### Solar Probe Plus

A NASA Mission to Touch the Sun

APL Caltech

ENERGETIC

Integrated Science Investigation of the Sun Energetic Particles

Preliminary Design Review 05 – 06 NOV 2013

**ISIS** Power

David Do



### **Outline**



- EPI-Lo and EPI-Hi LVPS
  - Power requirements
  - Block diagrams
  - Circuit topologies and descriptions
  - Circuit margins
  - Packaging
  - Thermal management
- Plans for testing including bench checkout equipment
- Maturity of the design (BB testing, design, analysis completed)
- Preliminary parts lists and any special testing required
- Summary and follow-up from peer review held prior to the instrument PDR



## **EPI-Hi Electronics Overview**







## **EPI-Lo – Electronics Overview**







## **EPI-Hi Block Diagram**







## **EPI-Lo Block Diagram**







### **Environment Requirements**



- Thermal
  - Survival is -55C to +75C
  - Operational is -20C to +55C
  - Turn-on at -30C
  - Qualification Test -30C to +65C
- Radiation
- gate 75 kRad (includes FD)
  - LET > 70 MeV\*cm2/ mg
    - For LET < 70 MeV\*cm2/ mg appropriate SEE mitigation shall be applied



## **LVPS Major Input Requirements**



- Requirements from Solar Probe Bus
- Input Specification
  - Operate over bus voltage of 24 to 35V
  - Survive any standing or fluctuating voltage from 0 to 40V
  - Meet EMI/EMC
  - Inrush current limit
  - Primary Secondary isolation >1MOhm
  - Overall efficiency > 70%



## **Input Power Requirement**



- EMI/EMC
- Inrush Current



CE01& CE03 Limit



In-Rush Current Limit



## **Output Requirements:**



#### ■ EPI-Hi:

- Generate low voltages: +12V, +6V, +3.3V, +1.8V, +1.5V & -6V
- Primary input current telemetry
- Temp sensor
- Provide path for heater voltage

#### EPI-Lo:

- Generate low voltages: +13V, +5V, +3.3V and +1.5V
- House keeping through ADC for primary input current, temperature, output currents and output voltages
- Generate high voltages and bias voltages to sensors



### Interface



- EPI-Hi
  - Input connector: MWDM2L-9SCBRR2-0.110-429
  - Output connector: 891-008-51PSBRT1T-429TH
- EPI-Lo
  - Input connector: MWDM L-9SSMR
  - Inter board connector: 891-008-51PSBRT1T-429
  - Safing connector: 803-005-07M5-3EN
  - Bias voltage connector: 09-9001-1
  - High voltage: Pig tails



## **Power Topology**



- Common for EPI-Hi and EPI-Lo:
  - Main converter is forward with resonant reset operating at 200kHz. Efficiency is >80%.
  - Digital voltages are linear regulated
- EPI-Lo HVPS:
  - Bulk high voltage is set at 3.5kV
  - High voltages of up to 3.4kV are controlled through Optocouplers
  - Bias voltage is up to 200V



## **EPI-Hi Output Requirements**



|        | Output<br>Regulation | Min Load<br>(mA) | Nom Load<br>(mA) | Max Load<br>(mA) |
|--------|----------------------|------------------|------------------|------------------|
| +1.53V | ±2.5%                | 50               | 100              | 150              |
| +1.82V | ±2.5%                | 20               | 40               | 60               |
| +3.41V | ±2.5%                | 145              | 287              | 430              |
| +6V    | ±5%                  | 79               | 338              | 500              |
| +12V   | ±7%                  | 8                | 16               | 64               |
| -6V    | ±7%                  | 6                | 12.6             | 19               |



14

## **EPI-Lo Output Requirement**



|       | Outputs<br>Regulation | Min Load<br>(mA) | Nom Load<br>(mA) | Max Load<br>(mA) |
|-------|-----------------------|------------------|------------------|------------------|
| +1.5V | ±3%                   | 45               | 80               | 200              |
| +3.3V | ±3%                   | 150              | 200              | 460              |
| +5V   | ±5%                   | 115              | 135              | 160              |
| +13V  | ±5%                   | 10               | 63               | 90               |



15

## **Sensor Voltages**







16

## **EPI-Lo HVPS Requirements**



|      | Max Output<br>Voltage (V) | Min Load (uA) | Max Load<br>(uA) |
|------|---------------------------|---------------|------------------|
| Bias | 200                       | 0             | 20               |
| Bulk | 3400                      | 0             | 250              |
| HVPS | 3300                      | 0             | 40               |
| Grid | 1000                      | 0             | 1                |
| MCP  | 900                       | 0             | 40               |



## **HVPS Current Limit**



Control range: 0uA to 125uA

■ Control granularity: <1uA

■ Response time: <1ms



## **LVDS Fault Mitigation**



- Transformer: primary and 3.3V winding is well isolated
- +3.3V is linear regulated from +3.6V
- Linear pass transistor is rated for 100V
- Preliminary thermal analysis shows 33°C rise



### Thermal Analysis



Ran two cases: 4 oz and 6 oz Cu in PWB

 Thermal contours similar one plot shown with two contour levels for ea PWB case

- TO-254 temps for 4oz
  - Junction = 46.6°C
  - Case = 27.0°C
- TO-254 temps for 6oz
  - Junction = 32.8°C
  - Case = 13.2°C





## **EPI-Hi Package**







## **EPI-Lo Packaging**





Packaged in octagon frame

Stiffener goes across the board

Power dissipation is estimated <1.5W





## **EPI-Hi Board Layout**



### Secondary Shield





## **EPI-Lo Board Placement**







### Plans for testing



- Follows APL Manufacturing Flow, these are significant highlights
  - Populate Passive Components with Automatic Measurement.
  - Populate Actives and Install Known Tailors or Tailor Flags
  - Install into Flight Frame
  - Execute Test Procedure to Test and Tailor Entire Board
  - ESS Testing
  - Execute Functional Test Procedure
  - Photograph and Conformal Coat
  - Execute Test Procedure to Calibrate and Characterize Board (over temperature)
  - Release to Next Assembly



## **Breadboard Testings**







Start Up

**Transformer Reset** 



## **Output Regulation and Efficiency**



|        | Load(A) | Regulation(V) | Power(W) |
|--------|---------|---------------|----------|
| +1.53V | 0.14    | 1.505         | 0.2107   |
| +3.41V | 0.287   | 3.69*         | 0.9758   |
| +6V    | 0.338   | 5.97          | 2.01786  |
| +12V   | 0.016   | 11.98         | 0.19168  |
| -6V    | 0.012   | 5.95          | 0.0714   |
| input  | 0.159   | 28            | 4.452    |
|        |         |               | 78%      |

- \*+3.41V shown preregulated. Efficiency is calculated using +3.4V.
- +3.41V and +1.82V linear regulator have same design as +1.53V.



## Analysis



- Preliminary EMI completed
- Worst Case analysis for digital voltages completed: ±2.3%



### **Voltage Regulation WCA Method and Assumptions**



#### WCA Method

- Extreme Value Analysis in Mathcad
- Temperature Range
  - -20C to +65C operational
- Resistors Variation
  - K resistors are 100 ppm (0.8%) + 1% initial tolerance + 2% Aging ≈ 4%
  - E resistors are 25 ppm (0.2%) + 0.1% initial tolerance + 1% Aging ≈ 1.3%
  - Z resistor are 5ppm(0.04%)+ 0.01% initial tolerance 0.16% Aging ≈ 0.2%
- RH1078
  - 100Krad data from datasheet
- PWM5302S
  - 100Krad data from datasheet



## **EPI-Lo EMI Analysis**







#### Primary Current in Discrete Time

**Primary Current in CFFT** 





Frequency / Hertz

**EMI Filter Attenuation** 



### **Parts**



- All parts are rad-hard to 100krad
- No parts concerns

# Add table of parts



## **Status Summary**



- EPI-Hi
  - EM PCB Fabricated
- EPI-Lo
  - EM Placement completed
  - EM Board is in layout phase



### **Plan Forward**



- EPI-Hi
  - Complete testing EM
  - Fabricate flight
- EPI-Lo
  - Fabricate and completing testing EM
  - Fabricate flight
- Finalize all documentation and procedures for flight build
- Build, tailor, calibrate, and qualify flight units



### **Peer Reviews**



- EPI-Hi LVPS: May 2013
- EPI-Lo Power: Aug 2013
- Major Action Items:
  - EPI-Hi:
    - Shielding over switching circuits
    - Output loads
    - Output regulations
  - EPI-Lo:
    - MCP voltage accuracy
    - LVDS fault mitigation
    - Bias Voltage Zener diode protection