Solar Probe Plus

A NASA Mission to Touch the Sun

NASA-GSFC-JP1-25

ENERGETIC PARTICLES

Integrated Science Investigation of the Sun Energetic Particles

Preliminary Design Review 05 – 06 NOV 2013

Verification

Nigel Angold

ISIS SE (SwRI)

This document contains technical data that may be controlled by the International Traffic in Arms Regulations (22 CFR 120-130) and may not be provided, disclosed or transferred in any manner to any person, whether in the U.S. or abroad, who is not 1) a citizen of the United States, 2) a lawful permanent resident of the United States, or 3) a protected individual as defined by 8 USC 1324b(a)(3), without the written permission of the United States Department of State.

Outline

- Documentation
- Verification Process Definition
 - Verification Program Concept
 - Verification Program Planning
 - Verification Methods
 - Requirements Verification Matrix
 - Verification Process
- Performance Requirements
- Environmental Requirements
- Interface Requirements
- Assurance Requirements
- Verification Summary

Documentation

SPP System Verification and Validation Plan, 7434-9099 ISIS Verification and Validation Plan, 16105-ISIS_VVP-01

- These documents define the Verification Process:
 - Verification Program Concept
 - Verification Program Planning
 - Verification Methods
 - Requirement Verification Matrix
 - Verification Process

Verification Process Definition (1/8)

Verification Program Concept:

- ISIS instrument requirements verification is part of the overall SPP verification campaign.
- EPI-Lo requirements will be verified by APL.
- EPI-Hi requirements will be verified by Caltech.
- Tracking of all ISIS requirements verification will be performed by the ISIS Systems Engineer, reporting to the SPP Requirements & Verification Engineer.

Verification Process Definition (2/8)

Verification Program Planning:

- Verification and Validation Plans produced before PDR.
- Test and Calibration Plans, inputs for I&T produced before CDR.
- Test, Verification and Calibration reports generated throughout all pre-launch phases.

Verification Process Definition (3/8)

Verification Methods:

Test

Most requirements should be verified by test or supported by quantitative test data.

Analysis

Some requirements cannot be verified by test (e.g. due to cost or physical limitations) or may not be fully verifiable by testing alone.

Demonstration

Applied to some qualitative requirements that cannot be easily tested or requirements that cannot be tested over a full range of relevant scenarios.

Inspection

Used to verify a describe a design characteristic or method or where a requirement may be satisfied solely by the review of documentation.

Every requirement must be verified by one or more of the above methods.

Verification Process Definition (4/8)

Requirement Verification Matrix:

- Tracking of verification by means of matrices containing:
 - Requirement reference number
 - Requirement Description
 - Verification Method: one or more of Test, Analysis, Demonstration and Inspection
 - Verification Activity
 - Closure Status: closed, open, waived, deferred, etc.;
 - Closure Date
 - Responsible Organization
 - Comments

Verification Process Definition (5/8)

Example Verification Matrix entries from ISIS IRD:

Req. #	Requirement	Verification Method (1)	Verification Activity	Closure Status (2)	Closure Date	Responsible Organization	Comments
ISIS-100	The EPI-Lo instrument shall provide measurements of energetic electrons with an energy range of <=0.05MeV to >=0.5MeV.	Analysis & Test	Simulation and spot test using radiation sources.				
ISIS-110	The EPI-Lo instrument shall provide measurements of proton and heavy ion angular distributions using sectors of width ≤30°.	Analysis & Test	SIMION analysis and test. Test in accelerator with articulation stage.				
ISIS-123	The EPI-Lo instrument shall comply with maximum mass constraints, as specified by the SPP to ISIS ICD, 7434-9058	Test	EPI-Lo mass measurements				
ISIS-207	The EPI-Hi instrument shall be capable of measuring protons and heavy ions with at least 6 bins per decade.	Analysis & Test	Test pulser measurements and Monte Carlo simulations with spot checks using accelerator beams.				
ISIS-218	The EPI-Hi instrument shall have ≥π/2 unobstructed field of view (FOV) in both sunward and anti-sunward hemispheres for the measurement of energetic protons/heavy ions including coverage within 10° of the spacecraft-Sun line, subject to the constraints and FOV obstructions specified in the SPP to ISIS ICD, 7434-9058.	Analysis & Inspection	Analyze obstructions using CAD model and inspect mounting on the spacecraft after integration to verify the accuracy of that analysis.				
ISIS-224	The EPI-Hi instrument shall comply with maximum power constraints, as specified by the SPP to ISIS ICD, 7434-9058.	Test	EPI-Hi CPT				
ISIS-350	The ISIS instruments shall be capable of implementing real- time commands via CCSDS packets in files uplinked via CFDP, as defined in the MOC to SOC ICD, 7434-9078.	Test	ISIS instrument CPTs				
ISIS-356	The ISIS instruments shall be capable of providing real-time instrument health and status data in telemetry formats specified by the SPP to ISIS ICD, 7434-9058, when required by mission operations for routine monitoring of housekeeping data and status.	Test	ISIS instrument CPTs				

⁽¹⁾ Verification Method: Test, Analysis, Inspection or Demonstration.

Currently tracking 82 instrument requirements in the IRD Verification Matrix

⁽²⁾ Closure Status: Open, Closed, Waived or N/A

Verification Process Definition (6/8)

Verification Process:

- Development of Verification Procedures
 - Procedures approved by the design engineer, the systems engineer, the project manager, and QA and released prior to execution.
 - They will comply with the format requirements and configuration control authority of the originating agency (APL, Caltech, or SwRI).
- Performance of Test Readiness Reviews
 - Required before installing flight hardware into a test environment.
- Test Execution
 - Test engineer assigned
 - QA participation
 - Equipment calibrated before test
 - Test procedures under document control

Verification Process Definition (7/8)

Verification Process continued:

Post-test Reviews

- Test results are reviewed and approved by the ISIS SE to ensure adequate verification of requirements.
- All hardware non-conformances or failures shall be documented.
- Any corrective actions identified shall be processed by the cognizant engineer and elevated as appropriate.
- For any test failure, the reason must be identified.
- Hardware under test / test setup must not be disturbed in any way that prohibits duplication of a test failure.
- The post-test review will result in a "pass" or "fail".

Completion of the Verification Matrix

Verification is tracked by entering data into the Verification Matrix.

Verification Process Definition (8/8)

Verification Process continued:

- Requirement Closure
 - A requirement will be declared "closed" when all verification activities planned for the requirement have been completed satisfactorily.
- Waivers and Deviations
 - In cases where it may be acceptable that a requirement is not met, a waiver or deviation will be filed with the JHU/APL SPP Project Office, and NASA Goddard Program Office, as appropriate.
 - The SPP waivers and deviations process is documented in the SPP Configuration Management Plan, 7434-9006.
 - All hardware non-conformances or failures shall be documented.

Performance Requirements

Performance requirements are defined in:

- Level 1 Requirements for the Solar Probe Plus Mission
- SPP Mission Requirements Document (Level 2), 7434-9047
- SPP Level 3 Payload Requirements Document (Level 3), 7434-9051
- ISIS Instrument Requirements Document (Level 4), 16105-ISIS-IRD-01

Level 2 - 4 documents:

- Each document contains a Requirement Verification Matrix.
- Level 2 and 3 verification typically inspection of documention verifying lower level requirements found in the ISIS IRD.
- ISIS Systems Engineer will flow verification data up to the appropriate document owners.
- The Requirement Verification Matrix is maintained as an Excel spreadsheet that the SPP Requirements & Verification Engineer uses to import data into the SPP System Requirements Database, DOORS.

Environmental Requirements

Environmental requirements are defined in:

- SPP Contamination Control Plan, 7434-9011
- SPP Environmental Design and Test Requirements Document, 7434-9039
- SPP Electromagnetic Environment Control Plan, 7434-9040

Environmental requirements documents:

- Each document contains a Requirement Verification Matrix.
- ISIS Systems Engineer will flow verification data up to the appropriate document owners.

Interface Requirements

Interface requirements are defined in:

- SPP to ISIS ICD, 7434-9058
- SPP General Instrument to Spacecraft ICD, 7434-9066
- MOC to SOC ICD 7434-9078

Interface requirements documents:

- Each document contains a Requirement Verification Matrix.
- ISIS Systems Engineer will flow verification data up to the appropriate document owners.

Assurance Requirements

Assurance requirements are defined in:

- SPP Product Assurance Implementation Plan (PAIP), 7434-9003
- EPI-Lo Product Assurance Implementation Plan (PAIP), 7464-9001
- EPi-Hi Product Assurance Implementation Plan (PAIP), CIT-SPP-004

Assurance requirements documents:

- Each document contains a Compliance Matrix
 - Comply
 - Do not Comply
 - Comply with Caveats
 - N/A
- The SPP System Assurance Manager is responsible for verification of Assurance requirements.

Verification Summary

- ISIS has a clearly defined Verification Process that is documented in the ISIS Verification and Validation Plan.
- Requirement Verification Matrices will be used to track Performance, Environmental and Interface Requirements.
- Assurance Requirements will be tracked using Compliance Matrices.