Solar Probe Plus

A NASA Mission to Touch the Sun

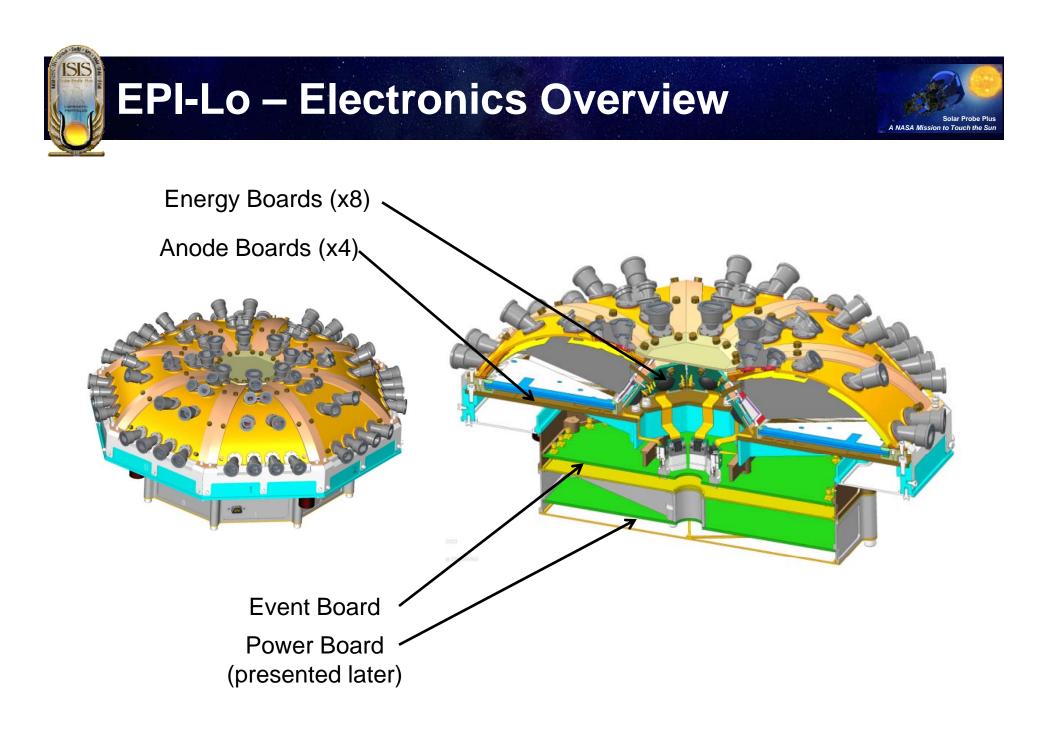
Integrated Science Investigation of the Sun Energetic Particles

Preliminary Design Review 05 – 06 NOV 2013

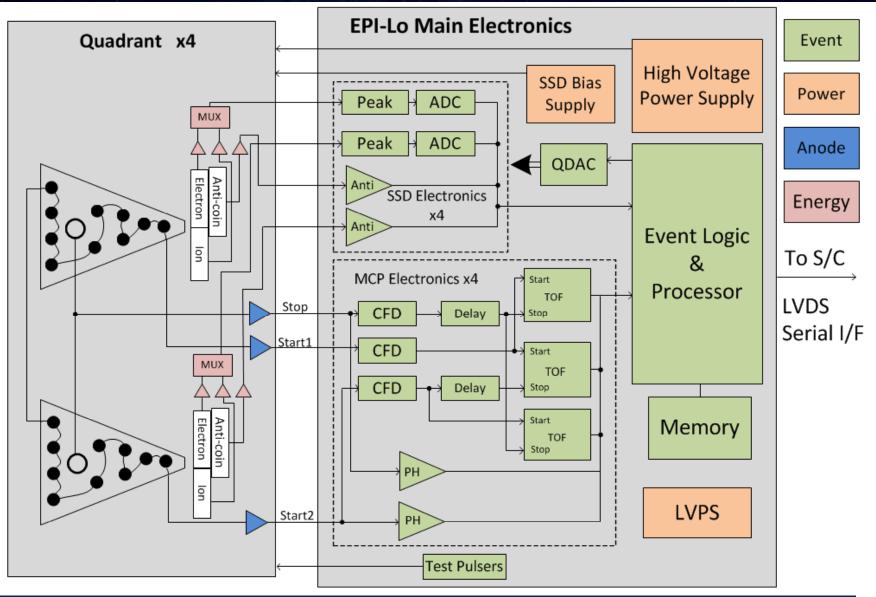
EPI-Lo Electronics

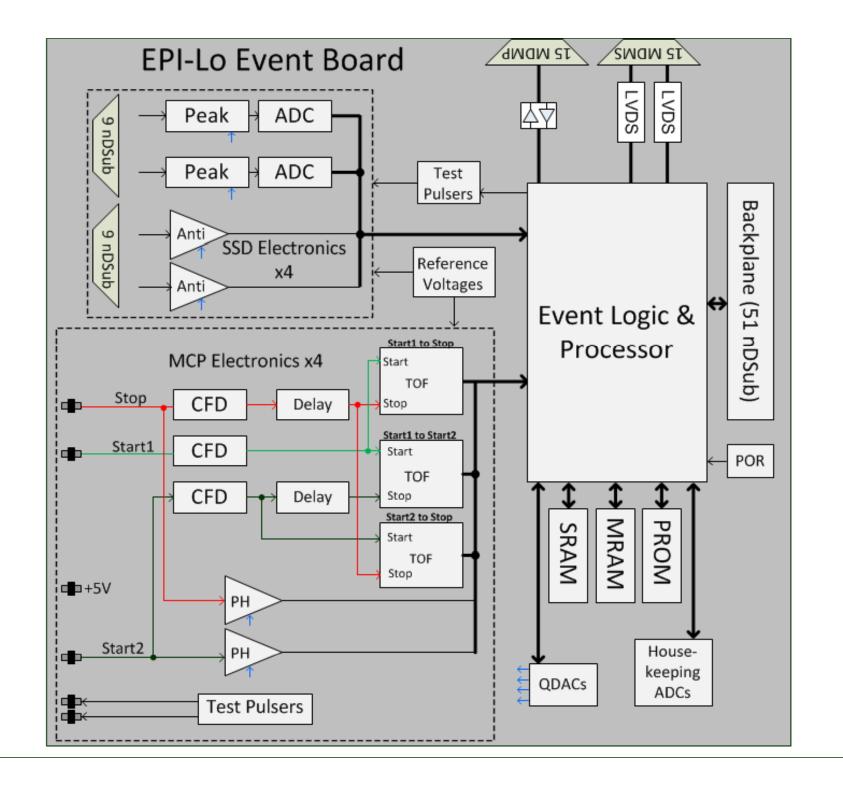
Reid Gurnee

EPI-Lo SE (JHU/APL)


This document contains technical data that may be controlled by the International Traffic in Arms Regulations (22 CFR 120-130) and may not be provided, disclosed or transferred in any manner to any person, whether in the U.S. or abroad, who is not 1) a citizen of the United States, 2) a lawful permanent resident of the United States, or 3) a protected individual as defined by 8 USC 1324b(a)(3), without the written permission of the United States Department of State.

Outline


- Electronics Overview
- Block Diagrams
- Driving Requirements
- Event Board
 - Functionality, Interfaces, prototyping, FPGA, layout
- Anode Board
 - Functionality, Interfaces, prototyping, layout
- Energy Board
 - Functionality, Interfaces, prototyping, layout
- Packaging and Thermal Considerations
- Radiation Analysis
- Plans for Testing
- Preliminary Parts List and Special Screening Considerations
- Status Summary
- Plan Forward
- Peer Review Status



EPI-Lo Block Diagram

Electronics Driving Requirements

- Analog Performance
 - Timing resolution < 400 ps FWHM</p>
 - Energy resolution < 15 KeV FWHM</p>
- MCP timing system dynamic range of 500 k to 25 M electrons
- Energy system dynamic range of 50 keV to 15 MeV
 - Higher energies (>1 MeV) use pulse width mode
- Temperature
 - Survival: -55°C to +85°C
 - Operational: -35°C to +65°C
- Radiation
 - TID: 25 kRad (based on FASTRad analysis)
 - SEL: 80 MeV-cm^2/mg
- Event board very similar to previous programs (RBSPICE, JEDI, EIS). All major changes have been prototyped.

Event Board Functionality (1/2)

- Instrument Processor
 - Embedded processor in RTAX2000
 - Execute flight code, accumulating and formatting telemetry, commanding, and alarm detection and action
 - Spacecraft Communication
 - Boot code in PROM, classification tables and application code in MRAM
 - Accumulate data into classification tables
- Event Processing
 - Communicate and handle timing with ADCs, TOF-Ds
 - Pre-process and accumulate event data
 - Accumulate rates
- HVPS Control
 - Control four opto-coupler generated HVPS outputs
 - Provide high speed safing of HVPS in response to over current

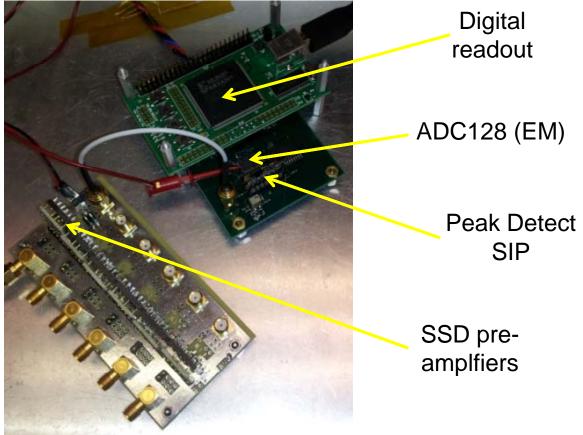
Event Board Functionality (2/2)

- Time-of-flight based on APL TOF-D and CFD-D ASICs
 - New ASICs developed for future programs
 - Improved size and performance from previous ASICs
 - 12 CFD-Ds and 4 TOF-Ds for timing system
- Solid-State Detector Energy Measurements
 - 8 Peak detect ASICs and A/D converters for energy system
 - Peak detect chips are APL ASICs flown on previous missions (PEPSSI, Jedi, RBSPICE)
- MCP pulse height comparators
- Pulsers
 - Independent pulsers for start and stop signals on each anode board
 - 2 pulsers for Energy system

Event Board Interfaces

- Solid-State Detector Interface
 - 8, 9-pin ndsub connectors to energy boards
 - ~10 mV to over 1 V unipolar-shaped pulses
 - Control, pulser, and power lines
- Anode Board Interface
 - 12 Time-of-Flight Coax connectors
 - ~10 mV to over 1 V fast-shaped pulses
 - 4 power and 8 pulser Coax connectors
- Test Port Connector
 - 2 test inputs (to aid in end-to-end timing tests)
 - 5 test outputs
- Spacecraft Data Connector
 - Redundant LVDS interface (2 drivers, 2 receivers)
- Power Board Connector
 - 51 pin ndsub connector for power and communication

Energy System Updates


- Energy system re-designed from previous instruments
 - 8 ADC121s read out the 8 peak detect chips
 - Prior designs used MUX and one fast ADC
 - New design allows de-coupling of quadrants each quadrant has completely independent readout electronics and can be operated as an individual instrument
 - Event logic will be identical for each quadrant, and then the data will be combined
 - New approach significantly simplifies event logic design and increases data processing rates and redundancy

Energy System Prototype

- Fully tested interface of energy chip to peak-detect SIP to ADC using flight-like components
- Energy resolution of test setup far exceeds requirement (15keV)

atten. DB	KeV	FWHM (KeV)
-6	912.161	8.78712
-7	812.964	6.26275
-8	724.555	6.08932
-9	645.760	5.81954
-10	575.535	5.5883
-15	323.647	4.91385
-20	182.000	4.64407
-25	102.346	4.50918
-30	57.553	4.29721
-35	32.365	4.14305
-40	18.200	4.54772

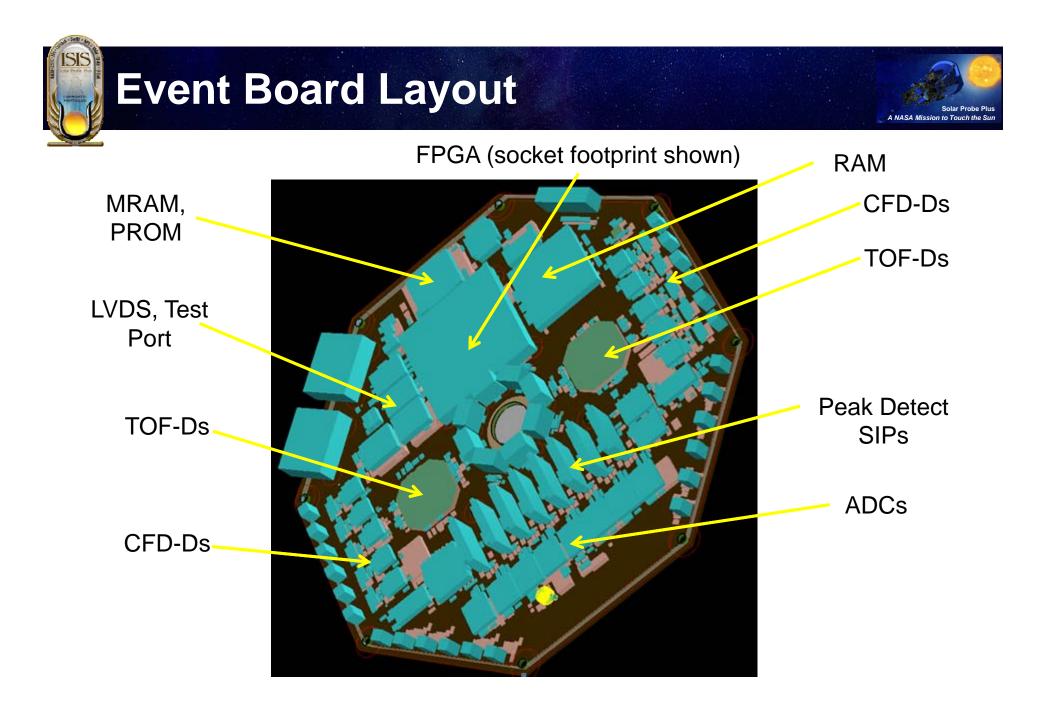
FPGA Functionality

- FPGA contains all event logic and event processing
 - SCIP: 16-bit 10 MIPS processor (reused custom embedded processor based on Harris RTX2010 and APL's FRISC)
 - Processor memory interface to PROM, MRAM, SRAM
 - Support I/O
 - Provide voltage supply clocks, read safing status, set thresholds, monitor housekeeping, etc.
 - LVDS spacecraft communication interface
 - Processor test port interface
 - Event Logic
 - Count sensor basic rates and diagnostic rates
 - Provide pulser stimulus
 - Collect and process TOF values to generate start direction and particle time-of-flight
 - Select appropriate SSD channel and record energy deposited
 - Detect anti-coincidence (electron only) and pulse-height over-threshold (start and stop)
 - Send selected valid events based on commanded event criteria to processor event buffer
 - Event logic test port for ground testing

FPGA Resources

- Actel RTAX2000SL -1 speed CCGA-624 (common buy part)
 - Estimate ~40% resource utilization based on RBSPICE design
 - Internal RAM for event FIFO only
 - No minimum size required and soft memory is fine (parity check)
 - 418 user I/O total, 18 spares
 - 3 spares to power board + 7 spares through Schmitt triggers to test connector + 8 true spares = 18 spares
 - Note: At the FPGA requirement review, moderate reuse designs are green for at least 17 uncommitted I/O pins
 - 1.5 V Core Voltage, 3.3 V I/O supply voltage
 - +/-5% voltage tolerance
 - Supplies can be powered up or powered down in any sequence as long as some app note details are considered
 - I/O are tri-stated during power-up

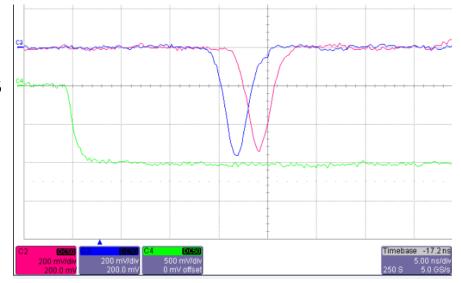
FPGA Development



- Part prototyping
 - Reprogrammable Aldec/Actel system for EM
 - Board layout also accommodates commercial socket if needed
- Design prototyping/reuse
 - SCIP is identical to RBSPICE
 - Similar approach to RBSPICE for many interfaces: S/C communication, power supplies, QDACs, test port, memories, peak detects, pulsers
 - New interfaces prototyped prior to EM: TOF-D rather than TOF-C, new ADC for HK and energy readout
 - Significant previous experience with all design tools: VHDL (with tcl scripts, pdc files etc.), Synplify Pro, Actel Libero, ModelSim
- No expected areas of concern
 - No timing closure challenges expected (most of design at 10 MHz, some at 40 MHz)
 - Primarily synchronous design techniques with standard clock domain crossing techniques and no gated clocks
 - Straightforward reset filtering and routing network
 - Sufficient clock nets available for clocks and reset

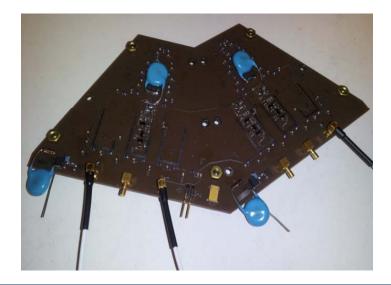
Event Board Layout

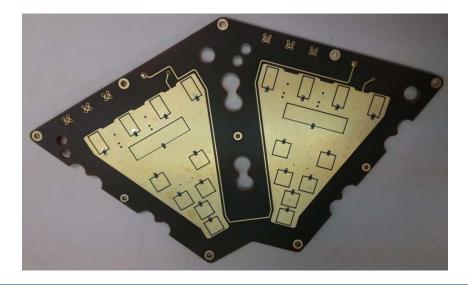
- Sensitive analog is separated from digital
 - FPGA, S/C communication, SRAM, PROM, MRAM, and oscillator on top of board
 - TOF electronics on left and right of board
 - Peak detect and ADC electronics on bottom of board
 - All critical routing isolated by ground planes from digital routing
- 12 layers, 2 ground planes, 2 power planes, 8 routing planes
- Actel located with SRAM directly adjacent
 - Reduce track-length to SRAM to reduce noise
 - Actel on Primary side, to allow the Development Tool access to the program pins

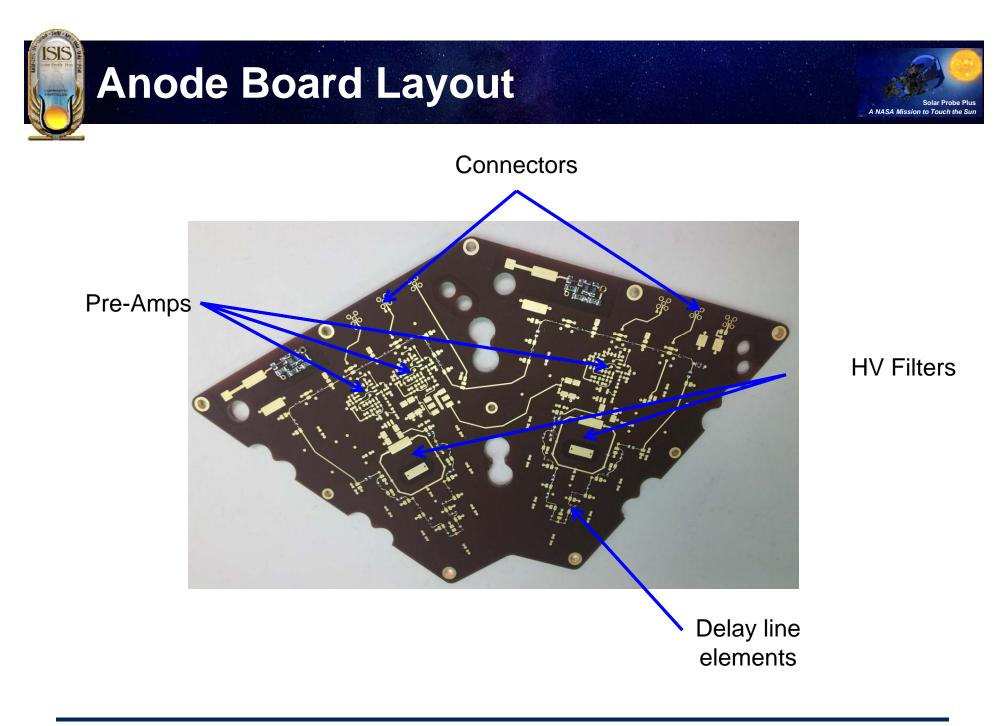

Anode Board Description

- Functionality
 - 3 fast discrete amplifiers
 - Stop anode and each end of the start delay line
 - 50 ohm impedance matched, designed to drive 50 ohms
 - Anode is at 3kV, PCB embedded capacitors isolate HV from LV
 - I start pulser and 1 stop pulser
 - Start pulser location in imaginary anode between sensor wedges

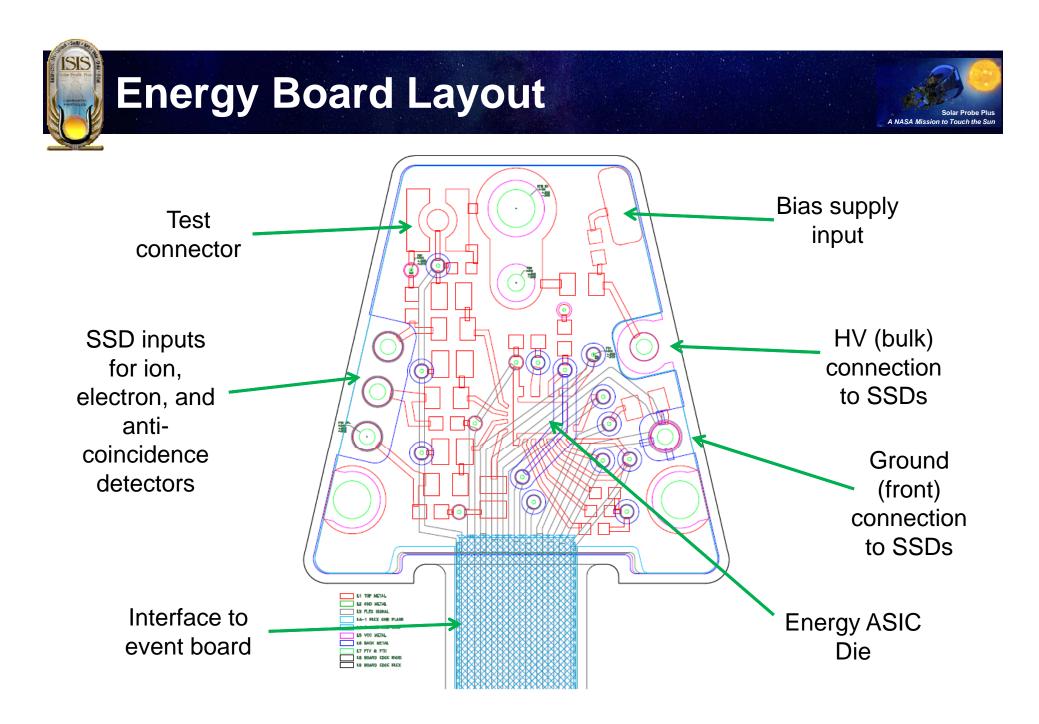
Interfaces


- 6 coax SSMB connectors
- Power, 3 outputs, 2 pulsers
- HV connection for anode



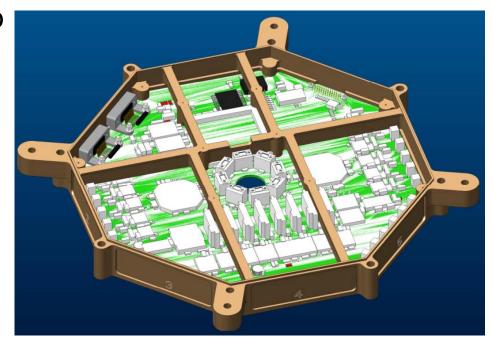

Anode Board Prototyping

- Initial prototype board fabricated, assembled, and tested
 - First implementation of embedded capacitors for HV anode
 - Verified quadrant design
- EM anode board fabricated, assembled, and in testing
 - Electrical and mechanical interfaces well defined
 - Position mapping on prototype verified simulations for start pad locations
 - Kapton layer provides dielectric strength of ~20kV for embedded capacitors
 - Passed 10 day, 2x HV standoff test (recommended by Steve Battel)
 - APL packaged transistor array



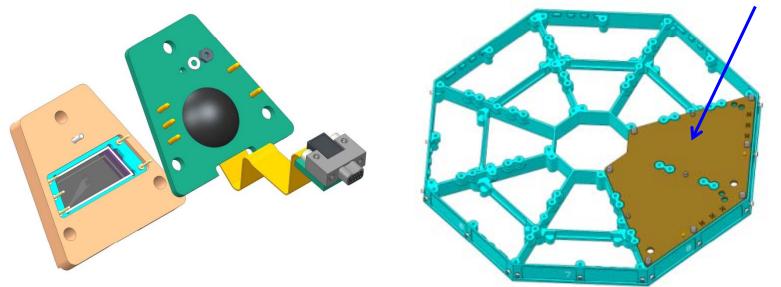
Energy Board

- Functionality
 - SSD Pre-amplifier and shaper
 - Energy ASIC supports 3 pre-amplifiers and MUX
 - Ion channel, electron channel, anti-coincidence channel
 - Select between ion channel or electron and anti-coincidence channels
 - Thermistor for temperature measurements
 - Test connector for pulser inputs
- Interfaces
 - 9 pin ndsub connector for power, signals, pulser, and temperature monitor
 - Bias voltage from separate HV wire (<200V)
 - Test connector (MMCX)
 - SSD connections (Mill-Max Socket)
- EM energy board fabricated and in testing



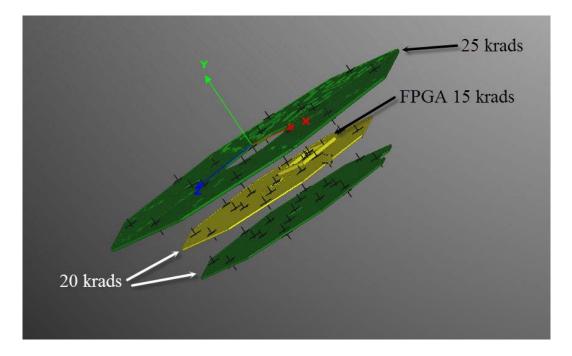
Event Board Packaging

Solar Probe Plus A NASA Mission to Touch the Sun


- Packaged in octagon frame "slice"
 - Board is loaded from the bottom and has six center mounting supports and full contact around the perimeter
 - FPGA is supported on four corners
- Large number of thermal vias under the higher power parts
 - Actel, RAM, and MRAM to dissipate power into the board planes and out to the frame.
 - Total board power is ~1 watt. No thermal issues expected.

Anode and Energy Board Packaging

- Anode Board
 - Mounted to instrument main support structure
 - Total board power is 90 mW, no thermal concerns
- Energy board is mounted directly behind SSD
 - Total board power is 25 mW, no thermal concerns


one of four anode boards shown

Radiation Analysis

- FASTRad analysis performed on instrument in S/C model to predict doses seen at electronics (bracket, instrument, and S/C modeled)
- Electronics boards: <25 krad</p>
- Detectors: <40 krad</p>

Plans for Testing

- Follows APL Manufacturing Flow, these are significant highlights
 - Populate Passive Components
 - Execute Test Procedure to Verify Passive Components
 - Populate First-level Active Components
 - Voltage References, Power-on Reset, Oscillator, applicable Tailor Flags
 - Execute Test Procedure to Tailor and Verify First-level Active Components
 - Populate Actives and Install Known Tailors or Tailor Flags
 - Install into Flight Frame
 - Execute Test Procedure to Test and Tailor Entire Board
 - ESS Testing
 - Execute Functional Test Procedure
 - Photograph and Conformal Coat
 - Execute Test Procedure to Calibrate and Characterize Board (over temperature)
 - Release to Next Assembly

SIS

Preliminary Parts List

- Investigating ADC for single event transients
- ADCMP600 being qualified by project
- Transistor array die being packaged by APL into ceramic 16 pin LCC

	Preliminary Part Number	Manufacturer	
Event Board			
RTAX2000	RTAX2000SL-CGS624E	Actel	
RAM	HLXSR01632	Honeywell	
MRAM	UT8MR2M8-40YPC	Aeroflex	
PROM	UT28F256LVQLE-65UPC	Aeroflex	
Oscillator	1103D40M00000BX	Vectron	
LVDS	UT54LVDS032LV-UPC	Aeroflex	
LVDS	UT54LVDS031LV-UPC	Aeroflex	
Schmitt Trigger	UT54ACS14E	Aeroflex	
Comparator	ADCMP600BKSZ	Analog Devices	
Op-amp	RH1078MW	Linear Technology	
MDM connector (test)	MWDM2L-15PSMRTN	Glenair	
MDM connector (data)	MWDM2L-15SSMRTN	Glenair	
ndsub for SSDs	891-007-9SBSTT	Glenair	
ndsub for inter-board	891-006-51PBSTT	Glenair	
coax for anode board	050-451-0000-220	ITT Canon	
Reference	RH1009MH	Linear Technology	
ADC	ADC128S102WGMPR	TI	
POR IC	ISL706ARHF	Intersil	
Level Shifter	UT54ACS164245S-UPC	Aeroflex	
CFD ASIC	10946-CFD-D-03	APLASIC	
TOF ASIC	10946-TOF-D-03	APLASIC	
DAC ASIC	10946-QDAC2B-01	APLASIC	
Energy Board			
Energy Chip	7425-5214-01	APLASIC	
Anode Board			
Transistor Array	ISL73096	Intersil	

Status Summary

- Event Board
 - EM parts placement complete
 - Routing in process
 - EM PCB expected in December
 - All critical circuits have been prototyped
- Anode Board
 - Prototype anode board fabricated, assembled and tested
 - EM anode board fabricated, assembled and testing in process
 - I0 day, 2x HV standoff test successfully completed on EM
- Energy Board
 - EM board fabricated, assembled, and testing in process

Plan Forward

- Anode Board
 - Complete testing on anode board
 - Fabricate flight anode board
- Energy Board
 - Complete testing on energy board
 - Fabricate flight energy board
- Event Board
 - Fabricate EM board
 - Complete testing on EM board
 - Fabricate flight Event board
- Finalize all documentation and procedures for flight build
- Build, tailor, calibrate, and qualify flight units

Peer Review Status

- Event and Power Board Peer Review
 - August 21, 2013
 - Summarized with action items in memo SRI-13-029
 - 11 action items generated / 11 action items closed (6 for event board)
- Anode Board Peer Review
 - June 21, 2013
 - Summarized with action items in memo SRI-13-025
 - 6 action items generated / 6 action items closed
- Energy Board Peer Review
 - August 26, 2013
 - Summarized with action items in memo SRI-13-030
 - 4 action items generated / 4 action items are closed
- Parts Stress Analysis
 - No issues expected
- WCA
 - No issues expected