Solar Probe Plus

A NASA Mission to Touch the Sun

Integrated Science Investigation of the Sun Energetic Particles

Preliminary Design Review 05 – 06 NOV 2013

EPI-Lo Sensor

Don Mitchell, Matt Hill, Ralph McNutt DRAFT 2013-10-14 5:53 PM

Outline EPI-Lo Sensor Design

- ISIS Science Requirements Relevant for EPI-Lo
- EPI-Lo Instrument
- Block Diagram(s)
- Principles of Operation Overview
- Sensor Voltages
- Electrostatic Optics
- Collimators and Start Foils
- Solid State Detectors & Stop Foils
 - Anti-coincidence System
 - GEANT
- Microchannel Plate (MCP)
- Mass Resolution
- Light & Dust Mitigation
- Follow-up from peer reviews
- Summary

THIS IS NOT UP TO DATE...IGNORE THIS PAGE.

The EPI-Lo Instrument Requirements

Parameter	Required	Goal (Capability)	Comment/Heritage
Electron Energies	50 - 500keV	25 - 1000 keV	Electron capability from JEDI, RBSPICE
lon Energies	50 keV/nucleon – 15000 keV Total E	50 keV/nucleon – 15000 keV Total E	Capability partially based on RBSPICE capabilities. Top energy ~250keV/nuc for Fe
Energy Resolution	45% for required energy range	40% for required energy range	Telemetry limited
Time sampling	5 sec	1 sec	Telemetry and/or statistics limited
Angle resolution	<30° x <30°	lons, ~15° x 12° to <30° x <30° e-, 45°	Varies with elevation
Pitch Angle (PA) Coverage	0°-90° or 90°-180°, some samples in both hemispheres	0°-90° or 90°-180°, some samples in both hemispheres	
Time for Full PA	1 – 5 sec	1 – 5 sec	Telemetry limited
Ion Composition	H, He3, He4, C, O, Ne, Mg, Si, Fe	H, He3, He4, C, O, Ne, Mg, Si, Fe	He3/He4 ~50 to 1000 keV/ nuc
Electron Sensitivity: j=Intensity	j = 1E1-1E6/cm²-s-sr	Sensor-G:0.144 (cm ² .sr) Pixel-G: ~0.02 (cm ² .sr) Up to 6E6 1/s counting	j=Intensity (1/cm ² -s-sr) G=Geom. Factor (cm ² -sr) 8 pixels/sensor
Ion Sensitivity	j = 1E1-1E6/cm²-s-sr	Sensor-G:0.16 (cm ² .sr) Pixel-G: ~0.002 (cm ² .sr) Up to 3.5E6/s rate (TOFxE)	80 pixels/sensor

A NASA Mission to Touch the Sur

4

EPI-LO CROSS-SECTION VIEW ISOMETRIC

- EPI-LO ELECTRON FOV
- EPI-LO ION FOV
- INTERFERENCES

EPI-LO INDIVIDUAL SENSOR WEDGE ASSY CROSS SECTION

EPI-LO INDIVIDUAL SENSOR WEDGE ASSY CROSS SECTION

Secondary Electrons from Start Foils possible, but Low Probability; Start Electron present identifies entrance aperture

Ion Measurement Logic can require TOF or not, but with not TOF, no species

SIMION simulation of electron optics using ~3eV random

initial electron velocities.

EPI-LO INDIVIDUAL SENSOR WEDGE ASSY CROSS SECTION

A NASA Mission to Touch the Sui

EXPLODED VIEW "NEW" MCP ASSEMBLY

Ħ

MCP Inter-Plate Spacer also a mask

Microchannel Plate (MCP)

SIS

Aperture = 0 FHWM energy = 15keV FHWM timing = 0.3ns PL sigma = 2

Collimators and Start Foils

Solar Probe A NASA Mission to Touch the

- Foils Mount on Apertures (red)
 - Each elevation tailored for equal GF
 - Second foil planned at intermediate baffle
- Collimators screwmount to outer cover, capture foils
 - Each Elevation and azimuth is unique

SSD ASSY TO WEDGE EXPLODED CROSS SECTION

Anti-coincidence System

 Electron SSD is backed by an anti-coincidence SSD

EPI-Lo Block Diagram

31

 Each unprotected foil would expect ~10 damage-inducing hits per mission. Reduced to ~1 hit per mission with collimator.
Order of magnitude decrease.

TBD

Are we handling dust in this presentations? Assuming yes. Should we discuss photons suppression here? Assuming yes, it's background.

How about details like how the MCPs work (in general)? Or this could be handled when someone discusses the anode boards. Special features like the inter-plate mask (or is that handled in a mechanical section)? Backup slides: MCPs

We are only supposed to respond to requirements, so I wasn't going to go into any of the rate estimates from the work that I (Matt) and Rob D. did since that is for goals. Is this the right approach?

 Foil FOVs shown in yellow (these are not with the latest collimators).

EXPLODED VIEW "NEW" MCP ASSEMBLY

Principles of Operation

