Solar Probe Plus

A NASA Mission to Touch the Sun

Integrated Science Investigation of the Sun Energetic Particles

Preliminary Design Review 05 – 06 NOV 2013

ISIS Structural

Nick Alexander ISIS Mechanical Engineer (SwRI)

This document contains technical data that may be controlled by the International Traffic in Arms Regulations (22 CFR 120-130) and may not be provided, disclosed or transferred in any manner to any person, whether in the U.S. or abroad, who is not 1) a citizen of the United States, 2) a lawful permanent resident of the United States, or 3) a protected individual as defined by 8 USC 1324b(a)(3), without the written permission of the United States Department of State.

Outline

- EPI-Hi Structural Analysis*
 - Requirements
 - FEM/Boundary Conditions
 - Modal Results
 - Stress Results
- ISIS Bracket Structural Analysis
 - Mechanical design/structural requirements
 - ISIS overall mechanical configuration
 - FEM/Boundary Conditions
 - Modal Results
 - Stress Results
 - Structural design margins and plans for strength verification
 - * EPI-Lo structural analysis shown in EPI-Lo mechanical presentation

EPI-Hi Structural Analysis Requirements

- Design Requirements taken from SPP Environmental Design and Test Requirements Document (EDTRD), Document 7434-9039 Revision –
 - A structural analysis shall be completed to verify the component structural integrity.
 - Instrument minimum resonant frequency shall be greater than 80 Hz.
 - PWAs shall be designed to have a first structural resonance frequency above 150 Hz.
 - All bus-mounted components and subsystems shall be designed to the quasi-static accelerations derived from the MAC (Mass Acceleration Curve).

SIS

EPI-Hi Environments

Random Vibration ASD Specifications

Table 4-8. Side Panels Mounted Components & Subsystems Normal To Panel

Frequency (Hz)	Qualification (G ² /Hz)	Protoflight (G ² /Hz)	Acceptance (G ² /Hz)	
20	0.01	0.01	0.01	
60 1.25		1.25	0.63	
200	1.25	1.25	0.63	
350	0.04	0.04	0.04	
500	0.04	0.04	0.04	
2000	0.01	0.01	0.01	
Overall Grms	16.4	16.4	12.6	
Duration (mins)	2	1	1	

Table 4-9. Side Panels Mounted Components & Subsystems Lateral To Panel

Frequency (Hz)	Qualification (G ² /Hz)	Protoflight (G ² /Hz)	Acceptance (G²/Hz)	
20 0.01		0.01	0.01	
35	0.04	0.04	0.04	
500	0.04	0.04	0.04	
2000	0.01	0.01	0.01	
Overall Grms	6.8	6.8	6.8	
Duration (mins)	2	1	1	

EPI-HI: Y-direction is Normal to Panel; X & Z-directions are Lateral to Panel

Analysis Employs Qualification Level Loads

Mass Acceleration Curve

EPI-HI: Mass with uncertainty=4.0 kg MAC: for 4.0 kg, Acceleration=31 g

EPI-Hi Factors of Safety

- The tabulated factors of safety are applied to the limit loads for quasi-static and sine vibration loads.
- For random vibration, an additional factor of 1.28 is added to the factors of safety for ultimate and yield.
- For random vibration analysis, the 3-sigma RMS response from the finite element analysis is employed to calculate margins.
- Margins of safety calculated using equation on right:

	Ultimate	Yield
Metallic Structures		
Tested	1.40	1.25
No Test	2.60	2.00
Beryllium	1.60	1.40
Composite & bonded structures (1)		
C-C laminate	2.0	NA
Others	1.50	NA
Carbon Foam	4.0	NA
Ceramic, glass		
Pressurized	3.0	NA
Nonpressurized	3.0	NA
Preloaded fastener joint		
External load	1.40	NA
Gapping	1.25	NA
Fitting factor (no test only)	1.15	NA
GSE	5.00	3.00

Includes bonded metallic and/or non-metallic sandwich structure.

$$Margin of Safety = \frac{Allowable Strength}{FS \times Applied Stress} - 1.0$$

EPI-Hi FEM/Boundary Conditions

- FE Model Mass = 4.026 kg (CBE mass plus uncertainty)
- Fixed at mounting holes on feet (5 places)

SIS

EPI-Hi Modal Frequencies (1/2)

Instrument Fundamental Frequencies

471 Hz (side panel diaphragm mode coupled with internal boards) 639 Hz (instrument rocking mode)

EPI-Hi Modal Frequencies (2/2)

- PWA Modes
 - All PWA Fundamental Frequencies > 150 Hz (EDTRD_0307)

PWA	CBE Mass with Uncertainty [kg]	Frequency [Hz]
LVPS	0.350	>700
Bias supply	0.203	361
LET1	0.308	525
LET2	0.282	555
HET	0.282	471
DPU	0.335	361

ISIS

EPI-Hi Stress Results

Worst Case Stress: 14956 psi; occurs at housing foot in the Yaxis Random Vibration load case

		Maximum			Yield	Ultimate				
Analysis	Direction	VM Stress	Location	Material	Strength	Strength	Factors	of Safety	Margins	of Safety
		[psi]			[ksi]	[ksi]	Yield	Ultimate	Yield	Ultimate
Random	Х	14918	Standoff/Housing	AI 6061-T6	36	42	1.6	1.8	0.5	0.6
Vibration	Y	14956	Housing Foot	AI 6061-T6	36	42	1.6	1.8	0.5	0.6
	Z	4841	Standoff/Housing	AI 6061-T6	36	42	1.6	1.8	3.6	3.8
Static	Х	3071	Standoff	AI 6061-T6	36	42	1.25	1.4	8.4	8.8
(MAC)	Y	4052	Housing	AI 6061-T6	36	42	1.25	1.4	6.1	6.4
	Z	3375	Standoff	AI 6061-T6	36	42	1.25	1.4	7.5	7.9

ISIS Bracket

Mechanical Design Requirements

- ISIS bracket must hold EPI-Hi and EPI-Lo in position on the SPP deck
- ISIS bracket must be capable of independently removing EPI-Hi and EPI-Lo, in either order
- ISIS bracket must survive all environments for deck mounted components
 - Random vibration
 - Sine vibration
 - Shock
- All ISIS suite testing shall be performed on the bracket, with instruments or instrument analogs as appropriate

ISIS Bracket Fabrication

- The ISIS bracket can be machined using conventional machining processes
 - Monolithic design, will be machined from a single block
 - All operations can be performed on conventional machines (i.e. lathe, mill, etc.)
- Thermal isolators and mass models will also be fabricated to be used during structural testing
 - G10 isolators will be machined to flight-like quality
 - Mass models to reflect instrument mass properties with flightlike mounting interfaces
- Bracket height increase due to TPS shift can easily be accommodated as needed
 - Working with S/C mechanical team; any shift in the TPS only requires translation normal to the deck to remain adjacent to the umbra

ISIS Bracket FEM/Boundary Conditions

- Model includes bracket, EPI-Hi and EPI-Lo mass models (at max allocation) and thermal isolators
 - Bracket: Aluminum 7075-T6 properties
 - Mass models: Aluminum 6061-T6 properties
 - Thermal isolators: G10 material properties
- Mass models represent accurate mass and CG properties
 - Test results will be easy to compare to model
 - Mass models are stiff enough to not introduce modes
- Edge to surface connections for all mounting interfaces
- Fixed supports on 10 bracket mounting holes

ISIS Bracket FEM - Modal Results

•Primary Mode: 127.51 Hz (rocking mode)

•Requirement: 80 Hz minimum

Solar Probe Plus

A NASA Mission to Touch the Su

ISIS Bracket FEM - Structural Setup

Fable 4-8.	Side	Panels	Mounted	Components	& Subsy	vstems	Normal	To	Pane
	~~~~			components					

Frequency (Hz)	Qualification (G ² /Hz)	Protoflight (G ² /Hz)	Acceptance (G ² /Hz)	
20	0.01	0.01	0.01	
60	1.25	1.25	0.63	
200	1.25	1.25	0.63	
350	0.04	0.04	0.04	
500	0.04	0.04	0.04	
2000	0.01	0.01	0.01	
Overall Grms	16.4	16.4	12.6	
Duration (mins)	2	1	1	

Table 4-9. Side Panels Mounted Components & Subsystems Lateral To Panel

Frequency (Hz)	Qualification (G ² /Hz)	Protoflight (G ² /Hz)	Acceptance (G²/Hz)
20	0.01	0.01	0.01
35	0.04	0.04	0.04
500	0.04	0.04	0.04
2000	0.01	0.01	0.01
Overall Grms	6.8	6.8	6.8
Duration (mins)	2	1	1

ISIS: Y-direction is Normal to Panel; X & Z-directions are Lateral to Panel

Analysis Employs Qualification Level Loads with Notching

#### Mass Acceleration Curve



ISIS: NTE Mass=7.74 kg MAC: for 7.74 kg, Acceleration=28 g

## **ISIS Bracket FEM - Notching**



- Notching performed on the Y Axis in accordance with ETDRD Section 4.4.7.4
  - CBE Mass: 7.74 kg
  - MAC Acceleration: 28 G
  - MAC Limit Load: 1.25
  - Notching Limit Load: 2657.5 N (35 G)
  - Un-notched Reaction Load: 7498.8 N
  - Notch Depth: 7.65dB, Notch Width: 20 Hz, Ramp: +/-15 dB/Oct
  - Notched Frequency: 220 Hz
  - Resulting Profile

Y Axis Random Vibe					
Frequency	PSD				
20	0.01				
60	1.25				
166	1.25				
210	0.159				
230	0.091				
250	0.3168				
350	0.04				
500	0.04				
2000	0.01				

- ISIS Y Axis Notching
- Resulting Reaction Load: 5588.7N

#### **ISIS Bracket Structural Design Margins**

- The tabulated factors of safety are applied to the limit loads for quasi-static, random and sine vibration loads.
- For random vibration analysis, the 3-sigma RMS response from the finite element analysis is employed to calculate margins.
- Margins of safety calculated using equation on right:

	Ultimate	Yield
Metallic Structures		
Tested	1.40	1.25
No Test	2.60	2.00
Beryllium	1.60	1.40
Composite & bonded structures (1)		
C-C laminate	2.0	NA
Others	1.50	NA
Carbon Foam	4.0	NA
Ceramic, glass		
Pressurized	3.0	NA
Nonpressurized	3.0	NA
Preloaded fastener joint		
External load	1.40	NA
Gapping	1.25	NA
Fitting factor (no test only)	1.15	NA
GSE	5.00	3.00

Includes bonded metallic and/or non-metallic sandwich structure.

$$Margin of Safety = \frac{Allowable Strength}{FS \times Applied Stress} - 1.0$$



#### ISIS Bracket Stress Results (Preliminary)





		Maximum			Yield	Ultimate				
Analysis	Direction	VM Stress	Location	Material	Strength	Strength	Factors	of Safety	Margins	of Safety
		[psi]			[ksi]	[ksi]	Yield	Ultimate	Yield	Ultimate
Random	Х	35233	EPI-Lo Flange	AI 7075-T6	68	78	1.25	1.4	0.5	0.6
Vibration	Y	49979	S/C Interface Foot	AI 7075-T6	68	78	1.25	1.4	0.1	0.1
	Z	41057	Buttress	AI 7075-T6	68	78	1.25	1.4	0.3	0.4
Static	Х	19389	EPI-Lo Flange	AI 7075-T6	68	78	1.25	1.4	1.8	1.9
(MAC)	Y	11467	EPI-Hi Flange	AI 7075-T6	68	78	1.25	1.4	3.7	3.9
	Z	27022	Buttress	AI 7075-T6	68	78	1.25	1.4	1.0	1.1

## **ISIS Bracket Structural Testing**



- ISIS bracket will be tested at SwRI facilities with EPI-Hi and EPI-Lo mass models
  - G10 thermal isolators will be included
  - Mounted using flight quality mounting hardware
- Tests will check natural frequency, random vibe response, sine vibe response
  - Natural frequency must be >80 Hz (EDTRD_0095)
  - Must survive random vibration loads (EDTRD_0111) per tables in EDTRD 4.4.3
  - Must survive sine sweep loads (EDTRD_0114) per sine environment (TBD) given in EDTRD 4.4.4
  - Pre & post test low-level sine sweeps used to identify any change in fundamental frequency
- Once fabricated and tested at SwRI, ISIS bracket will be used in support of EPI-Hi and EPI-Lo environmental testing



#### Summary



- EPI-Hi, EPI-Lo, and ISIS Bracket modeling have been completed
  - Satisfies EDTRD requirements
  - Have required margins of safety
- Ready to begin EM Fabrication and move into Phase C