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1 Introduction 

1.1 Purpose and Scope 

This Software Design Document (SDD) establishes the software design for the Solar Probe Plus (SPP) 
EPI-Hi instrument Flight Software (FSW) . The developer of the instrument FSW is the Space Radiation 
Laboratory at Caltech. 

1.2 Relationship to Other Documents 

This document is directly responsive to the SPP EPI-Hi Flight Software Requirements 
Document (Ref. 1), And the SPP Epi-Hi Flight Software Development Plan (Ref. 2). Those 
documents supercede this document in case of a conflict. 

Other documents referred to by this document: 

Ref. 3 SPP General Instrument Specification (GIS) 

Ref. 4 ISIS Specific Instrument ICD (SI ICD) 

Ref. 5 EPI-Hi Data Format Document 

Ref. 6 P24 MISC Processor Manual 

Ref. 7 EPI-Hi Instrument Flight Software Test Plan 

Ref. 8 EPI-Hi Instrument Flight Software Verification Matrix 

Ref. 9 EPI-Hi Event Processing and Particle Identification Scheme 

1.3 Key Definitions 

To Be Confirmed (TBC): an attribute or parameter value believed to be known with reasonable 
confidence and stated, but subject to further minor (5-10%) refinement. 

To Be Resolved or Reviewed (TBR): an attribute or parameter value that is used in the 
requirement statement as a reasonable placeholder, but known to be in dispute until a 
disposition can be reached by the affected parties. May also be designated by the use of 
brackets [ ] around the attribute.  

To Be Determined (TBD): an attribute or parameter value unknown at the time of writing. 

1.4 Document Layout 

An overview of the instrument design and operations concept is given in Section 2 – skip this if 
you are already familiar with it. Exposition of the FSW design is in Section 3, and the software 
development environment is described in Section 4. Requirements traceability and software 
verification are described in Refs 5 and 6. 
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2 Instrument Overview 

2.1 Instrument Design 

The SPP EPI-Hi instrument consists of three detector telescopes and associated electronics, 
designed to measure the intensity, composition, and angular distribution of protons and heavy 
ions in the energy range ~1MeV/nucleon to ≥50 MeV/nucleon, and electrons in the energy 
range ~0.5 MeV to ≥3 MeV.  The telescopes are 

• Low Energy Telescope 1 (LET1): Double-ended. 

• Low Energy Telescope 2 (LET2): Similar to LET1, only single-ended. 

• High Energy Telescope (HET): Double-ended. 
All sensor elements in the telescopes are ion-implanted silicon solid state detectors. Multiple 
telescopes provide large energy range and greater sky coverage. Sensor elements are segmented 
to provide angular sectoring and adjustable geometrical factor.  

The telescopes have significant heritage from numerous energetic particle instruments 
developed by the Caltech Space Radiation Laboratory (SRL) over the past 40 years. Direct 
predecessors are the LET and HET telescopes on board the STEREO spacecraft. Key 
differences between the SPP and EPI-Hi telescopes are  

• Thinner detectors and windows to reduce 
energy threshold 

• Compact telescope designs to reduce saturation 
at high particle intensities and backgrounds at low 
intensities 

Figure 1 shows a schematic of the HET telescope. The 
segmented silicon detectors are of circular cross-
section, and are mounted in a stack. Energetic particles 
may enter the stack from either end. Signals from each 
active detector segment are individually read-out by 
the electronics. The LET1 and LET2 telescopes have a 
conceptually-similar design to HET, but are optimized 
for measuring lower-energy particles. LET2 is single-
ended, since one end is shielded by the spacecraft. 

The electronics subsystem is shown as a block diagram 
in Figure 2. The DPU provides system-level control of 
the EPI-Hi instrument, and provides the interface to the 
spacecraft. Operational control radiates out from the 
DPU to each of the detector modules, the Bias supply, 
and the LVPS. The DPU receives commands from the 
spacecraft and executes the commands. In some cases, 

 
Figure 1: HET telescope. Colored 
regions: active Si detector segments. 
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command execution by the DPU consists of routing the command to the appropriate detector 
module. 

The DPU and the three detector modules (LET1, LET2, and LET3) are each endowed with a 
custom FPGA-embedded Minimal Instruction Set Computer (MISC) processor. These 
processors are capable of booting either from Magnetoresistive Random-Access Memory 
(MRAM),  or via a serial link. For SPP, only the DPU MISC boots from MRAM. The satellite 
MISCs in the detector modules each boot via serial link under the control of the DPU, using 
boot images stored in the DPU MRAM. 

The software running in the DPU MISC orchestrates the operation of the instrument and 
controls the command/data interfaces with the spacecraft, while the software in each of the 
detector MISCs controls detector operation, data acquisition, data processing, manages the 
command/data interfaces with the DPU.    

 
Figure 2: EPI-Hi Block Diagram 
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2.2 Instrument Operations Overview 

During normal operations, the instrument runs autonomously, with instrument commanding 
required only for updating operating parameters if/when needed. Nominally, the instrument 
changes its operating mode autonomously in response to status data received once per second 
from the spacecraft. Status data include solar distance, orbit inbound/outbound flag, startup 
mode, and amount of space left on the SSRs. Details of the S/C status message may be found  
in the GIS (Ref. 3). Software in the DPU MISC monitors the S/C status message and fans 
mode-change commands to the detector modules as needed. 

The start of the S/C status message also serves a virtual 1PPS “frame sync” pulse, since a 
hardware frame-sync from the S/C is not available (see the GIS, Ref. 3). The S/C status 
message also contains the Mission Elapsed Time (MET) at the next 1PPS. The DPU uses the 
virtual 1PPS and the MET data for time synchronization, and provides the 1PPS to the detector 
modules so that they are also time-synced. 

2.2.1 Operating Modes 
The instrument has only two normal operating modes: 

• Spacecraft- Sun Distance R<0.25 AU (Normal Science Mode) 

• Spacecraft- Sun Distance: 0.25< R<0.76 AU (Low-rate Science Mode) 
These two modes differ only in the data transmission rate from the DPU to the spacecraft. The 
data collection rate and the operating mode of the three detector modules remains the same in 
these two modes. In both modes, the detector modules transmit the same data products at the 
same rate to the DPU. The DPU decides, based on the mode, what data are to be transmitted to 
the spacecraft to be stored on the SSR. Essentially, each of the detector modules has only one 
normal operating mode. 

At least three special operational modes are currently envisioned. Several more may be defined 
in the future. The three currently-envisioned modes are: 

• Software upload mode 

• Calibration Science mode 

• Safe mode 
During software upload mode, data acquisition functions and some non-essential functions will 
be halted. 

Calibration Science mode is a mode during which statistically significant samples of Pulse 
Height Analysis (PHA) event data will be accumulated and returned to validate onboard 
assignments of species, energy, and incidence angle, and for assessing instrument backgrounds. 
This mode will be activated outside 0.25 AU by command one or more times early in the 
mission when sufficiently high intensities of solar energetic particles are present for calibration 
purposes. This mode, which will be used for a few days after activation of the mode, will 
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require the return of a data volume significantly greater than that provided by the Low-rate 
Science Mode. The details of implementing this mode are TBD. 

Safe mode is a mode where the instrument sits in a “quiet” state, awaiting commands from the 
ground, performing no data acquisition functions. This mode is reserved for instrument I&T, 
commissioning, and instances where the flight software encounters some irrecoverable fault 
(TBD). 

2.2.2 Data Collection Cycles 
Each detector module (LET1, LET2, HET) collects data from the detector electronics in three 
forms: 

• Housekeeping data (HK) : temperatures, voltages, status, etc., read out at regular time 
intervals 

• Hardware counters: counts read out from various hardware/firmware counters at regular 
time intervals 

• Event data: whenever an incoming energetic particle satisfies the coincidence 
requirements programmed into the front-end electronics, an “Event” is triggered. The 
front-end electronics read out the triggered detector elements and generates a  data 
block of detector signal amplitudes and addresses.  Each block of event data is stuffed 
into a FIFO by the front-end electronics. The detector module FSW reads event data 
blocks out of this FIFO for analysis and possible insertion into the telemetered detector 
data. 

There is not enough bandwidth to telemeter the raw data blocks generated by every event to the 
ground. Therefore, the event data blocks must be analyzed onboard, and only a selected subset 
of events will have their full data telemetered, for diagnostic purposes. 

The analysis of each block of event data by the FSW in each detector module results in the 
incrementation of one or more software-maintained counters. The FSW is designed to 
determine the species, energy, and trajectory of the particle that generated the event, and to bin 
the result into appropriate species, energy, and angular bins (see Ref. 9). A counter is 
associated with each of these bins. The content of these software counters constitutes the 
primary science data product. 

Each detector module has a 1-second data collection cycle that is tied to the 1PPS time pulse 
received from the DPU. During second N, the HK and all the counters from second N-1 are 
transferred to the DPU. Also, a prioritized selection of event data blocks is transferred to the 
DPU. Except for command responses and some items that may be multiplexed in the 
housekeeping data, the detector module telemetry data repeats the same format each second.  

The DPU is responsible for formatting all the data received from the detector modules into 
CCSDS packets an d ITFs, per the EPI-Hi Data Format document (Ref. 5). It is also responsible 
for accumulating longer-term rates (10-second, 1-minute, 1-hour, …TBD) from the 1-second 
rates delivered by the detector modules. Based on the operating mode (normal or low-rate) and 
the S/C status data, the DPU will select the appropriate subset of data to be packetized and 
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transferred to the spacecraft for storage on the SSRs. Thus, during low-rate mode the 1-second 
counts would not be telemetered, and only a very restricted subset of event data would be 
transferred. Details on this will be found in the Data Format Document (Ref. 5). 

2.2.3 Electronics Test Pulser Cycle 
This is an autonomous activity that runs continuously and cycles the detector module 
electronics test pulsers through a series of amplitude steps. The test pulser settings are 
contained in onboard tables, and the sequencing is controlled by software counters and the 1Hz 
spacecraft timing pulse. Data from events that are triggered by the test pulses are folded into 
the standard science telemetry, and the test pulses do not influence the instrument mode of 
operation. 

2.3 Instrument Commissioning Activities 

This activity will checkout the instrument electronics and prepares the instrument electrically to 
take data.   

Prior to this activity the following pre-conditions must be met: 

• Details TBD, but basically the spacecraft must have successfully completed its own 
initial commissioning activities.  

Once the preconditions have been met the first of the 2 Instrument commissioning sub-
activities, Instrument Electronics Power On and Initial Checkout, can be performed. 

2.3.1 Instrument Electronics Power-On and Initial Checkout Activity 
The spacecraft will apply operational power to the Instrument upon receipt of a ground 
command, per the SI ICD (Ref. 4) . Once powered on, the DPU flight software will boot and 
from then on the DPU will control the initialization of the other instrument subsystems. The 
instrument power-on and initialization steps are as follows: 

• TBD – details to be provided by Rick Cook prior to PDR. 

2.4 Instrument Commanding 

Details of the instrument commanding interface and protocols are contained in the GIS and SI 
ICDs (Refs. 3 and 4).  

Instrument commands and software uploads are transmitted to the spacecraft in CCSDS 
telecommand packets encapsulated inside ITFs, per the GIS.  

There are no requirements on the spacecraft to understand or act upon the contents of an 
instrument telecommand packet.  There are no requirements on the spacecraft to wait either a 
minimum or maximum time before sending commands.  In other words, all requirements for 
command timing are levied on the ground. 
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3 Flight Software Design 
The instrument FSW is distributed across the four instrument MISCs: one in the DPU, one in 
each of the detector modules. Thus, the instrument FSW can be divided into four MISC-level 
modules. 

The top-level FSW design is presented from an operational perspective and attempts to do the 
following: 

• Identify flow of control and the events that can affect the processing of data; Present the 
instrument-level control flow and data-flow diagrams. 

• Examine the data flowing in and out of the system; Present the instrument-level and 
MISC-level data flow diagrams. 

• Provide high-level descriptions of the MISC-level modules of the FSW and how those 
modules map to the system requirements. 

• Describe the hardware interfaces controlled by the MISC-level FSW modules. The 
interfaces are dealt with at a high-level. The intent is to describe the type of hardware 
control and status that is provided by the FSW. 

3.1 Instrument-Level Control Flow 

The instrument-level control flow diagram is shown in Figure 1. The DPU FSW has system-
level control of the instrument, and provides the interface to the spacecraft. Control radiates out 
from the DPU to the FSW in each of the detector modules. Each detector module controls and 
reads data from its own set of detectors and housekeeping (HK) sensors. The DPU receives 
commands from the spacecraft and either executes the commands, or routes them to the 
appropriate detector module. The DPU FSW is responsible for orchestrating the boot process 
for the other MISCs after power-up or reset. The DPU FSW has direct control over the Bias 
Supply and the LVPS.  Each MISC-level FSW module also has several other tasks, which are 
enumerated and described below. 
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3.2 Instrument-Level Data Flow 

The instrument-level data flow diagram is shown in Figure 2. 

Raw data, including housekeeping data, flow from the detector modules to the DPU via RS-422 
serial interfaces. These interfaces run at 461 kbps, but are not typically used to full capacity. 
The DPU also gathers HK data from various sensors and subsystems under its control. 

Once per second, The DPU FSW aggregates the data received from all these sources during the 
previous second, and formats the data into CCSDS packets and ITFs per the Instrument Science 
Data Format document. During the following second, these packets are transmitted to the 
spacecraft. 

 

 

 

 

 

FIGURE TBD 

 

 

 

Figure 1 – Instrument Level Control Flow Diagram   
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3.3 Design Elements Common to FSW in all Modules 

3.3.1 MISC Architecture 
The microprocessor used in the DPU and detector modules is the P24 MISC (Minimal 
Instruction Set Computer), designed at Caltech with the aid of Dr. C. H. Ting. The design 
derives from earlier MISC implementations developed by Chuck Moore (MuP21; see 
http://www.ultratechnology.com/mup21.html) and C. H. Ting (P8 and P16) and is simple 
enough to fit within a field-programmable gate array (FPGA), yet powerful enough to provide 
the needed on-board event analysis capability. For NuSTAR, Both the P24 design is 
implemented in the ACTEL RTAX250 FPGA. 

The MISC employs a RISC-like instruction set with four 6-bit instructions packed into a 24-bit 
word. Instructions are executed consecutively after a word is fetched from memory. The most 
significant bit of each instruction designates an I/O buss (gbus) operation when set. For I/O 
buss instructions the second most significant bit specifies a write when set, read when cleared, 
while the remaining four bits specify the I/O buss address. For non-I/O buss instructions the 
most significant bit is cleared and the remaining 5 bits specify 32 possible instructions, 31 of 
which are implemented. 

 
 

Figure 2 – Instrument Level Data Flow Diagram – Typical data rates and interface 
capacities shown 

 

http://www.ultratechnology.com/mup21.html
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Following is a list of distinctive features of the P24 MISC: 

• 24-bit address and data busses  

• 6-bit RISC-like CPU instructions 

• 4-deep instruction cache 

• 256-deep data stack 

• 256-deep return stack 

• Current implementation runs at 15 MHz (at least 25 MHz capability), with 1 wait-state 
for SRAM fetch or store. 

The MISC has the following registers, all 24 bits wide: 

A Address Register, supplying address for memory read and write 

I Instruction Latch, holding instructions to be executed 

P Program Counter, pointing to the next program word in memory 

R Top of Return Stack 

S Top of Data stack 

T Accumulator for ALU 

The return stack is used to preserve return addresses on subroutine calls.  The data stack is used 
to pass parameters among the nested subroutine calls.  With these two stacks in the CPU 
hardware, the MISC is optimized to support software written in the Forth programming 
language. 

For more information, consult the P24 MISC Processor Manual (Ref. 6). 

3.3.2 Forth Interpreter and Programming Language 
When booted, each MISC runs an embedded Forth interpreter (or kernel), which occupies 
~8Kbytes of RAM.  

Forth is a structured, imperative, stack-based, computer programming language and 
programming environment. It is a language with a simple syntax and many keywords. This is in 
contrast to Algol-style languages (such as Pascal and C/C++), which have a complex syntax 
and few keywords. 

Forth programs are made of many small procedures. Forth is compiled, yet has no compiler in 
the traditional sense. Essentially, it's a population of subroutines and an interpreter. The 
subroutines are called words. (In this article, words will appear in UPPER-CASE.) The 
dictionary is a data structure that associates the compiled words with their string names. The 
interpreter can invoke words that perform compilation actions, thereby extending the dictionary 
in the middle of a program. Figure 1 shows a flow chart of a Forth interpreter. The interpreter 
evaluates white space-delimited strings taken from an input stream, such as a console or file, 
usually in one pass. 
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You write a Forth program by defining new words, and run it by executing the top-level word. 
Forth manipulates data on a parameter stack that is separate from the return stack. Although 
static variables can be defined, words generally pop their parameters from the parameter stack, 
and push their results onto it. For example, the built-in word + pops the top two values, adds 
them, and pushes the sum back onto the stack. Bitwise AND operates similarly. The word < 
pops two values, compares them, and pushes the result (0 or -1). So a Forth programmer would 
code (2+3)*(4+5) as 2 3 + 4 5 + *, in reverse polish notation (RPN).  

The Forth standard specifies a boolean result as all 0's or all 1's, which is 0 or -1 in twos 
complement arithmetic. This allows you to mix arithmetic and boolean operations, for example 
<< 7 AND. The compiler allows any kind of type mixing, as Forth is typeless.  

With most data kept on the parameter stack, there's less need than in other languages to track 
variable names or addresses, and temporary storage is automatic. Several built-in words 
manipulate the stack by rotating, removing, copying, or displaying items from various stack 
positions: SWAP swaps the top two items, DROP removes the top stack item, and OVER 
copies the second stack item to the top of the stack, thereby increasing the stack size by one.  

Words that manipulate character strings generally require a pointer as the second item on the 
stack and the string length on the top. Branching and looping words also use the stack. IF pops 
and tests the value on top of the stack. If the value is non-zero, the next word executes. 
Otherwise, control passes to the word following the ELSE, if present. BEGIN starts an 
indefinite loop and the corresponding END pops and tests the top stack value, looping back to 
BEGIN if it's zero. DO/LOOP pairs repeat until an index (passed on the stack) increments to or 

 
Figure 3 –A Forth interpreter's flow chart 
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beyond a limit (also passed on the stack). An important difference is that the index and limit are 
copied to the return stack, to avoid cluttering the parameter stack. 

For more information about the Forth language, see, for instance, 
http://en.wikipedia.org/wiki/Forth_(programming_language). 

The specific Forth interpreter embedded in NuSTAR MISCs is a Caltech customization of 
eForth: see http:/www.forth.org/eforth.html 

3.3.3 Multi-tasking environment 
The Forth operating system supports simple round robin multi-tasking, in which the 
responsibility for hand-off of cpu control resides with the user-defined task. There is no 
operating system interference in task switching, which occur in only a few clock cycles. The 
multi-tasking system consists simply of a few subroutines (Forth "words") that allow the 
creation of tasks, their insertion into the round robin, and the control of their state ("asleep" or 
"awake"). Tasks which are asleep are efficiently bypassed in the round robin. Typically a task 
will put itself to sleep while it waits for input from another task or an interrupt service routine 
which will later wake the task once the input is ready. 

Since the forth system command interpreter/compiler (OPERATOR) is one of the tasks in the 
round robin and it is desired to keep the response time to commands short, the tasks are 
typically designed such that the maximum time around the loop is less than about 10 msec. 

3.3.4 Interrupts 
11 prioritized and vectored interrupts are supported. See section 3.3.5 below for more 
information. 

3.3.5 Memory Map – Parts of this section to be updated for EPI-Hi 
The system's hardware defined memory map includes SRAM, EEPROM, and boot code that is 
internal to the MISC FPGA. The entire address space of 24 bit words ranges from HEX 0 
through 3FFFF. The lower half is devoted to SRAM and the upper half to EEPROM. Multiple 
pages of EEPROM are supported by extended address bits held in gbus addressable i/o. 

Some addresses have special functions and are decoded separately. These include address 0, 
which is the address where execution begins after a reset. The instruction at this address is 
hard-coded into the FPGA and is a jump to address $20001. The address range $20001 through 
$2000F is also specially decoded depending on the status of the "serial-boot" input pin on the 
FPGA. If the serial-boot line is high this indicates that boot should occur over the serial 
interface and the address range $20001 through $2000F points to the serial boot code which is 
hardwired into the FPGA. Otherwise it points to EEPROM, where is stored a short program to 
boot from the EEPROM. 

Addresses 1 through 11 are the addresses to which interrupts 0 through 10 vector, respectively. 
The Forth operating system, which includes the standard Forth dictionary of subroutines, 
begins at address 12 and extends up through address 2580. Application specific code begins at 
2581 and grows upward by the addition of code, tables, etc. to the dictionary. Applications are 

http://en.wikipedia.org/wiki/Forth_(programming_language)
http://www.forth.org/eforth.html
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free to define data structures outside the dictionary, and these typically grow from high 
memory down toward the dictionary. 

The Forth system "READ" and "OK" words, that respectively receive a text file and compile it 
into the dictionary, normally use the address range $1B000 through $1FFFF as their text buffer. 

3.3.6 Software Boot, Upload, and Patching Capabilities 
Details TBD – to be provided by Rick Cook prior to PDR 

3.3.7 Fault Protection Features 
3.3.7.1 Watchdog Timer 
The DPU will support a watchdog timer system that will allow a reset of the DPU MISC if the 
main program fails to service the watchdog interrupt. 

If the DPU MISC resets due to a watchdog timer exception, the following occurs: 

1. TBD – details to be provided by Rick Cook prior to PDR 

3.3.7.2 DPU Monitoring of Detector Module Health 
CEB is capable of monitoring the health of FPM and OBEB MISCs by counting the data 
packets and command responses received. It is capable of autonomously performing a memory 
dump/reboot of any of these systems if an anomaly is detected. This function can be 
enabled/disabled by command. 

Note: currently not planning a watchdog time system for the detector modules. 

3.3.7.3 SRAM Monitoring and Redundant MRAM - may need update for EPI-Hi 
The DPU Stores dual copies of boot code for all MISCs in MRAM.  

An EDAC is implemented in FPGA as a result of JPL SEU review. Single and multi-bit error 
rates will be monitored in space and included in telemetry. Only a few single bit errors are 
expected (corrected by EDAC) and no multi-bit errors over the 2 year mission.  

Checksums over static SRAM (& MRAM) contents will be calculated periodically in-flight and 
included in telemetry. 

3.3.7.4 MISC Stack Underflow/Overflow Protection 
There is none – this is up to the software designer. Note that the stacks are circular, and are 256 
levels deep now. 

3.4 DPU FSW Design 

3.4.1 DPU – Spacecraft Interface 
The electrical interface between the DPU and the spacecraft is described in detail in the GIS 
and SI ICDs (Refs. 3 and 4). Briefly, there are two serial interfaces; 
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• COMMAND:  an RS-422 serial interface running at 115.2kbps for transferring 
commands and software uploads from the spacecraft to the instrument.  

• DATA: an RS-422 serial interface running at 115.2kbps for transferring telemetry data 
from the instrument to the spacecraft.  

3.4.2 DPU Command and Data Interfaces with Instrument Subsystems 
There are two standard RS-422 serial interfaces between the DPU and each of the detector 
modules. The first is a bi-directional interface for the transfer of commands and boot code from 
the DPU to the module, and the transfer of command responses from the module to the DPU. 
This interface runs at 57.6kpbs and is multiplexed between the modules. The second serial 
interface is unidirectional, for the transfer of data from the subsystem to the DPU. The data 
interface is not multiplexed between the subsystems – each subsystem has its own data 
interface with the DPU. 

3.4.3 DPU FSW Tasks 
The FSW running in the DPU MISC performs the following tasks: 

DPU MISC Flight Software Task Heritage 
(Est.) 

Forth operating system and low-level I/O routines 95% 

Power-on and initialization sequence management 60% 

Peripheral MISC serial boot sequence management 80% 

Housekeeping data collection 50% * 

Inter-MISC communication management 90% 

Setup and control of instrument HV, bias supply, heaters, and  
other electronics systems 

50% * 

Monitor status, and time-synchronization data from the spacecraft, 
and perform autonomous mode adjustments as needed 

10% 

Management of software uploads and MRAM burns 75% 

Formatting and transfer of science & housekeeping data and 
command responses to the Spacecraft 

50% * 

Monitor heartbeat from peripheral MISCs, and perform 
autonomous diagnostics/reboot as needed  

10% 

* general scheme is inherited, specifics are unique 

 

Figure 4 shows the DPU FSW processing loop, and identifies the interrupt service routines, 
round-robin tasks, and data structures that together comprise the DPU FSW. 
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The following tasks are hooked into the CEBs round-robin multi-tasker: 

• OPERATOR - forth system command interpreter/compiler 
• PKT - packetizer/packet scheduler 
• MET - metrology system data collector 
• MODE – operational mode controller 

 
Most of the interrupts come from UARTs. The TIM timer interrupt is generated by a hardware 
timer within each MISC. 
 
A vectored scheduler (not shown) runs within the TIM interrupt service routine and provides 
millisecond scheduling resolution. 

3.5 Detector Module FSW Design 

3.5.1 Detector Module-DPU Interface 
This interface is described in Section 3.4.2 

3.5.2 Interface to Detector Elements 
This is same as for STEREO. The description is TBD. 

 
Figure 4 –DPU MISC FSW Processing Loop 
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3.5.3 Detector Module FSW Tasks 
The FSW running in each of the two three Detector Module MISCs (LET1, LET2, and HET) 
performs the following tasks: 

LET1, LET2, and HET MISC Flight Software Tasks – each 
MISC performs a similar set of functions: 

Heritage 
(Est.) 

Forth operating system and low-level I/O routines 95% 

Science data acquisition 50% * 

Science data processing and reduction (particle ID) 20% 

Housekeeping data acquisition 50% * 

Processing of status, time-synchronization, and command data from 
the EPI-Hi DPU 

50% * 

Monitor key counting rates and adjust the telescope operating 
condition to optimize data quality  

 

80% 

Monitor temperatures and adjust detector gain/offset settings to 
compensate for temperature variations 

0%  

Formatting and transfer of science & housekeeping data and 
command responses to the EPI-Hi DPU 

50% * 

Setup and control of any instrument HV, bias supply, heaters, etc. 
not controlled by the EPI-Hi DPU. 

50% * 

 

Figure 5 shows the FP FSW processing loop, and identifies the interrupt service routines, 
round-robin tasks, and data structures that together comprise the FP FSW. 

 

 

 

 

 

FIGURE IS TBD 

 

 

Figure 5 –Detector Module MISC Processing Loop 
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The following tasks are hooked into the s round-robin multi-tasker: 
• OPERATOR - forth system command interpreter/compiler 
• EVP - event processor 
• HKP - housekeeping collector 
• LKS - detector leakage current collector, balancer 
• RTS - rate/livetime collector 
• CAL - CZT detector stim pulse cycling controller 
• TBD 

 
As in the DPU, a vectored scheduler (not shown) runs within the TIM interrupt service routine 
and provides millisecond scheduling resolution. 

3.5.4 Event Processing 
See EPI-Hi Event Processing and Particle Identification Scheme (Ref. 9). 

4 Development Environment 
This is described in the Flight Software Development Plan. A brief summary will be given 
here.  

TBD. 

5 Inherited Software Components 
The flight software inherits some major components from previous projects: 

• The Forth kernel and real-time multi-tasking S/W are the same as for the SEP 
instrument suite on STEREO, the NuSTAR mission, and the many MISC processors 
used ubiquitously in ground test equipment at Caltech 

• The inter-MISC communication S/W is the same as for STEREO and NuSTAR 

• The software for packetizing instrument data into CCSDS packets and scheduling the 
transfer of data packets to the spacecraft is the same as for STEREO and NuSTAR 

• The software for processing instrument commands, routing commands to satellite 
MISCs, and packetizing command responses is the same as for STEREO 

6 Design Requirements Traceability and Software Verification 
The EPI-Hi Flight Software Verification Matrix is a working document that is expected to 
change as the software verification process evolves. It will therefore be provided as a separate 
document. 

7 Acronyms and Terms 
ADC - Analog to Digital Converter 
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ALU - Arithmetic Logic Unit       

APID - Application Process Identifier 

CCSDS - Consultative Committee for Space Data Systems 

DPU – Data Processing Unit                         

EDAC - Error Detection and Correction 

MRAM – Magnetoresistive Random Access Memory 

FPGA - Field Programmable gate Array 

FSW - Flight Software    

HK - Housekeeping     

I/O - Input Output 

ICD - Interface Control Document 

JPL - Jet Propulsion Lab        

LC - Leakage Current      

LVPS - Low Voltage Power Supply  

MISC - Minimal Instruction Set Computer 

NuSTAR - Nuclear Spectroscopic Telescope Array 

RISC - Reduced Instruction Set Computer  

S/C - Spacecraft                        

SRAM - Static Random Access Memory 

VLSI - Very Large Scale Integration 
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