS, Ref. 5). Figure 2.1 shows a block diagram of the EPI-Hi
instrument electronics system, showing internal and external interfaces.

Figure 2.1 – EPI-Hi Instrument Electronics block diagram

2.2. MISC Microprocessor
The P24 MISC has a 24-bit CPU core with dual stack architecture intended to efficiently
execute Forth-like instructions. The processor design is simple to allow implementation
within field programmable gate arrays. The basic MISC processor design is in the public

SPP EPI-Hi Flight Software Development Plan

Page 3

domain. For the EPI-Hi application, the MISC design is implemented in the ACTEL
RTAX250SL FPGA, with Caltech SRL customizations developed for the STEREO
mission. The MISC can be clocked at speeds up to 25MHz; we will use [14.7] MHz
(TBC) for the EPI-Hi application. See the P24 MISC Processor Manual (Ref. 6) for more
details.

2.2.1. Memory Map
The MISC is capable of addressing a flat memory page of 224 = 16Mwords (each word is
24 bits). For the EPI-Hi application, the DPU MISC will have 128Kwords of SRAM, and
each peripheral MISC will have 512Kwords of SRAM. The extra SRAM in the
peripheral MISCs is provided for the large lookup tables used in the onboard particle
identification software. Jump and call addresses are restricted to an 18 bit address range,
so executable code needs to be within the lower 256Kwords of SRAM.

2.2.2. Operating System
A Forth operating system with an embedded optimizing forth compiler is implemented.
This is the same operating system as used in the MISC systems developed for the
STEREO and NuSTAR missions. Multi-tasking is implemented via a round-robin system
inherited from the system implemented first in the Harris RTX2010 microprocessor used
on ACE, and subsequently on the STEREO and NuSTAR missions

2.2.3. Boot Loader and MRAM
Included in the FPGA implementation of each MISC is a small boot loader program that
boots the system either directly via Magnetoresistive Random-Access Memory (MRAM),
or over a serial link. For EPI-Hi, the DPU MISC is equipped with 2M×8 of MRAM. The
other MISCs in the system always boot over the serial link with the DPU. The MRAM in
the DPU can be updated via the command interface, initiated by a command that
specifies page number, followed by fixed length binary data block. The protocols and
formats for MRAM uploads are the same as for Caltech’s NuSTAR instrument, and will
be documented in the EPI-Hi Commanding and User Manual (Ref. 11). MRAM uploads
will utilize the instrument commanding interface described in the SPP GIS (Ref. 5).

Upon power up, the DPU MISC boot loader automatically boots a binary image from
page 0 of MRAM. After power up, a re-boot may be initiated independent of the status of
software execution, by sending over the command line a sequence of six consecutive "Z"
characters followed by a character whose three least significant bits are written into
special "reset field" hardware register. The two least significant bits control the operation
of the boot loader. The least significant bit selects between serial boot (value 0) and boot
from MRAM (value 1). In the case of reboot from MRAM the boot process occurs in
three steps:

1. The FPGA resident boot loader boots a secondary boot loader from MRAM
2. The secondary loader conditionally dumps memory, and then boots the FORTH

system
3. The FORTH system loads the "user" program.

SPP EPI-Hi Flight Software Development Plan

Page 4

The conditional memory dump is controlled by the third least bit of the reset field. The
reset field register is also writable from s/w allowing all the reboot options to be
exercised by FORTH commands. In the case of a watchdog timer initiated reboot the
reset field is cleared, except for the third bit which is set, resulting in a memory dump
followed by a reboot from MRAM page 0.

For the peripheral MISCs, the option to boot from MRAM is not available. Upon power
up, the FPGA boot loader in these MISCs automatically configures the system to boot via
the serial interface with the DPU. Software in the DPU manages the transfer of boot
images or memory-dump programs to the peripheral MISCs via the serial interface. This
peripheral MISC serial-boot scheme is inherited directly from the NuSTAR mission. Re-
boots of the peripheral MISCs are initiated via the same command-line sequence as
described above for the DPU MISC.

2.2.4. I/O Bus (G-Buss) Peripherals
Currently, G-buss peripherals include an interrupt control and status register at address 0,
supporting 15 prioritized interrupts. The interrupts are used to support serial I/O, the
timer interrupt, and event interrupts.

2.3. External Interfaces

2.3.1. Interface between the EPI-Hi DPU and the spacecraft
The DPU MISC will interface with the spacecraft via two serial interfaces: command and
telemetry (see Figure 2.1). These interfaces are defined in the SPP GIS. Commands,
telemetry data and command responses from the DPU will be in the form of CCSDS
packets enclosed within Instrument Transfer Frames (ITFs). The ITF protocols for
transferring commands, command responses, and telemetry data over these interfaces are
also defined in the EPI-Hi Instrument/Spacecraft ICD. Instrument telemetry data formats,
and instrument CCSDS data packet definitions will be defined in the EPI-Hi Instrument
Science Data Format document (Ref. 9).

2.3.2. Interface between the DPU MISC and the LET1, LET2, and HET MISCs
There will be two RS422 serial interfaces between the DPU MISC and each of the three
peripheral MISCs (LET1, LET1, and HET MISCs). The first interface will be bi-
directional, for transferring boot-code, commands, and command responses. The second
interface will be uni-directional, for transferring data from the peripheral MISCs to the
DPU. These interfaces will be defined in the EPI-Hi Inter-MISC command/data interface
Document (Ref. 8).

SPP EPI-Hi Flight Software Development Plan

Page 5

3. Flight Software Tasks

The flight software requirements will be described in detail in the EPI-Hi Instrument
Flight Software Requirements document (Ref. 4), and the Flight Software Design
document (Ref. 7). The top-level tasks that the EPI-Hi flight software will perform are
listed in Tables 3.1 and 3.2 below.

DPU MISC Flight Software Task Heritage
(Est.)

Forth operating system and low-level I/O routines 95%

Power-on and initialization sequence management 60%

Peripheral MISC serial boot sequence management 80%

Housekeeping data collection 50% *

Inter-MISC communication management 90%

Setup and control of instrument HV, bias supply, heaters, and
other electronics systems

50% *

Monitor status, and time-synchronization data from the spacecraft,
and perform autonomous mode adjustments as needed

10%

Management of software uploads and MRAM burns 75%

Formatting and transfer of science & housekeeping data and
command responses to the Spacecraft

50% *

Monitor heartbeat from peripheral MISCs, and perform
autonomous diagnostics/reboot as needed

10%

* general scheme is inherited, specifics are unique

Table 3.1: DPU MISC Flight Software Tasks

LET1, LET2, and HET MISC Flight Software Tasks – each
MISC performs a similar set of functions:

Heritage
(Est.)

Forth operating system and low-level I/O routines 95%

Science data acquisition 50% *

Science data processing and reduction (particle ID) 20%

Housekeeping data acquisition 50% *

Processing of status, time-synchronization, and command data from
the EPI-Hi DPU

50% *

Monitor key counting rates and adjust the telescope operating
condition to optimize data quality

80%

SPP EPI-Hi Flight Software Development Plan

Page 6

Monitor temperatures and adjust detector gain/offset settings to
compensate for temperature variations

0%

Formatting and transfer of science & housekeeping data and
command responses to the EPI-Hi DPU

50% *

Setup and control of any instrument HV, bias supply, heaters, etc.
not controlled by the EPI-Hi DPU.

50% *

Table 3.2: LET1, LET2, HET MISC Flight Software Tasks

3.1. Heritage and Reuse
Previously, the Caltech group developed the flight software for the following space
missions: SIS and CRIS instruments on ACE, the SEP instrument suite on STEREO, and,
most recently, the NuSTAR mission. Some software modules developed for these
projects will be reused almost unchanged for EPI-Hi. Some others will be reused with
varying degrees of modification. Preliminary estimates of the degree of heritage for the
various software tasks are listed in Tables 3.1 and 3.2.

4. Software Development Plan

“Top-down” and “Bottom-up” approaches to software development will run in parallel
for the DPU and peripheral MISCs. The Top-down approach can be divided into four
phases:

1. Requirements definition and analysis
2. Design
3. Implementation
4. System testing and acceptance testing

The activities occurring during each of these phases are detailed below. During the
requirements definition and design phases, the following Bottom-up activities will occur:

1. Gain familiarity with MISC processor, using small test routines
2. Gather together a suitable set of tools for MISC software development, including

MISC simulator, serial communication software, version control software, etc.
3. Verify Forth system on MISC with standard software test suite
4. Prototype onboard data processing algorithms

NOTE: for the EPI-Hi application, most of these bottom-up activities have already taken
place, given the direct heritage from the STEREO and NuSTAR projects.

By the time the implementation phase of the Top-down approach begins, the Bottom-up
approach will have resulted in a stable hardware platform and operating system, and
software development tools adequate for implementing the software design.

SPP EPI-Hi Flight Software Development Plan

Page 7

4.1. Top-down Software Development Phases
Although the development phases listed below can be thought of as dividing the software
development period into consecutive non-overlapping time periods, activities associated
with one phase may be performed in other phases, e.g. most design activity will occur
during the design phase, but some preliminary design work may be performed during the
requirements definition phase.

4.1.1. Requirements Definition and Analysis Phase
During this phase, Caltech will develop a set of science requirements for EPI-Hi. These
requirements will be recorded in the EPI-Hi Science Requirements Document (Ref. 4). At
the same time, Caltech will also develop preliminary designs of the detectors and the
front-end electronics.

Using the science requirements, the preliminary instrument and electronics designs, the
SPP GIS, the ISIS Level 3 and Level 4 Requirements, and consultations with other EPI-
Hi team members, the Caltech lead engineer and software developer will derive a set of
software requirements and interface specifications for each MISC. These requirements
and specifications will define what data flows into and out of each MISC, the operations
each MISC will perform on the data, and the interactions that will occur between the
DPU MISC and the peripheral MISCs. The specifications will also define the relevant
properties of the host system, such as memory requirements, I/O peripherals, safing and
reliability requirements, etc. All these requirements will be defined in the EPI-Hi Flight
Software Requirements document (Ref. 4).

4.1.2. Design Phase
During this phase, software developers will define the software architecture that will
meet the software requirements. The requirements will be sorted into subsystems and all
internal and external interfaces will be defined. The design phase will result in a set of
design specifications that will include the following:

• Functional design diagrams
• Detailed descriptions of all inputs, outputs, and data formats
• Data processing algorithms
• Instrument inter-MISC communications protocols
• P24 MISC processor manual
• Command lists and protocols
• Other TBD design specs

The P24 MISC processor manual already exists. The other design specs will be
documented in the EPI-Hi Software Design and Data Format documents (Ref. 7 & Ref.
9).

4.1.3. Implementation Phase
In this phase, developers will build software from the design specifications. The software
will be written in Forth and assembly language. Assembly language will be used when

SPP EPI-Hi Flight Software Development Plan

Page 8

optimization is required for performance reasons. Coding guidelines and standards used
on the STEREO and NuSTAR mission will be carried over to this project, given that the
same lead engineer and software developer are also carried over to this project.

4.1.4. System Testing and Acceptance Phase
End-to-end sensor, electronics, and software functional tests will be done using radiation
sources, built-in self-test routines and test procedures, and instrument calibrations at
energetic particle accelerator facilities.
In addition, simulation data from Monte Carlo models of the EPI-Hi telescopes will be
used to test the EPI-Hi onboard processing software. The software acceptance test plan is
described in section 4.3.2 below.
Software walkthroughs will occur at software peer reviews, and reports and status of
action items will be presented at instrument PDR, CDR, and other Project reviews (see
Section 5.2).

4.2. Development Environment and Equipment Needed
Several MISC development boards are already available for use from previous missions.
The Forth system running on the MISC development boards can be controlled via a serial
link to a PC. Code can be uploaded via this serial link and thus development/test of
software can easily take place directly on the MISC development boards. Early in the
design phase, MISC development boards specific to EPI-Hi will be designed and
manufactured in-house. These boards will feature the same SRAM, memory-
management, boot-sequence, and serial-IO features as will be used for EPI-Hi EM units
flight hardware.
Early builds of the instrument EGSE that will interface to these development boards and
EM-units will also be delivered early in the design phase.

4.3. Product Assurance
The following is based on the approach taken on STEREO and NuSTAR for flight
software version control, configuration control and flight software integrity assurance.
This same approach will be taken for the EPI-Hi flight software development at Caltech.

In addition, Southwest Research Institute (SwRI) will provide QA support for EPI-Hi
software development.

4.3.1. Software Version Control/Backup Plan
• Only one person will be authorized to load flight software into flight MISCs – the

lead electrical engineer.
• Version control and software archiving will be achieved via the Subversion

version control system (SVN) (http://subversion.apache.org/). The subversion
server is hosted and maintained by Caltech Space Radiation Lab IT personnel. It
is access-controlled for security, and is backed-up regularly.

http://subversion.apache.org/

SPP EPI-Hi Flight Software Development Plan

Page 9

• The lead engineer will maintain the structure of the SVN repository, including
separate directories for each of the MISC’s flight software, separate directories for
different software builds, etc.

• Beginning in the implementation phase, a Software Development Log will be
maintained by the lead engineer containing software change requests, the date of
any change, a description of the change, and the reason for the change.

• One software developer will be working under the lead engineer. The developer
will be required to use the SVN system to maintain version control for his/her
portion of the code.

• At the end of each day of software work, the lead engineer and software
developer will ensure that all software modules are checked-in to the appropriate
location in the SVN repository.

• At the end of each day of software work, the lead engineer will also backup the
current flight software directories on his computer to a different computer and/or
to removable media.

• Periodically, the software developer will deliver his/her portion of the code to the
lead engineer, who will incorporate it into the current flight software build.

• There will never be more than one person working on the same piece of code. If a
change is required, the responsible developer will make the change and re-deliver
new code to the lead engineer.

• During the MRAM burn-in process, checksums will be calculated and recorded.
During boot of a flight MISC, the MRAMs will be read and same checksum will
be calculated and typed out. Formal checkout procedures will include recording
these checksums and verifying the proper values.

• All new software will be tested first on MISC development boards and EM units
prior to being loaded into flight hardware.

• After the beginning of integration and test with flight hardware, all flight software
changes will be under configuration management, per the procedures described in
Section 4.3.3 below.

4.3.2. Software Acceptance Test Plan
The EPI-Hi Flight Software Test Plan document (Ref. 10) will define this plan in detail.
This plan will include a software requirements verification matrix.

• Software tests will start at the module level. As the code builds up, system-level
testing will start, and the majority of the test time will be targeted at the system
level.

• A Test Readiness Review will precede formal acceptance testing. SPP Project and
ISIS personnel will oversee/participate in this review.

• Formal acceptance tests will be performed on the EPI-Hi instrument, including
the flight software, during the EPI-Hi integration and test phase.

• During environmental tests and SPP I&T, more experience will be gained with
the flight software, real sensor data, and with controlling the instrument via the
SOC-MOC interfaces. Flight software changes may be expected as a result. Any

SPP EPI-Hi Flight Software Development Plan

Page 10

changes in the flight software at this stage will result in CCB review, and a repeat
of these acceptance tests.

• The acceptance tests for the EPI-Hi flight software will be designed to verify each
of the software functional requirements as called out in the requirements
documents (Ref. 1 - Ref. 4) and also the functions provided by the Forth operating
system, the I/O API, and the multitasking software running on the MISC
processors.

• A software requirements verification matrix will be created and maintained by the
EPI-Hi team to aid in verifying that the software meets the requirements. The
matrix will be available for review by the SPP Project. A preliminary software
requirements verification matrix will be presented at CDR and a final version will
be presented at the Software Acceptance Review, following successful
completion of the acceptance tests.

• A Software Acceptance Review will follow the successful completion of the
acceptance tests, and the EPI-Hi team will present a test report. SPP Project will
oversee/participate in this review.

4.3.3. Software Configuration Management
All problems and change requests will be documented and tracked in the Software
Development Log by the lead engineer (see Section 4.3.1). Given such a small
development team, a change request tool such as JIRA is an unnecessary overhead.

After the beginning of integration and test with flight hardware, all flight software
changes will be approved by a Configuration Control Board (CCB) prior to being loaded
into flight hardware. Also after this point, Version Description Documents (VDDs) will
accompany all Software releases. The VDD will contain the functionality of the
build/release, a list of closed software problem reports, a list of any liens/workarounds,
installation instructions, and a list of deliverable source code files.

The CCB membership will consist of the EPI-Hi lead engineer and software developer,
and the Epi-Hi Project Manager, plus any other ISIS or SPP Project engineers that the
QA team at SWRI deems necessary.

4.3.4. Risk Assessment
As much as possible, the software utilizes elements flown on previous Caltech
instruments and the core software (the Forth OS) is unchanged and flight-proven. Risk-
mitigation efforts therefore focus largely on the EPI-Hi-specific elements. Risks will be
managed in accordance with ISIS Risk Management Plan (Ref. 12).

4.3.5. Software Maintenance after Delivery
After the EPI-Hi instrument is delivered, the ETUs, together with the supporting GSE,
will be maintained at Caltech. Any problems can be recreated and diagnosed in this
environment. Flight software changes will be run through an acceptance test on the ETU

SPP EPI-Hi Flight Software Development Plan

Page 11

and CCB review prior to loading into the flight hardware. Every effort will be used to
keep the flight software programmers available (though probably on another program) to
make any necessary changes through the life of the program. Software documentation
will be adequate to allow another programmer to understand and make changes to the
software if necessary.

5. Management Plan

5.1. Build Plan
Code will be developed using many incremental builds. The Forth environment is
extremely modular in nature, with complex software structures being built from many
smaller, simpler structures that are independently developed and tested. However, the
following software development milestones have been identified in the instrument
schedule, and these apply to each of the following modules: DPU, LET1, LET2, and
HET.
 Build 1 – Support Initial Logic Board. Includes Forth OS, and low-level electronics

and serial interfaces. Preliminary data processing routines.
 Build 2 – Support EM unit integration. Commands and telemetry processing.
 Build 3 – Support accelerator calibration of EPI-Hi telescopes.
 Build 4 – Support flight unit integration. Final data processing routines.
 Final Build – Final Flight software.

5.2. Software Reviews
Reviews by Project personnel of the software requirements and development will occur
several times during the development and implementation phases. At these reviews,
metrics including CPU margin, RAM and MRAM margin, and open software issues will
be presented. Action items from these reviews will be captured and the status of these
action items will be presented at later reviews.

• A Flight Software Requirements review will be held with the EPI-Hi team and ISIS and

SPP Project personnel attending to ensure that the documented requirements are
complete and clear. This review will occur at the end of the requirements definition and
analysis phase.

• At Instrument PDR and CDR, the flight software development and design will be
reviewed.

• A flight software walkthrough will be held with ISIS and SPP Project personnel a few
months before the acceptance tests are scheduled.

• A software acceptance review will be held after the acceptance tests.

SPP EPI-Hi Flight Software Development Plan

Page 12

5.3. Documentation Deliverables
The EPI-Hi Flight Software will be documented as follows:

Document Delivery Schedule
P24 MISC Processor Manual (Ref. 6) Instrument PDR
EPI-Hi Instrument Flight Software
Requirements Document (4)

Instrument PDR

EPI-Hi Instrument Flight Software Design
Document (Ref. 7)

Instrument CDR

EPI-Hi Data Format Document (Ref. 9) Beginning of I&T
EPI-Hi Flight Software Test Plan (Ref. 10) Instrument CDR
Software Development Log Beginning of I&T
EPI-Hi Commanding and User Manual (Ref.
11)

Beginning of I&T

Source code comments Beginning of I&T

5.4. Staff and Schedule
Lead engineer and software developer: Rick Cook, Caltech SRL
Software developer: Andrew Davis, Caltech SRL.

The Flight Software schedule is maintained in the Instrument Schedule (a separate
Microsoft Project document).

Software maintenance following delivery of the EPI-Hi instrument to the spacecraft will
be on an as-needed basis

SPP EPI-Hi Flight Software Development Plan

Page 13

Appendix A Acronyms

CCB Change Control Board
CCSDS Consultative Committee for Space Data Systems
CDR Critical Design Review
EPI-Hi Energetic Particle Instrument - High Energy
DPU Data Processing Unit
EM Engineering Model
ETU Engineering Test Unit
FPGA Field Programmable Gate Array
GIS General Interface Specification
GSE Ground Support Equipment
HET High Energy Telescope
HV High Voltage
ICD Interface Control Document
ISIS Integrated Science Investigation of the Sun
IT Information Technology
I&T Integration and Test
ITF Instrument Transfer Frame
LET Low Energy Telescope
MISC Minimal Instruction Set Computer
MRAM Magnetoresistive Random-Access Memory
OS Operating System
PDR Preliminary Design Review
QA Quality Assurance
SPP Solar Probe Plus
SRAM Static Random-Access Memory
SVN Apache Subversion version control system
VDD Version Description Document
VLSI Very Large Scale Integration

	1. Overview
	1.1. Introduction
	1.2. Document Conventions
	1.3. Applicable Documents

	2. Host System and Interfaces
	2.1. System Overview
	2.2. MISC Microprocessor
	2.2.1. Memory Map
	2.2.2. Operating System
	2.2.3. Boot Loader and MRAM
	2.2.4. I/O Bus (G-Buss) Peripherals

	2.3. External Interfaces
	2.3.1. Interface between the EPI-Hi DPU and the spacecraft
	2.3.2. Interface between the DPU MISC and the LET1, LET2, and HET MISCs

	3. Flight Software Tasks
	3.1. Heritage and Reuse

	4. Software Development Plan
	4.1. Top-down Software Development Phases
	4.1.1. Requirements Definition and Analysis Phase
	4.1.2. Design Phase
	4.1.3. Implementation Phase
	4.1.4. System Testing and Acceptance Phase

	4.2. Development Environment and Equipment Needed
	4.3. Product Assurance
	4.3.1. Software Version Control/Backup Plan
	4.3.2. Software Acceptance Test Plan
	4.3.3. Software Configuration Management
	4.3.4. Risk Assessment
	4.3.5. Software Maintenance after Delivery

	5. Management Plan
	5.1. Build Plan
	5.2. Software Reviews
	5.3. Documentation Deliverables
	5.4. Staff and Schedule

	Appendix A Acronyms

