#### **Solar Probe Plus**

A NASA Mission to Touch the Sun

#### Integrated Science Investigation of the Sun Energetic Particles



# Preliminary Design Review 05 – 06 NOV 2013

# **EPI-Lo Sensor Design**

#### Ralph McNutt

EPI-Lo Lead Co-I (JHU/APL)

This document contains technical data that may be controlled by the International Traffic in Arms Regulations (22 CFR 120-130) and may not be provided, disclosed or transferred in any manner to any person, whether in the U.S. or abroad, who is not 1) a citizen of the United States, 2) a lawful permanent resident of the United States, or 3) a protected individual as defined by 8 USC 1324b(a)(3), without the written permission of the United States Department of State.



### Outline



- Requirements
- Placement
- Cross-Section
- Fields of View
- Ions
- Electrons
- Energy Distribution
- Microchannel Plate (MCP)
- Block Diagram
- Collimators and Start Foils
- Anti-Coincidence System
- Light and Dust Mitigation
- Follow-up from Peer Reviews
- Summary



## **The EPI-Lo Instrument Requirements**



| Parameter                    | Required                                                     | Goal (Capability)                                                                                                           | Comment/Heritage                                                                                       |
|------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Electron<br>Energies         | 50 – 500 keV                                                 | 25 - 1000 keV                                                                                                               | Electron capability from JEDI,<br>RBSPICE                                                              |
| Ion Energies                 | 50 keV/nucleon –<br>15,000 keV Total E                       | 50 keV/nucleon –<br>15,000 keV Total E                                                                                      | Capability based on that of RBSPICE. Maximum energy ~250keV/nuc for Fe                                 |
| Energy<br>Resolution         | 45% for required energy range                                | 40% for required energy range                                                                                               | Telemetry limited                                                                                      |
| Time sampling                | 5 sec                                                        | 1 sec                                                                                                                       | Telemetry and/or statistics limited                                                                    |
| Angle resolution             | <30° x <30°                                                  | lons, ∼15 x 12 to <30° x<br><30° e-, 45°                                                                                    | Varies with elevation                                                                                  |
| Pitch Angle (PA)<br>Coverage | 0° -90° or 90° -180° , some samples in both hemispheres      | 0°-90° or 90°-180°, some samples in both hemispheres                                                                        |                                                                                                        |
| Time for Full PA             | 1 – 5 sec                                                    | 1 – 5 sec                                                                                                                   | Telemetry limited                                                                                      |
| Ion Composition              | H, <sup>3</sup> He, <sup>4</sup> H4, C, O, Ne, Mg, Si,<br>Fe | H, ³He, ⁴He, C, O, Ne, Mg, Si,<br>Fe                                                                                        | <sup>3</sup> He / <sup>4</sup> He ~50 to 1000 keV/nuc                                                  |
| Electron<br>Sensitivity      | j = 10-10 <sup>6</sup> / cm <sup>2</sup> -s-sr               | Sensor-G:0.144 (cm <sup>2</sup> .sr)<br>Pixel-G: ~0.02 (cm <sup>2</sup> .sr)<br>Up to 6E6 1/s counting                      | j=Intensity (1 / cm <sup>2</sup> -s-sr)<br>G=Geometric factor (cm <sup>2</sup> -sr)<br>8 pixels/sensor |
| Ion Sensitivity              | j = 10-10 <sup>6</sup> / cm <sup>2</sup> -s-sr               | Sensor-G:0.16 (cm <sup>2</sup> .sr)<br>Pixel-G: ~0.002 (cm <sup>2</sup> .sr)<br>Up to 3.5x10 <sup>6</sup> /s rate (TOF x E) | 80 pixels/sensor                                                                                       |







## **EPI-Lo Field(s) of View**











Ion measurement logic can toggle TOF, but no TOF → no species identification





Secondary electrons from Start Foils possible, but low probability; Start electron only identifies entrance aperture





## **Microchannel Plate (MCP)**

- Simulation (black) versus measured centroids (red)
- The misalignment in Y-direction was due to a registration offset in the setup
- The offset in the X direction for the leftmost data was caused by an obstruction at the edge of the MCP mount that has since been eliminated





#### **EPI-Lo Block Diagram**





## **Collimators and Start Foils**



- Foils Mount on Apertures (red)
  - Each elevation tailored for equal geometric factors
  - Second foil at intermediate baffle (vented)
- Collimators screwmount to outer cover, capture foils
  - Each elevation and azimuth is unique







# Anti-coincidence System: GEANT Results

Assumed electron flux of  $j(E) \sim E^{-2.65}$  from ~10 keV to ~5 MeV

Penetrator rejection efficiency range from 83% to 95% from 1 MeV up to 10 MeV incident electron energy

Following peer review result of S/N of ~3 for foreground electrons with anti-coincidence, higher fidelity sensor model yields S/N ~10

New GEANT model accounts for more realistic geometry and extra shielding by structure

Only ~1% of electrons below 2 MeV penetrate to detectors in this model

## Light and Dust Mitigation (1/2)

- Dust may produce pinholes in the Start and collimator foils.
- Foils are designed to reduce UV by ~3 orders of magnitude.
- Pinholes may account for as much as ~0.4% of a foil area.
- For the 4 foils closest to the TPS edge, the suppression factor must be ~4 orders of magnitude. For these, pinholes are important to UV suppression.



- Intensity of Ly-α EUV vs elongation. Most EPI-Lo entrances at >20 degrees elongation
- 4 apertures near the TPS 8-20 degrees, max UV ~10<sup>12</sup>, average ~10<sup>10</sup>

## Light and Dust Mitigation (2/2)



- Dust may produce pairs of pinholes in the Start and collimator foils
  - Foils are designed to stop solar-wind-energy electrons
  - Pinhole pairs allow will still allow access to solar-wind electrons
- Solar wind electrons have an energy of ~100 eV or less
- Electrons that "leak in" through apertures are indistinguishable from Start secondary electrons
- Solar wind electron flux ~2 x 10<sup>12</sup>/cm<sup>2</sup>-s-sr
- Estimate foil pinhole as size of a support grid element is ~4.9 x 10<sup>-5</sup> cm<sup>2</sup>
- Geometric factor of a pair of pinholes separated by ~0.5cm is ~1.3 x 10<sup>-8</sup>
  - The flux through a pinhole pair can be estimated as ~2.6 x 10<sup>4</sup>/s
  - If every aperture had 1 grid-element pinhole, the total for a quadrant would be ~5.0 x 10<sup>5</sup>/s
  - This rate would be well tolerated by the electronics processing
- Such a pinhole pair would result in UV induced counting rates ~10/s

# **Dust: Simulating the Environment**

- Expect ~10 damage-inducing hits on each unprotected foil during entire mission
- Reduced to ~1 hit per mission with collimator
- Can lower further with pairs of pinholes





## **Follow Up from Peer Review**



| Area of Concern/Action                     | Resolution/Comment                                      | Status |
|--------------------------------------------|---------------------------------------------------------|--------|
| 1. Photoelectron flux false starts.        | Second start foil reduces flux of e- accelerated.       | Closed |
| 2. MCP count rate density > 1 MHz/cm2      | Simulations show density below this.                    | Closed |
| 3. Rates, S/N, efficiency compilation.     | Draft closure memorandum complete 10/25/2013            | Closed |
| 4. Electron measurement poor S/N.          | Higher resolution GEANT runs completed                  | Closed |
| 5. Incorrect plug power co-ax.             | Use labeling and/or color-coding.                       | Closed |
| 6. Alternate internal e- noise sources.    | In equipotential 100 V retarding potential rejects e-   | Closed |
| 7. Reject false signals w/ redundant info. | Consistency checks will be done b/w 3 TOF chains.       | Closed |
| 8. In-flight pulser for rate correction.   | Mewaldt et al, Space Sci Rev (2008) 136:285-362.        | Closed |
| 9. HV discharge secondary effects.         | Addressed by design and testing                         | Closed |
| 10. Fasteners w/o locking features.        | Locking inserts, Bellville washers, etc. added.         | Closed |
| 11. Wishbone webbing field deformation.    | Webs removed, extra 0-1kV surface length added.         | Closed |
| 12. Bonded external baffles allowed?       | Preliminary answer is yes; final requires thermal specs | Closed |
| 13. EPI-Lo/Hi electron energy gap.         | Additional GEANT simulations complete                   | Closed |
| 14. Thicker foil effect on lookup tables.  | Not a problem on board, just science interpretation.    | Closed |
| 15. Dual foils near sun handle pinholes.   | Second foil is under consideration.                     | Closed |
| 16. Neutrals/photoelectrons/plasma bkg.    | Solar wind electron fluxes cut-down by dual foil.       | Closed |
| 17. Auto use of extra data allocation.     | Too complicated to implement.                           | Closed |
| 18. Spare MCP assembly plans.              | Spares plan held at ISIS level.                         | Closed |
| 19. Vent back cover of SSD assembly.       | Vent is added.                                          | Closed |
| 20. Mounting structure for tags/handling.  | Plan is in place.                                       | Closed |
| 21. How are foils marked/serialized?       | Labels laser etched prior to assembly.                  | Closed |
| 22. Sensor purging plan.                   | Purge IN in center and vent OUT in each octant.         | Closed |

## Summary



- EPI-Lo Sensor development is on schedule and on budget
- Peer review held and action items have been responded to
  - 22 items
  - All closed
  - Sensor design and approach are matured through Technical Readiness Level 6:
    - System/subsystem model or prototyping demonstration in a relevant end-to-end environment (ground or space): Prototyping implementations on full-scale realistic problems. Partially integrated with existing systems. Limited documentation available. Engineering feasibility fully demonstrated in actual system application.
- Ready to proceed to Phase C