Solar Probe Plus

A NASA Mission to Touch the Sun

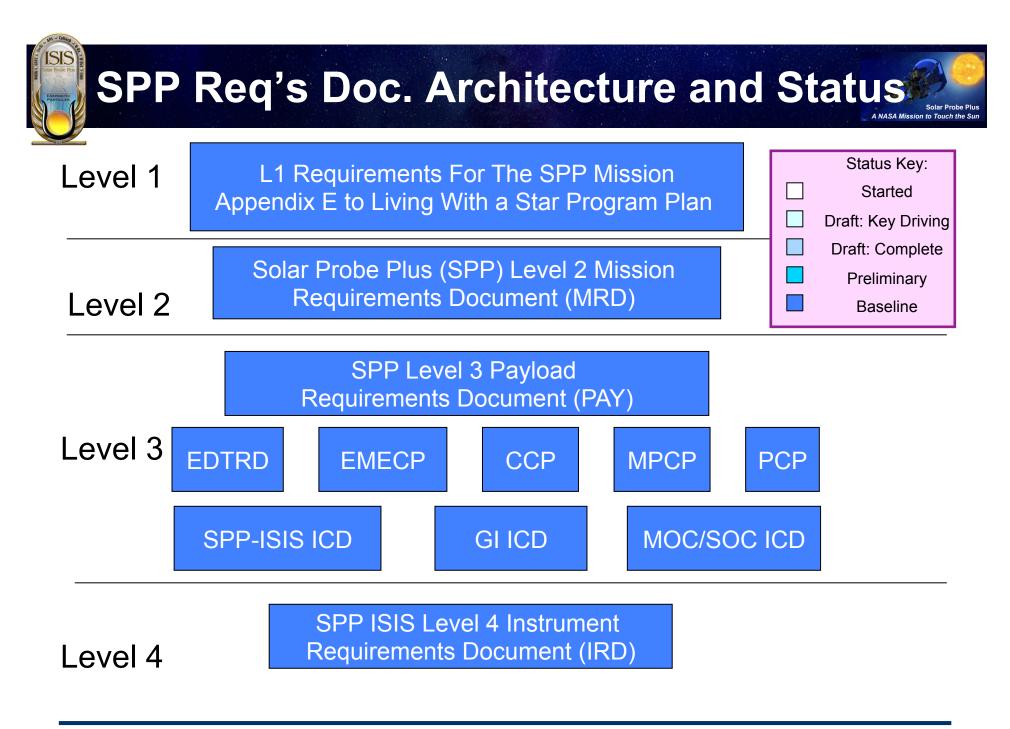
Integrated Science Investigation of the Sun Energetic Particles

Preliminary Design Review 05 – 06 NOV 2013

Systems Engineering

John Dickinson ISIS SE (SwRI)

Outline



- Instrument driving requirements
- Flow down of instrument performance requirements to major subsystems
- Instrument interfaces
 - Electrical
 - Mechanical
 - Thermal
- Environmental design and test requirements
- Resources allocated to the instrument
 - Mass, Power, Telemetry Volume, SSR Volume
- Instrument command and autonomy
- Major trades performed in Phase B
- Major changes since MDR

ISIS Systems Engineering Approach

- Both EPI-Hi and EPI-Lo have a dedicated SE
- ISIS SE role is to:
 - Coordinate interactions with the project
 - Maximize use of shared resources
 - Provide oversight of technical tasks
- Requirements development process:
 - ISIS has actively worked with the Project to make sure the correct requirements are being developed at all levels
 - ISIS has ownership of it's requirements at all levels

Level Definitions

- L1 requirements are defined by NASA as advised by the SPP Science Working Group Level\Owner NASA HQ APL
 - This document belongs to NASA
 - "SPP mission shall"
 - Program Level Requirements
- L2s are APLs response to the L1s
 - This document belongs to APL/Project Office
 - "Mission shall"
 - Mission Requirements Document
- L3s are performance and functional requirements on individual mission elements
 - This document belongs to APL/Project Office
 - "Payload shall" or "ISIS suite shall"
 - Payload Requirements Document
- L4s are the payload response to L3s
 - This document belongs to ISIS
 - "EPI-Lo shall" or "EPI-Hi shall"
 - Instrument Requirements Document

)	Level\Owner	NASA HQ	APL	ISIS
	Level 1			
	Program			
	Level	SPP shall		
ì				
	Level 2			
	Mission		Mission	
	Level		shall	
S	Level 3		Payload	
ļ	Payload		shall or ISIS	
	Level		shall	
	Level 4			
	Instrument /			EPI-Lo shall
	Subsystem			or EPI-Hi
	Level			shall

SPP Requirements Documents

Project Requirements Document	Version	Date
NASA L1 Requirements For The SPP Mission Appendix E to Living With a Star Program Plan	Rev	9/6/2011
APL 7434-9047, Solar Probe Plus (SPP) Level 2 Mission Requirements Document (MRD)	Rev. C	8/30/2013
APL 7434-9051, SPP Level 3 Payload Requirements Document (PAY)	Rev	6/27/2013
APL 7434-9066, SPP General Instrument to Spacecraft ICD	Rev	10/3/2013
APL 7434-9058, SPP to ISIS ICD	Rev	10/30/2013
APL 7434-9078, SPP MOC to SOC ICD	Rev	[in review]
APL 7434-9039, SPP Environmental Design and Test Requirements Document	Rev	6/18/2013
APL 7434-9040, Electromagnetic Environment Control Plan (EMECP)	Rev	4/23/2013
APL 7434-9011, SPP Contamination Control Plan (CCP)	Rev	6/17/2013
APL 7434-9009, SPP Materials and Processes Control Plan (MPCP)	Rev -	6/11/2013
APL 7434-9001, SPP EEE Part Control Plan (PCP)	Rev. A	4/11/2013
JPL D-8545, JPL Derating guidelines	Rev. E	8/4/2006
Plus other Mission Assurance Documents		

ISIS

ISIS Response Documentation

Number	Document	Released
16105-ISIS-IRD-01	ISIS Instrument Requirements Document	8/8/2013
16105-SPARES_PLAN-01	ISIS Spares Plan	10/15/2013
16105-EPI-Hi_SDP-01	EPI-Hi Software Development Plan	9/12/2013
16105-EPI-Lo_SDP-01	EPI-Lo Software Development Plan	9/6/2013
16105-SOC_SDP-01	SOC Software Development Plan	10/18/2013
16105-EPI-HI_SRD-01	EPI-Hi Software Requirements Document	8/8/2013
16105-EPI-Lo_SRD-01	EPI-Lo Software Requirements Document	8/8/2013
16105-ISIS_VVP-01	ISIS Verification and Validation Plan/Verification Matrix	10/8/2013
16105-ISIS_CMP-01	SwRI Configuration Management Plan	10/7/2013
16105-EPI-Hi_CMP-01	Caltech Configuration Management Plan	[In Review]
7464-9001	APL Configuration Management Plan (in PAIP)	10/3/2013
16105-ISIS_CRMP-01	ISIS Risk Management Plan	10/7/2013
16105-EPI-Hi_CCP-01	EPI-Hi Contamination Control Plan	[In Review]
7445-9023	EPI-Lo Contamination Control Plan	10/17/2013
16105-EPI-HI_FMEA-01	EPI-Hi Inputs to SC Interface FMEA	10/7/2013
16105-EPI-Lo_FMEA-01	EPI-Lo Inputs to SC Interface FMEA	9/6/2013

Reviewed Supporting Documents

In addition to the Requirements documents, ISIS has provided feedback on the following documents/topics:

ISIS Inj	put to Project
Limited	Life Items List
Missile	System Pre-Safety Package (MSPSP) Inputs
Materi	als and Processes List
Long Le	ead-Time Items List
Comm	on Buy Item List
Instrun	nent Thermal Model Supporting Information
Structu	ral Analysis Documentation and Models
Instrun	nent Mechanical Models
List of	Planned Reviews
Comm	ents on MOC-SOC Software ICD
Respor	nse on SPP Contamination Control
Reliabi	lity Plan Review

ISIS has been responsive to inputs required by Project

Driving Requirements at L1/L2

- The Mission shall measure energetic protons and heavy ions, as follows:
 - Energy range: ≤ 0.05 to ≥ 50 MeV/nucleon
 - Highest cadence: ≤ 5s for selected rates
 - FOV: $\geq \pi/2$ sr in sunward and anti-sunward hemispheres
 - Angular sectoring: ≤ 30 degree sectors
 - Composition: at least H, He, 3He, C, O, Ne, Mg, Si, Fe
- The Mission shall measure energetic electrons, as follows:
 - Energy range: ≤ 0.05 to ≥ 3 MeV
 - Highest cadence: ≤ 1s for selected rates
 - FOV: $\geq \pi/2$ sr in sunward and anti-sunward hemispheres
 - Angular sectoring: ≤ 45 degree sectors
 - Composition: n/a
- Requirement above in blue is traced to lower levels in subsequent slides

Requirements Flowdown to L3

L2: The Mission shall measure energetic electrons, as follows: Energy range: ≤ 0.05 to ≥ 3 MeV L3:

[PAY-270] Measurement: Energetic Protons/Heavy Ions Field-of-View (EPI-Lo)

EPI-Lo shall be capable of measuring protons and heavy ions over solar orbital distances of 9.86 R_S to 0.25 AU with a $\geq \pi/2$ steradians FOV in the sunward hemisphere and a $\geq \pi/2$ steradians FOV in the anti-sunward hemisphere including coverage within 10° of the Spacecraft-Sun line, subject to the constraints and FOV obstructions defined in the ISIS-to-Spacecraft ICD (7434-9058).

<u>Rationale</u>

-- This requirement meets Level 2 Mission Science Requirements. The FOV should cover as much as the sky as possible in order to allow accurate particle intensity measurements even when the angular distribution is highly anisotropic or the magnetic field deviates strongly from the nominal Parker spiral. The minimum FOV requirement allows measurement of particles with pitch angles out to ~40° from the nominal field direction in both the forward and backward directions and enables good determinations of first order anisotropies. Additional measurements closer to 90° pitch angle are important for investigating the time evolution of particle pitch angle distributions and for measuring higher order anisotropies.

<u>Parent Traceability</u>

- -- MRD-97 : The Mission shall measure energetic protons and heavy ions, as follows:
- -- Energy range: ≤ 0.05 to ≥ 50 MeV/nucleon
- -- Highest cadence: $\leq 5s$ for selected rates
- -- FOV: $\geq \pi/2$ sr in sunward and anti-sunward hemispheres
- -- Angular sectoring: ≤ 30 degree sectors
- -- Composition: at least H, He, ³He, C, O, Ne, Mg, Si, Fe

<u>Requirement Allocation</u>

ISIS

[PAY-271] Measurement: Energetic Protons/Heavy Ions Field-of-View (EPI-Hi)

EPI-Hi shall be capable of measuring protons and heavy ions over solar orbital distances of 9.86 R_S to 0.25 AU with $a \ge \pi/2$ steradians FOV in the sunward hemisphere and $a \ge \pi/2$ steradians FOV in the anti-sunward hemisphere including coverage within 10° of the Spacecraft-Sun line, subject to the constraints and FOV obstructions defined in the ISIS-to-Spacecraft ICD (7434-9058).

<u>Rationale</u>

-- This requirement meets Level 2 Mission Science Requirements. The FOV should cover as much as the sky as possible in order to allow accurate particle intensity measurements even when the angular distribution is highly anisotropic or the magnetic field deviates strongly from the nominal Parker spiral. The minimum FOV requirement allows measurement of particles with pitch angles out to ~40° from the nominal field direction in both the forward and backward directions and enables good determinations of first order anisotropies. Additional measurements closer to 90° pitch angle are important for investigating the time evolution of particle pitch angle distributions and for measuring higher order anisotropies.

<u>Parent Traceability</u>

- -- MRD-97 : The Mission shall measure energetic protons and heavy ions, as follows:
- -- Energy range: ≤ 0.05 to ≥ 50 MeV/nucleon
- -- Highest cadence: \leq 5s for selected rates
- -- FOV: $\geq \pi/2$ sr in sunward and anti-sunward hemispheres
- -- Angular sectoring: ≤ 30 degree sectors
- -- Composition: at least H, He, ³He, C, O, Ne, Mg, Si, Fe

<u>Requirement Allocation</u> ISIS

 Traceability to L2 as well as more detail captured at L3
Description/Clarification, S/C Rationale, Parent Traceability, Requirement Allocation

Requirements Flowdown to L4

Energetic Protons/Heavy lons FOV

PAY-270 EPI-Lo

EPI-Lo shall be capable of measuring protons and heavy ions over solar orbital distances of 9.86 Rs to 0.25 AU with a $\geq \pi/2$ steradians FOV in the sunward hemisphere and a $\geq \pi/2$ steradians FOV in the anti-sunward hemisphere including coverage within 10° of the Spacecraft-Sun line, subject to the constraints and FOV obstructions defined in the ISIS-to-Spacecraft ICD (7434-9058).

PAY-271 EPI-Hi

EPI-Hi shall be capable of measuring protons and heavy ions over solar orbital distances of 9.86 Rs to 0.25 AU with a $\geq \pi/2$ steradians FOV in the sunward hemisphere and a $\geq \pi/2$ steradians FOV in the anti-sunward hemisphere including coverage within 10° of the Spacecraft-Sun line, subject to the constraints and FOV obstructions defined in the ISIS-to-Spacecraft ICD (7434-9058).

ISIS-118 EPI-Lo Instrument Protons/Heavy Ions Field of View

The EPI-Lo instrument shall have $\geq \pi/2$ unobstructed field of view (FOV) in both sunward and anti-sunward hemispheres for the measurement of energetic protons/heavy ions including coverage within 10° of the spacecraft-Sun line, subject to the constraints and FOV obstructions specified in the SPP to ISIS ICD, 7434-9058.

Rationale:

The FOV should cover as much as the sky as possible in order to allow accurate particle intensity measurements even when the angular distribution is highly anisotropic or the magnetic field deviates strongly from the nominal Parker spiral. The minimum FOV requirement allows measurement of particles with pitch angles out to ~40° from the nominal field direction in both the forward and backward directions and enables good determinations of first order anisotropies. Additional measurements closer to 90° pitch angle are important for investigating the time evolution of particle pitch angle distributions and for measuring higher order anisotropies.

Notes:

EPI-Lo views ~ half the sky by densely sampling with 80 apertures. The coverage is approximately 50% as there are gaps between apertures, but also overlap. The sunward quarter sky is ~1 π sr and EPI-Lo must view this down to <= 10 degrees from the sun. At 50% coverage, this means that EPI-Lo should have an unobstructed $\pi/2$ sr down to 10 deg. Similarly EPI-Lo must view the antisunward quarter-sky, which, at 50% coverage, is about $\pi/2$ sr.

Reasonableness of this requirement depends on what the ICD says. It is important that the project provide us with accurate, up-to-date CAD models of the spacecraft including all of the potential obstructions so that this requirement can be checked.

Verification	Verification	Verification
Method	Activity	Result
Analysis & Test	Analyze obstructions using CAD model and inspect mounting on the spacecraft after integration to verify the accuracy of that analysis.	

ISIS-218 EPI-Hi Instrument Protons/Heavy Ions Field of View

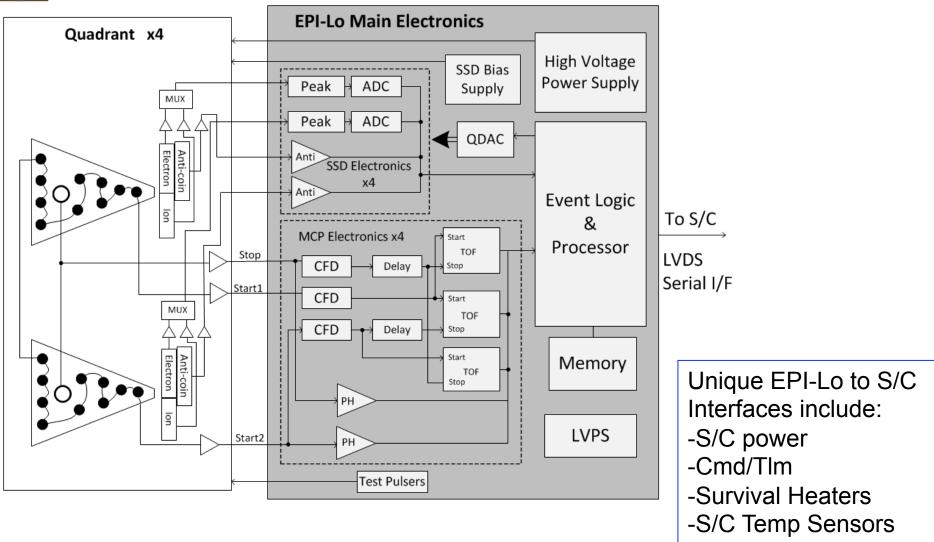
The EPI-Hi instrument shall have ≥π/2 unobstructed field of view (FOV) in both sunward and anti-sunward hemispheres for the measurement of energetic protons/heavy ions including coverage within 10° of the spacecraft-Sun line, subject to the constraints and FOV obstructions specified in the SPP to ISIS ICD, 7434-9058.

Rationale:

The FOV should cover as much as the sky as possible in order to allow accurate particle intensity measurements even when the angular distribution is highly anisotropic or the magnetic field deviates strongly from the nominal Parker spiral. The minimum FOV requirement allows measurement of particles with pitch angles out to ~40° from the nominal field direction in both the forward and backward directions and enables good determinations of first order anisotropies. Additional measurements closer to 90° pitch angle are important for investigating the time evolution of particle pitch angle distributions and for measuring higher order anisotropies.

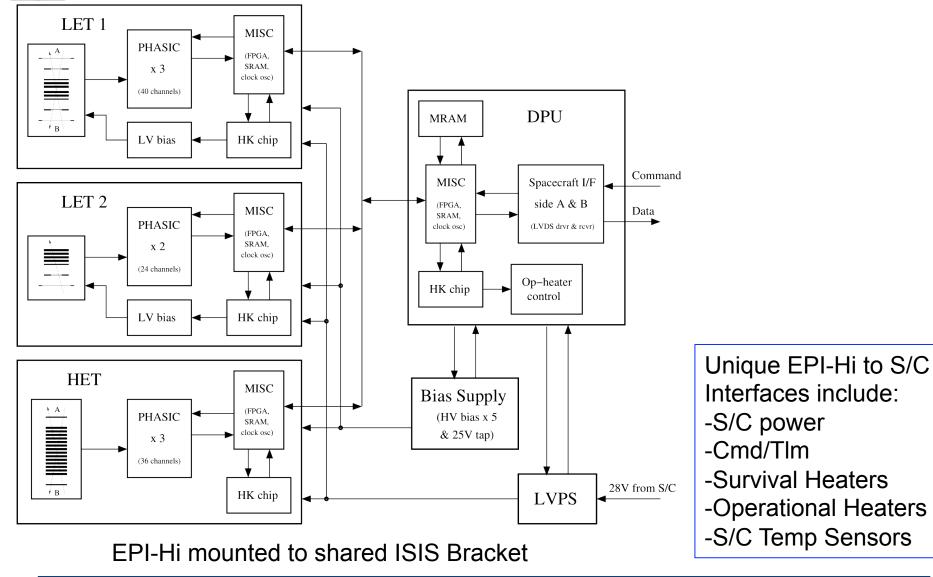
Notes:

A $\pi/2$ steradian solid angle cone has a half-angle of about 41.4 degrees. This is nearly as large as the 45 degree half angle viewing cone planned for each end of each telescope. Since the TBS will obstruct portions of the FOV of HET and LET1 in the sunward direction and since portions of the FOVs of these two telescopes overlap outside of this obstructed region, the portion of the LET2 FOV that is in the sunward hemisphere may be required to achieve the required $\pi/2$ steradian solid angle. This should be checked.


Reasonableness of this requirement depends on what the ICD says. It is important that the project provide us with accurate, up-to-date CAD models of the spacecraft including all of the potential obstructions so that this requirement can be checked.

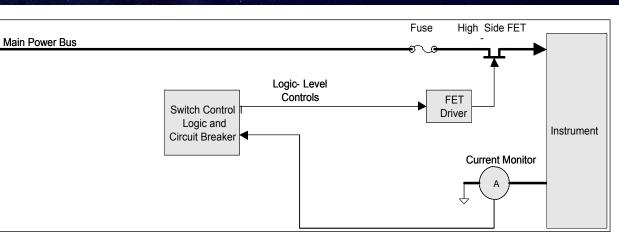
Verification	Verification	Verification
Method	Activity	Result
Analysis & Inspection	Analyze obstructions using CAD model and inspect mounting on the spacecraft after integration to verify the accuracy of that analysis.	

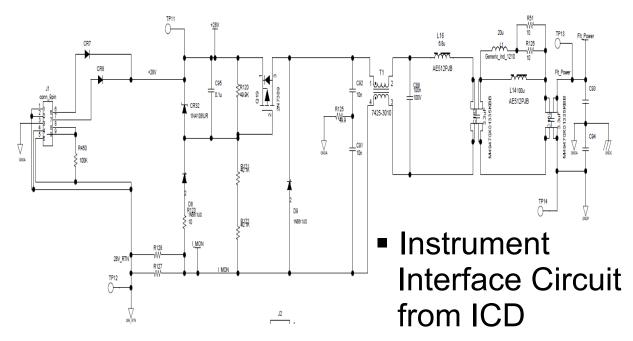
EPI-Lo Spacecraft Interfaces

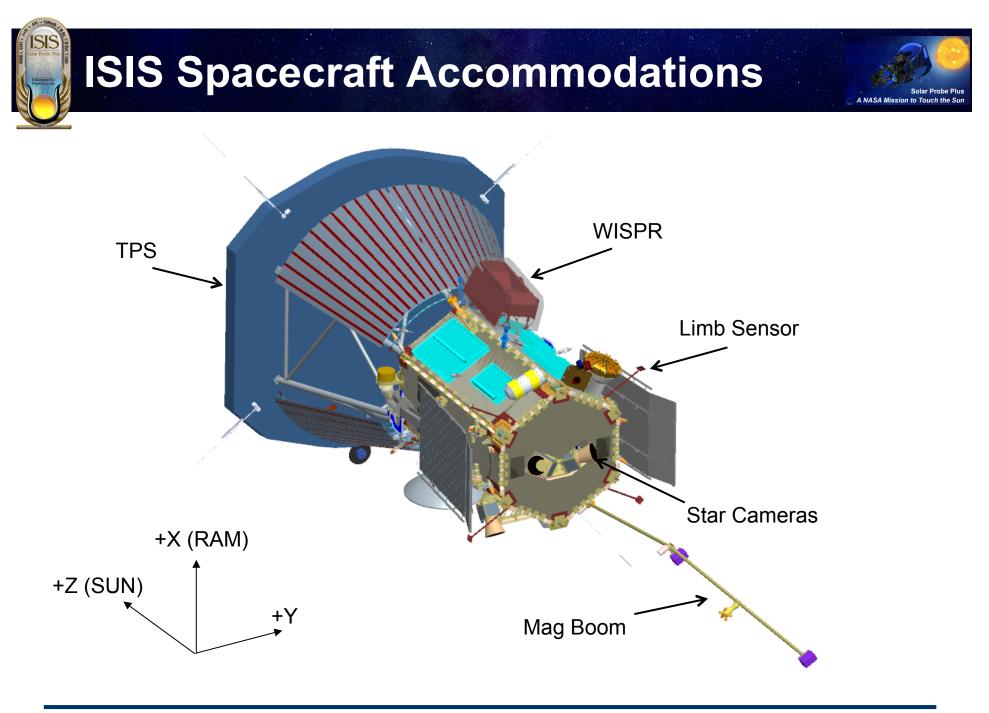


EPI-Lo mounted to shared ISIS Bracket

EPI-Hi Spacecraft Interfaces

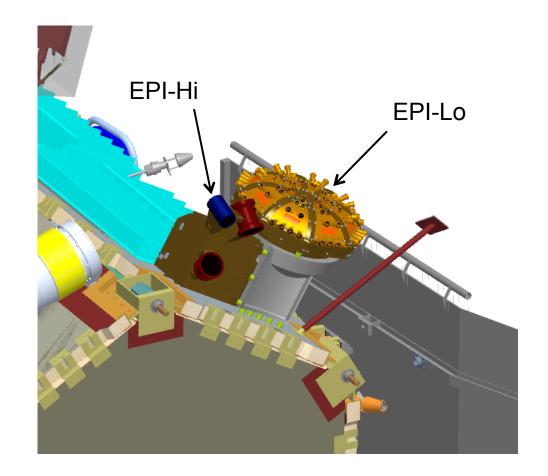


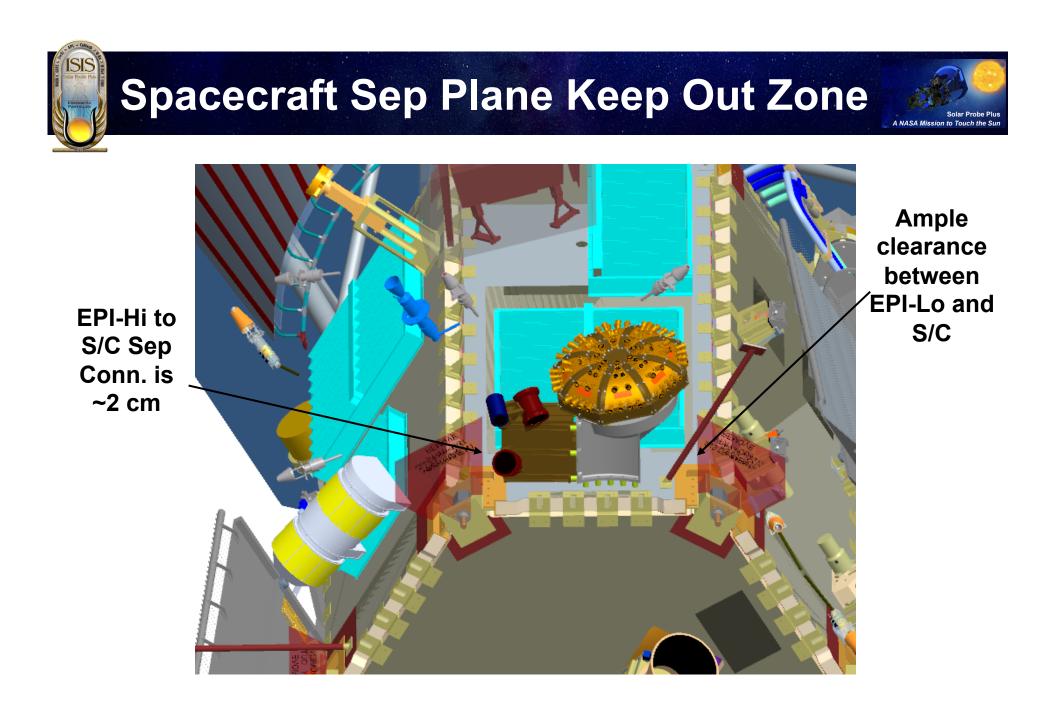

Spacecraft Electrical Interfaces



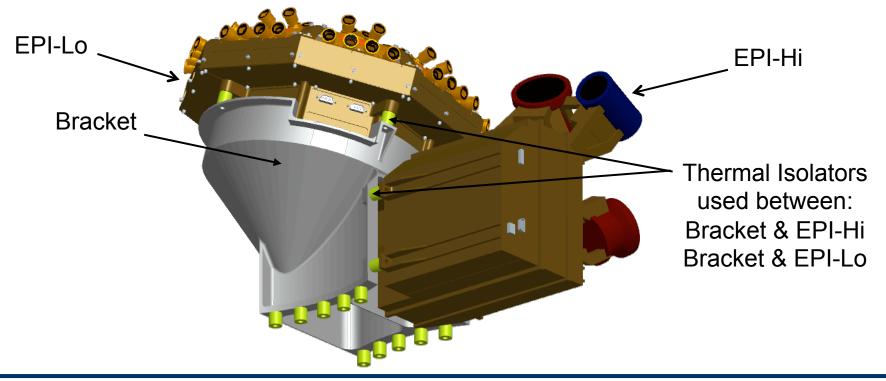
Power

- Main Instrument Power
- Survival Heaters
- Operational Heaters (EPI-Hi)
- Command & Telemetry
 - Side A/B LVDS UART
- Grounding
 - Chassis Ground to Bracket, thermally isolated
- Thermal
 - Heaters
 - Temperature Sensors
- Captured in GI and SPP-ISIS ICDs



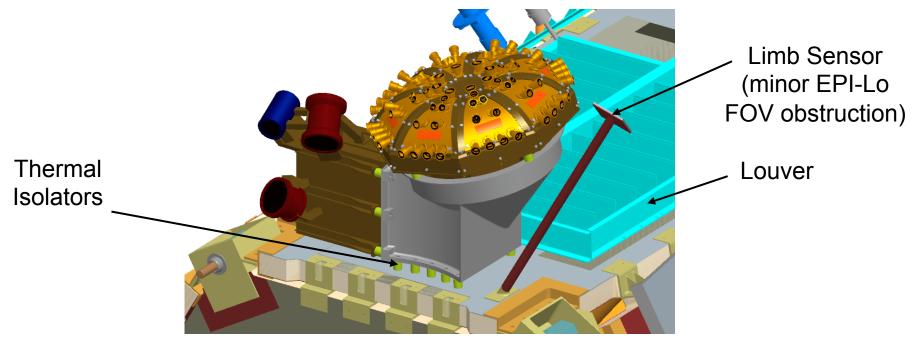


Mechanical Interfaces

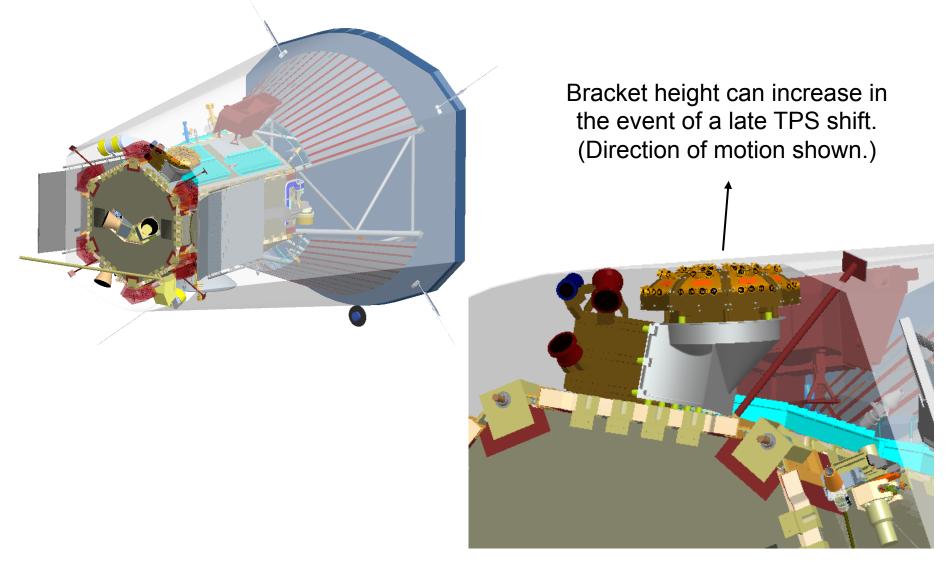

- ISIS suite mounted as a single unit on the S/C deck
- EPI-Hi & EPI-Lo are thermally isolated from ISIS bracket; ISIS bracket is thermally isolated from the S/C deck
- ISIS is mounted in order to keep both EPI-Hi & EPI-Lo adjacent to the umbra
- Harness, Purge, Grounding, MLI all still being developed, but can easily be accommodated into existing design



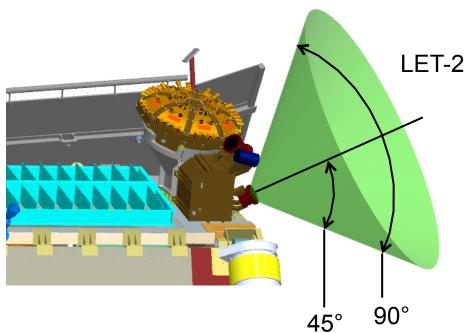
ISIS Instrument Mounting to Bracket

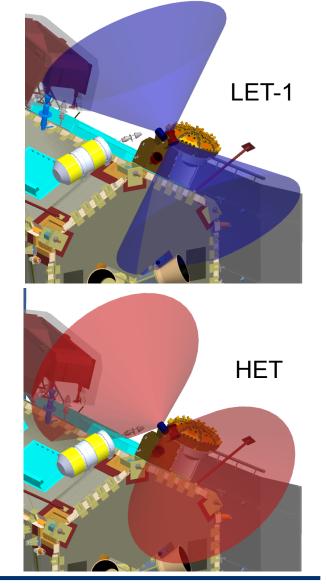

- ISIS mounting bracket provides common mounting for both EPI-Hi & EPI-Lo
- Bracket keeps instruments close to umbra with a minimal footprint on the S/C deck
- EPI-Hi & EPI-Lo can each be attached independently to the bracket, in either order, before or after the bracket is mounted to the S/C deck

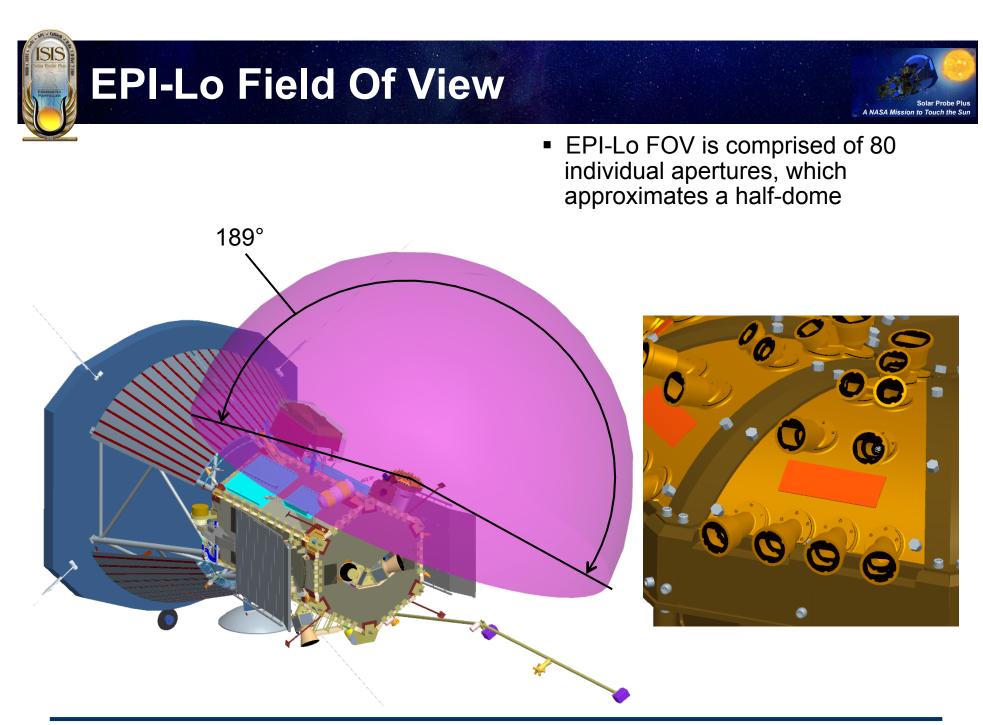
ISIS Mounting to Spacecraft Deck


- ISIS bracket mounts on a very small footprint, keeping away from S/C structural elements & other deck mounted components
- ISIS bracket allows for a lot of flexibility in mounting order of EPI-Hi & EPI-Lo, and accommodates easy access to EPI-Hi & EPI-Lo mounting interfaces & S/C interfaces (i.e. harnesses).
- Bracket can easily moved to accommodate TPS growth to keep EPI-Hi & EPI-Lo close to the umbra

Relationship of ISIS to S/C Umbra





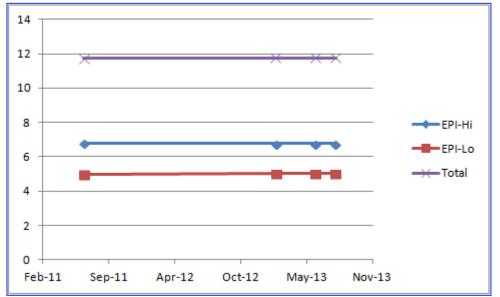

EPI-Hi Field Of View

 All EPI-Hi telescopes have the same FOV shape (as dimensioned in LET-2)

Thermal Interfaces

- EPI-Hi:
 - Both survival and operational heater services from the spacecraft
 - Instrument controls operational heater
 - Spacecraft controls survival heater
 - Has 5 temp sensors monitored by spacecraft
- EPI-Lo:
 - Has a dual use survival/operational heater, used during survival conditions, instrument pre-on warm-up, and in low power modes
 - EPI-Lo has 2 temp sensors
- Ground strap is thermally isolated

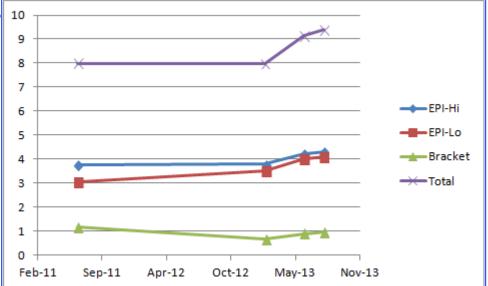
			Survival	Operational	
	Design / Test	Non-op	Heater	Heater	
	Operating	Survival	Equivalent	Equivalent	Set Point
Instrument	Temperture	Temperature	Resistance	Resistance	Temperature
Subsystem	Range (C)	Range (C)	(Ohms)	(Ohms)	Range (C)
EPI-Hi	-25 / +30	-40 / +50	87	1056	-35 to -32
EPI-Lo	-30/+35	-45 / +50	121		-40 to -37



Resources - Power

ISIS	Hi CBE	Hi Uncty	Hi Total	Lo CBE	Lo Uncty	Lo Total	ISIS Total
Instrument Power (W)	5.81	0.96	6.77	4.17	0.83	5.00	11.77
Operational Heaters (W)	0.48	0.07	0.55	0.00	0.00	0.00	3.47
Survival Heaters (W)	3.81	0.57	4.38	2.45	0.37	2.82	7.20
Totals:	10.10	1.60		6.62	1.20		

- ISIS Current Best Estimates and Uncertainties
- During Survival, heater power is duty cycled to ensure instrument stays above survival temperature
- During Warm-up, heater has a 100% duty cycle to warm the instrument prior to normal operations (Encounter Mode)


- Because all resources on SPP are tightly constrained, mass and power estimates have been rigorously maintained based on heritage instruments from the beginning
- As a result of this attention to rigorous estimation, there has been no change in instrument power allocation over time

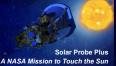
Resources - Mass

	Hi CBE	Hi cont.	Lo CBE	Lo cont.	Bracket	cont.	Total
Mass (kg)	3.628	0.692	3.435	0.656	0.817	0.156	9.384

- ISIS Current Best Estimates and Uncertainties
- With the S/C orbit change, the Instruments were asked to propose key areas to increase mass to reduce risk (in June, 2013)
- This increased instrument allocation by 1.5 kg.

Three Selected Requests	Risk Addressed
ISIS Bracket Change to Follow Umbra at TPS Shift	APL to hold additional 0.100 kg as lien.
Increase Size of Four EPI-HI Boards	Mitigate board area allocation risk.
Heavier Than Expected MCPs	Realized mass growth.
Total:	1.536 kg

Resource - Telemetry


		Total ISIS	12 Gbits	r < 0.25 AU and bur	rst only, include con	npression, packetizati	ion, but not contingen	сy
			13.3253022	0.89894993				
		bps	# of secs	total raw bits	total (Gbits)	*0.75 comprss	*1.05 Packt	
EPI-Hi	r < 0.25 AU	3640.747218	902545.7301	3655310207	3.655310207	2.741482655	2.878556788	
	r > 0.25 AU						n/a	
EPI-Lo	r < 0.25 AU	11271.03423	902545.7301	11316118364	11.31611836	8.487088773	8.911443212	
	r > 0.25 AU						n/a	
	Burst					0.2	0.21	
							12	Gbits/orb

 ISIS Telemetry request is unchanged since Phase A

Instrument	Gbit / orbit	+ 30%	Avg. Rate <0.25 AU 11 days	Continuous Data Rate	Peak Data Rates (3 Hours)
WISPR	23	30	20 kbpg	260 kbaa	350 kbps
WISPK	23	30	30 kbps	260 kbps	8 kbps
FIELDS 1 & 2	20	26 26 kbps -	001		80 kbps
FIELDS 1 & 2	20		80 kbps		
SWEAP	20	26	26	kbps	80 kbps
1010	40	10	461		80 kbps
ISIS	12	16	101	kbps	80 kbps
Science campaign "data bank"	10	13	13	NA	
	85 Gbit	111 Gbit	111 kbps	341 kbps	758 kbps

CCSDS APIDs

A	llocation	APID Range (Hex) - Low		APID Range Hex) - High	Assignment		
64		0x490		0x4CF	EPI-Lo		
64		0x440		0x47F	EPI-Hi		
	APID (Decimal)	APID (Hex)		Assignment			
	1180 TBR	0x49C TBR		EPI-Lo Critical Housekeeping Packet			
	1088 TBR	0x440 TBR		ritical Housekeeping Packet			

- CCSDS APIDs assigned in SPP-ISIS ICD
- EPI-Lo and EPI-Hi have each been allocated a contiguous range of 64 APIDs for CCSDS telecommand and telemetry packets.

Autonomy Summary

The spacecraft will monitor and respond to:

- ISIS Power requests instrument critical housekeeping telemetry packet:
 - instrument power-down (response = power-down)
 - instrument power-cycle (response when < 0.25 AU = power-cycle; response when >= 0.25 AU = power-down)
- ISIS Stale aliveness status as determined from the sequence count in the ITF (response when < 2.25 AU = prover cycle; response when >= 0.25 AU = prover cycle; response when >=
- Excessive instrument power levels as determined from spacecraft Power Distribution Unit (PDU) telemetry (response = power-down)
- Excessive instrument temperature as determined from spacecraft Remote Interface Units (RIUs) (response = power-down)
- ISIS is still working with the Project to flesh out all operational scenarios to ensure a comprehensive and feasible approach to ISIS autonomy.

Environmental Requirements & Tests

- Key Environmental Requirements set in EDTRD:
 - Duration: 7 years
 - Orbits: 24
 - Solar Illumination: 1 sun on any aperture
 - TID: 80 kRad behind 60 mils Al
 - SEL: >80 MeV-cm2/mg
 - Dust: Probability of no impact >95%
 - EPI-Lo: >124.3 um particle diameter
 - EPI-Hi: >68.5 um particle diameter
 - Stiffness: >80 Hz Res. Freq.
 - Shock: 40G @ 100 Hz at separation interface

Typical Test Flow for Components and Instruments (EDTRD)

	/
Test	Subsystem / Instrument Requirement
Magnetic Field (test magnetic hardware)	Xp
Hermeticity (tanks, cooling system)	*
Comprehensive Performance Test	X
EMI/EMC	Х
Initial Optical Alignment	*
Mass Properties	X ^a
Pre Vibration Survey	X
Sinusoidal Vibration	Х
Random Vibration	Х
Pressure Profile	
Shock (self induced)**	*
Acoustic	*
Strength	Y
Post Vibration Survey	X
Deployments	*
Performance Test	Х
Thermal Vacuum Balance	*
Thermal Vacuum Cycle	Х
Bake-out	X
Final Optical Alignment	*
Comprehensive Performance Test	Х
X Test is required	

X Test is required

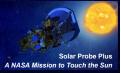
* Test is conditionally required, see relevant sections

Not Performed on ISIS

Pointing Requirements

- ISIS Pointing Requirement: 1 deg accuracy, 0.25 deg knowledge
- ISIS is not driving spacecraft pointing requirements
- ISIS is working with the Project to define Pointing Budget

Contamination Requirements


- Contamination requirements are defined in the Instrument Contamination Control Plans
- The plans define the criteria for implementing contamination control during the manufacture, assembly, and test ISIS instruments
- EPI-Lo has MCPs that drive ISIS contamination control requirements

	Initial Cleanliness	Sensor Integration/Assembly	Delivery to APL	BOL	EOL
Solid State Detectors	VC2+UV	VC2+UV/400 A/20	N/A	N/A	N/A
Aperture Foils	VC2+UV	VC2+UV/400 A/20	N/A	N/A	N/A
Micro channel Plates	VC2+UV	VC2+UV/400 A/20	N/A	N/A	N/A
Instrument Interior Surfaces	VC2+UV	VC2+UV/400 A/20	N/A	500 A/20	750 A/10
Instrument hardware (fasteners, screws)	VC2+UV	VC2+UV	N/A	N/A	N/A
Instrument External Surfaces	N/A	N/A	VC2+UV/400 A/2	500 A/2	750 A
Harnesses and Cables	VC2+UV	VC2+UV	VC2+UV	N/A	N/A
Purge tubing/fittings	100/200 A/10 A/2	N/A	N/A	N/A	N/A
Shipping containers	VC2+UV	VC2+UV	VC2+UV	N/A	N/A
MLI Blanket materials	VC2+UV/400 A/2	N/A	VC2+UV/400 A/2	N/A	N/A
GSE Equipment	VC2	VC2	VC2	N/A	N/A
Bagging Material	VC2+UV	VC2+UV	VC2+UV	N/A	N/A
Storage Containers	VC2+UV	VC2+UV	VC2+UV	N/A	N/A

Table 2: Maximum particulate and molecular limits for the EPI-LO instrument.

Trade Studies

Trade	Description	Status	Closure Date
	Improve PHASIC TID:	EM Components	
	1) Passive Shielding	fabricated, tested, and	
Hi: PHASIC Approach	2) RadHard respin of STEREO PHASIC by Aeroflex	meet requirements	PDR (closed)
	Process for making thin ion-implanted detectors that	Thin detectors have	
	simultaneously meet all of the specifications for the EPI-Hi LET	been fabricated, tested,	
Hi: Thin Silicon Detectors	telescopes have not yet been demonstrated.	and meet requirements	PDR (closed)
	Because of the thin front detectors on the EPI-Hi LETs, it would		
	be useful to make the windows at the LET apertures thinner than	Thin windows fabricated	
	those used in heritage STEREO/LET instrument. (Note: Fall back	and tested at Heidelberg	
Hi: Thin Windows	to flight-proven 1/5 mil Kapton meets Level 1 Reqs)	dust facility	PDR (closed)
	APL has developed an ASIC that performs housekeeping	EM Components	
	functions called the Remote IO (RIO) chip. Component may be	fabricated, tested, and	
Lo: RIO Chip	useful as Housekeeping chip for ISIS (EPI-Hi and EPI-Lo).	meet requirements	PDR (closed)
	Time-of-Flight can be derived in several configurations of MCP		
	wedges and TOF chips (start/stop inputs), i.e. 1 or 2 wedges with		
	direct or daisy chained TOF chips. Minimizing mass without	Quadrant approach	
Lo: Wedge-to-TOF Chip Ratio	sacrificing measurement quality is the goal.	implemented	MDR (closed)
	The use of new generation TOF/CFD timing chips and RIO		
	housekeeping chips alleviates the availability concern due to	EM Components	
	depletion of existing flight stocks. However, new designs might	fabricated, tested, and	
Lo: ASIC Lot Selection	not be available in time.	meet requirements	PDR (closed)

Summary

- ISIS takes a comprehensive and distributed approach to systems engineering
- ISIS requirements are approached with flowdown and verification in mind
 - ISIS has been involved at all levels of requirement generation
 - Requirements flowdown is easily traceable and well understood
 - ISIS design meets or exceeds all Level 3 requirements
- ISIS to Spacecraft electrical, mechanical, and thermal interfaces are well described in the ICDs
- ISIS Resource estimates are within spacecraft allocations
 - ISIS has cultivated a reputation as a good steward of mission resources
- Plans are in place for Environmental Testing and AI&T
- ISIS has demonstrated tremendous design maturation and clarification throughout Phase B
- Next steps: Continue with EM builds and testing

BACKUP

Resources - Power

ISIS	Hi CBE	Hi Uncty	Hi Total	Lo CBE	Lo Uncty	Lo Total	ISIS Total
Instrument Power (W)	5.81	0.96	6.77	4.17	0.83	5.00	11.77
Operational Heaters (W)	0.48	0.07	0.55	0.00	0.00	0.00	3.47
Survival Heaters (W)	3.81	0.57	4.38	2.45	0.37	2.82	7.20
Totals:	10.10	1.60		6.62	1.20		

Function	Power Service	Peak Current	Max Load Dissipation (CBE+Uncertainty) by Mode					
		(A)	(W)					
		EPI-Lo Modes:	Survival	WarmUp	Boot	Non-Encounter	Encounter	
EPI-Lo	Main Power	0.208 @ 24V	0.00	0.00	2.00	5.00	5.00	
	Survival Heater Power, 121 Ω eq. res.	0.271 @ 33V	2.82	5.56	3.00	0.00	0.00	
		EPI-Hi Modes:	Survival	WarmUp		Non-Encounter	Encounter	
EPI-Hi	Main Power	0.282 @ 24V	0.00	0.00		6.77	6.77	
	Survival Heater Power, 87 Ω eq. res.	0.378 @ 33V	4.38	7.74		0.00	0.00	
	Operational Heater Power, 1056 Ω eq. res.	0.031 @ 33V	0.00	0.00		0.55	0.55	

- ISIS Current Best Estimates and Uncertainties
- ISIS Power by Mode and service
- EPI-Lo has a low-power Boot safe-hold mode in which survival heaters are used as operational heaters to maintain instrument above Cold Op. temps
- EPI-Hi is either on or off
- During Survival, heater power is duty cycled to ensure instrument stays above survival temperature
- During Warm-up, heater has a 100% duty cycle to warm the instrument prior to normal operations (Encounter Mode)