
Solar Probe Plus

A NASA Mission to Touch the Sun

Integrated Science Investigation of the Sun Energetic Particles

Preliminary Design Review 05 – 06 NOV 2013

EPI-Lo Calibration

Don Mitchell

EPI-Lo Scientist (JHU/APL)

This document contains technical data that may be controlled by the International Traffic in Arms Regulations (22 CFR 120-130) and may not be provided, disclosed or transferred in any manner to any person, whether in the U.S. or abroad, who is not 1) a citizen of the United States, 2) a lawful permanent resident of the United States, or 3) a protected individual as defined by 8 USC 1324b(a)(3), without the written permission of the United States Department of State.

Outline

- Overview
- Species and Energy Ranges
- Facilities
- Calibration Plan
- Test Flow
- In-Flight Calibration

EPI-Lo Calibration

- EPI-Lo measurements are intended to generate the information needed to derive differential intensities (j[cm² sr-s-keV]⁻¹)
- The goal of EPI-Lo characterization and calibration efforts is to develop the quantitative procedures for converting the count rates (R [counts s⁻¹]) reported by EPI-Lo into estimates of j for the various defined ranges of energies, particle species, and arrival angles
- "Calibration" for a particle instrument like EPI-Lo means determining the following:
 - Transfer function from counts into flux (physical units)
 - Characteristic of "Rate-in" versus "Rate-out"
 - Response to visible and ultraviolet light
 - Response to high energetic particle backgrounds

Calibration Types

- Foreground
 - Ions and electrons in the energy range of interest to the instrument
- Background
 - Electrons
 - Characterize the rates from penetrating radiation
 - Characterize response to Solar Wind and/or photoelectron impact
- Light
 - Characterize rejection of UV background, primarily H-alpha
 - Characterize rejection of sunlight and glint

Foreground Calibration Requirements

- Foreground Electrons
 - 40 keV to 1000 keV (Needed for understanding backgrounds)
 - 1 keV to 30 keV

- Electron Gun at APL
- 30 keV to 100 keV
- Radioactive sources at APL
- 125 keV to 1.6 MeV Accelerator at GSFC
- Foreground lons (H, He3, He4, O, Fe)
 - 40 keV to 15000 keV (Level 4 Requirements)
 - (Goal: protons to 20 MeV)
 - 3 keV to 170 keV
 - 30 keV to 5 MeV

- Degraded alpha sources
- 125 keV to 1.6 MeV
- I MeV to 20 MeV

Accelerator at LBL

Accelerator at GSFC

Accelerator at API

Test as You Fly

- The instruments will be tested in flight-like environments
- Since the instrument will need to operate in a high background environment, we will characterize response to high energy penetrating radiation, UV light, and low energy plasma (all potential sources of background counts for EPI-Lo)

Background Calibration Requirement

2 eV to 10 MeV (from the expected environment)

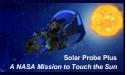
- 1 eV to 100 eV
- 1 keV to 50 keV
- 125 keV to 1.6 MeV
- I MeV to 10 MeV

- Hot filament at APL
- Electron Gun at APL
- Accelerator at GSFC
- Accelerator at Idaho

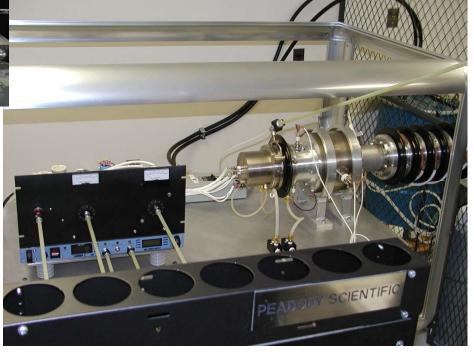
- Background lons
 - 3 keV to 50 MeV (from the expected environment)
 - 3 keV to 170 keV
 - 30 keV to 5 MeV
 - 125 keV to 1.6 MeV
 - 1 MeV to ~100 MeV

- Accelerator at APL
- Degraded alpha sources
- Accelerator at GSFC
- Accelerator at LBL

- Photons
 - UV and visible lamps at APL

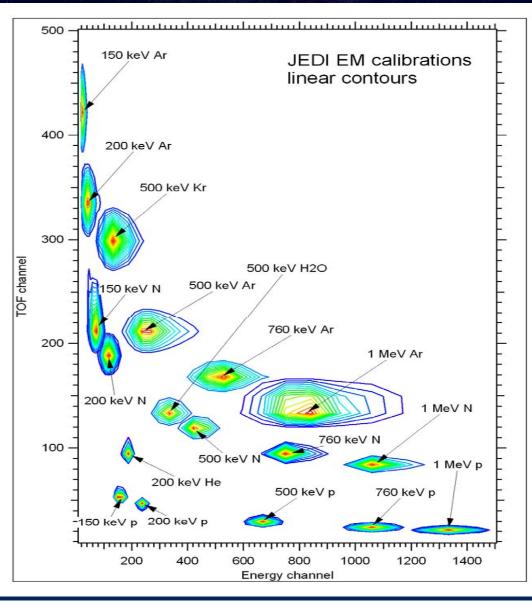

The JHU/APL Calibration Facility

- The APL particle accelerator is a versatile system capable of producing a broad range of ion species at energies from 20 to 170 keV
- The system includes an electron-impact ionization source, extraction gap, Einzel Lens and Wien filter mounted in the insulated terminal structure along with all associated power supplies
- The system will produce beams of H, He, O, and noble gas ions with intensities over the range of 100's to 1,000,000 particles/cm²/sec at the target position (mm² - cm²)
- We also have a variety of radioactive sources as stimulus



The JHU/APL Calibration Facility

- All ions from a gas source
- Energy continuously tunable: 3 to 170 kV
- Wien filter
- Beam intensity between 10 and 10¹⁰ ions/cm²/s
- Purposed built articulation stage


Beam Tests at GSFC

- It is planned to have four calibration sessions at the accelerator at the Goddard Space Flight Center. Each session starts with a one-day setup, check, and pump:
- Session 1: Exploratory run to characterize EPI-Lo
- Session 2: Use H beam to scan both angles to complete characterization of the transfer function
- Session 3: Characterize sensor response with e-beam from ~100 keV to 1 MeV
- Session 4: Use heavy ions (He, O, and Ar) to characterize the instrument response

Representative Results from JEDI Cal.

Solar Probe Plus A NASA Mission to Touch the Sun

SIS

EPI-Lo Test Summary

Solar Probe Plus A NASA Mission to Touch the Sun

- Prototype "EM" Testing
 - Validate instrument design and performance
 - Energy response
 - Instrument efficiency
 - Instrument geometry factor
 - Establish testing procedures
- Flight Model (FM)
 - Verify instrument design and performance
 - Energy response
 - Instrument efficiency
 - Instrument geometry factor

Calibration Approach (Flight Units)

- All instrument integration activities will be performed in a Class
 5 clean room environment
- Test in bell jar to characterize geometry, energy response, and sensitivity
- Calibrate using particle sources and in Beam Facilities at APL to characterize energy response, sensitivity, dynamic range
- Compare with EM results to cover gaps in energy coverage
- Test Philosophy:
 - FM will be extensively calibrated, and performance compared with more extended energy range EM calibrations (LBL, GSFC)
 - Pre- and post-environmental qualification spot calibration
 - In-flight cross calibration between EPI-Lo and EPI-Hi

EPI-Lo Calibration Schedule

- Final calibration for FM slated for three weeks
- Major calibration efforts will be performed at APL facility
 - Substantial understanding of the instrument performance will be made with the EPI-Lo EM characteristics

Tests at Instrument Level

	Element	Property	Requirement*	Expected Performance	Calibration Accuracy
System	Calibration	Energy-ToF plane characteristic	Verify simulation to 20%	Verify simulation to 5%	5%
Level	mode without Collimator	Input/output rate at system level	Known to 10%	Known to 2%	1%
		Background rejection	> 90%	> 95%	2%
		Mass resolution	Discriminate between e ⁻ , H+, 3He+, 4He+, C, O+,	<0.5 AMU (H+) <1 AMU (CNO) <2 AMU (Fe+)	0.5 AMU
		Absolute efficiency	Known to 50% for e ⁼ , H+, He+, CNO+	10%	10%
	Calibration	Scattering of ions	< 10%	< 5%	2%
	mode with	Scattering of electrons	< 10%	< 5%	2%
		Properties at octant boundaries	Known to 30%	Known to 5%	5%
	collimator	Efficiency as a function of entrance	Known to 20%	Known to 5%	5%
		Angular resolution	30°	25°	3°
		Geometric factor	$> 0.05 \text{ cm}^2 \text{-sr}$	$0.061 \text{ cm}^2 \text{-sr}$	$0.01 \text{ cm}^2\text{-sr}$
		Full calibration: verify previous measurements			
	Flight mode	Input/output rate at system level	Known to 30%	Known to 10%	10%
		Verify all modes			
		Verify all timing windows			
		Throughput of event			
		classification			
		Efficiency of counters			
		Energy-ToF plane characteristics			
		Threshold settings			
		Temperature dependent			

*Science requires relative/absolute accuracy: 20%/50%. Ground calibration 20% precision, reduced to 10% in flight.

In-Flight Calibration

- On-orbit and cruise calibration achieves relative calibration to 10% precision
 - Uniformity confirmed by evolution of pitch angle distribution from onset to shock passage.
 - Such calibrations cover the entire energy and FOV coverage with linear instrument response (targeted rates, no pulse pileup)
- Built-in features to determine on-orbit instrument ion performance
 - Measure pulse-height spectrum of secondary electrons from incident protons as function of time-of-flight
 - Unit has built-in stimulus to inject known pulse through the frontend electronics

Summary

- Calibration plan satisfies all Level IV requirements
- Calibration facilities have been identified that meet EPI-Lo needs
- APL operates and maintains the key EPI-Lo calibration facility which allows maximum flexibility

Accuracy & Precision

Parameter	Required	Goal (Capability)	Comment/Heritage
Electron Energies	50 - 500keV	25 - 1000 keV	Electron capability from JEDI, RBSPICE
Ion Energies	50 keV/nucleon – 15000 keV Total E	40 keV/nucleon – 20000 keV Total E	Capability partially based on RBSPICE capabilities. Top energy ~250keV/nuc for Fe
Energy Resolution	45% for required energy range	40% for required energy range	Telemetry limited
Time sampling	5 sec	1 sec	Telemetry and/or statistics limited
Angle resolution	<30° x <30°	lons, ~15° x 12° to <30° x <30° e-, 45°	Varies with elevation
Pitch Angle (PA) Coverage	0°-90° or 90°-180°, some samples in both hemispheres	0° -90° or 90° -180° , some samples in both hemispheres	
Time for Full PA	1 – 5 sec	1 – 5 sec	Telemetry limited
Ion Composition	H, He3, He4, C, O, Ne, Mg, Si, Fe	H, He3, He4, C, O, Ne, Mg, Si, Fe	He3/He4 ~50 to 1000 keV/nuc
Electron Sensitivity: I=Intensity (1/cm ² .sr)	j = 1E1-1E6/cm ² -s-sr	Sensor-G:0.144 (cm ² .sr) Pixel-G: ~0.02 (cm ² .sr) Up to 6E6 1/s counting	j=Intensity (1/cm ² -s-sr) G=Geom. Factor (cm ² -sr) 8 pixels/sensor
Ion Sensitivity	j = 1E1-1E6/cm²-s-sr	Sensor-G:0.16 (cm ² .sr) Pixel-G: ~0.002 (cm ² .sr) Up to 3.5E6 1/s counting (TOFxE)	80 pixels/sensor