Solar Probe Plus

A NASA Mission to Touch the Sun

Integrated Science Investigation of the Sun Energetic Particles

Preliminary Design Review 05 – 06 NOV 2013

Risk Status

John Dickinson

ISIS SE (SwRI)

This document contains technical data that may be controlled by the International Traffic in Arms Regulations (22 CFR 120-130) and may not be provided, disclosed or transferred in any manner to any person, whether in the U.S. or abroad, who is not 1) a citizen of the United States, 2) a lawful permanent resident of the United States, or 3) a protected individual as defined by 8 USC 1324b(a)(3), without the written permission of the United States Department of State.

Outline

- Risk Mitigation Plan Overview
- Team Member Roles
- Risk Management Plan Flow
- Risk Analysis Score Card
- Risk Summary
- Progress on Top Risks
- Tracking the "life cycle" of one of the top risks
- Summary

Risk Mitigation Plan Overview

- Team members constantly weigh potential risks
- Team members can suggest a risk at any time
- With team member input, SE enters risk into PIMS
- Instrument leads generate risk mitigation plan including potential cost and schedule, technical, and safety impacts
- SE assesses probability and consequences of risks
- Once a mitigation strategy is selected by team and confirmed by SE/PM, it is executed
- SE ensures risks are handled by assigning and tracking action items
- Team members review risks in weekly meetings
- PM and SE will continuously monitor and audit risk list
- PM elevates risks that impact other instruments or ISIS resources to SPP Project in PIMS system (web-based tool, open to SPP)
- PM and SE consensus is required for risk closure with SPP Project concurrence as needed

Team Member Roles

- Bottoms-up approach
- All team members
 - Assess threats to determine if any are risks
 - Provide risk details to SE for entry into PIMS
 - Analyze identified risks
- Instrument Team Leads (Wiedenbeck/Cummings and McNutt/Seifert)
 - Manage and report on instrument risks
 - Determine mitigation strategies
 - Determine how risks might affect the SPP mission
- ISIS SE (Dickinson)
 - Assist ISIS PM as needed, especially with technical input and analyses
 - Review mitigation plans
 - Address concerns from SPP Project Office
 - Ensures risks are documented as appropriate
- ISIS PM (Weidner)
 - Oversee and manage risk list
 - Work with SE and instrument teams to determine risk mitigation plans
 - Report major risks to SPP Project in Monthly Risk Status Reports

General RMP Flow

Involved Parties Input Steps Output Identify **Risk Statement** What can go wrong? Any team member Identify Risks (Condition, Likelihood Event, & Consequence) Risk Data: analyses, Review & Analyze Review: ISIS SE **Risk Classification** reviews. Evaluate (severity, probability, time Analysis: Owner **Risk Prioritization** Classification: ISIS SE frame). Classify & Prioritize risk assessments Research Resources Mitigation Planning Owner Watch Instrument Team Decide what, if anything, should be Acceptance Rationale Manager done about the risks **Re-plan Mitigation** Mitigation plans Owner Status reports on: Implement & Track Instrument Team Program Data Monitor risk metrics and verify/ Risks Manager **Risk Mitigation Plans** validate mitigation actions ISIS SE/PM Owner Close or accept risks Control Instrument Team Invoke contingency Manager Make risk decisions Continue to track ISIS SE/PM

Risk Analysis Score Card

Likelihood Bins	Safety (likelihood of safety event occurrences)	Technical (Estimated likelihood of not meeting mission technical performance requirements)	Cost/schedule (Estimated likelihood of not meeting allocated Cost/Schedule requirements or margin)	⇒lihood	2345					
5 Very High	(P _s > 10 ⁻¹)	(P _T > 50%)	(P _{cs} > 75%)	iķ	1.4	_	╋	-		
4 High	$(10^{-2} < P_s \le 10^{-1})$	(25% < P _T ≤ 50%)	(50% < P _{CS} ≤ 75%)	_	-					
3 Moderate	$(10^{-3} < P_s \le 10^{-2})$	(15% < P _T ≤ 25%)	(25% < P _{cs} ≤ 50%)			1	2	3	4	5
2 Low	(10 ⁻⁶ < P _s ≤ 10 ⁻³)	(2% < P _T ≤ 15%)	(10% < P _{CS} ≤ 25%)			C	ons	seq	uei	100
1 Very Low	(P _s ≤ 10 ⁻⁶)	(0.1% < P _T ≤ 2%)	(P _{CS} ≤ 10%)					1		

LEVEL	Minimal (1)	Minor (2)	Medium (3)	Major (4)	Very High (5)	
Safety	Negligible safety impact	Minor injury with no lost work time	Injury with lost work time	Severe injury	Death or permanent disabling injury	
Technical	Negligible technical impact	Decrease in instrument capability/margin. But all instrument requirements met, or need for requirement definition or design/implementation workaround	Major loss of instrument capability	Loss of Instrument (EPI-Hi or EPI-Lo)	Loss of one or more Level-1 science requirements	
Cost	ISIS Project cost overrun of less than 1% of allocated	ISIS Project cost overrun between 1% to 3% of allocated	ISIS Project cost overrun between 3% to 10% of allocated	ISIS Project cost overrun between 10% to 20% of allocated	 ISIS Project cost overrun f of greater than 20% of allocated 	
Schedule	Negligible schedule slip	Schedule slip not on critical path	Schedule slip affecting critical path but not launch or post-launch critical event	Schedule slip of 1 to 3 months	Schedule slip of greater than 3 months	

Progress on Top Risks

RISK: EPI-Hi LET Thin Windows and Dust Impact Susceptibility

Process: Initiation

- Initial concerns about dust
 - The SPP dust environment is not known
- There are sensitive apertures on the ISIS instruments
 - SSDs sensitive to UV light contamination (background noise)
- The need for detector protection was known
 - Windows were required to protect the detectors from UV light
 - Various materials were allowable, so long as they were lighttight, had an outer surface with low α/ε
- Realization that windows are sensitive
 - While protective windows were expected in the design, it was not known what configuration would be required or adequate to mitigate the dust environment
- A risk was written to capture the progress of this concern

Process: Mitigation Approach

- In order to mitigate the risk, more information was needed about the environment, the window configuration, and the response of the windows to dust impacts in the environment
- ISIS worked with Doug Mehoke and the project to refine dust models
 - ISIS actively participated in early discussions of the most appropriate dust model to apply to the mission
 - Project ran simulations on the environment accounting for ISIS geometry to produce impact statistics
- ISIS established a plan for testing of candidate windows at Heidelberg dust impact facility
 - Few dust accelerator facilities in the world
 - Dust impact plan was established
 - Eric Christian travelled to Heidelberg with the samples to perform the test
- ISIS used dust impact results to determine a viable window configuration

ISIS PDR - 28 - Risk Status

05 - 06 NOV 2013

Foil #1, Hole A Bottom Shown

Process: Analysis and Results

- Tests showed the Windows performed as we had hoped
- Dust impacts did not propagate into large-scale tears
- Affected regions remained on the order of the particle size
- Triple stack of Windows effectively stopped lower energy particles (in some cases first two Windows were penetrated, but third was only dented)
- Even when full penetration occurs, collimation provided by the stack of Windows limits UV background
- Risk level was lowered through a combination of test and analysis

Process: Road Map

Time

Summary

- ISIS risk process is effective and active
- Excellent coordination between SPP Project Team and ISIS in making analyses and running tests to reduce risk
- ISIS has made good progress in driving down and mitigating early risks during Phase B
- New risks will continue to be identified, and this process will be used to systematically work these risks down