Solar Probe Plus

A NASA Mission to Touch the Sun

ENERGETIC

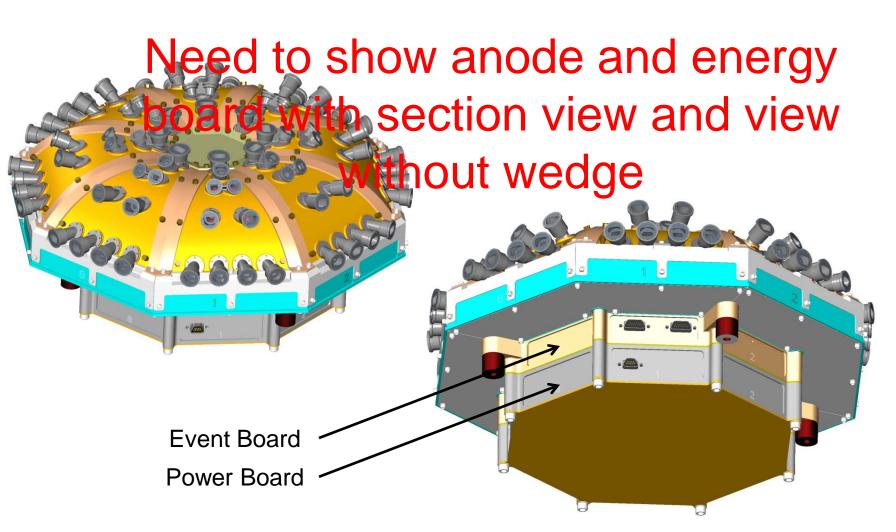
Integrated Science Investigation of the Sun Energetic Particles

Preliminary Design Review 05 – 06 NOV 2013

EPI-Lo Electronics

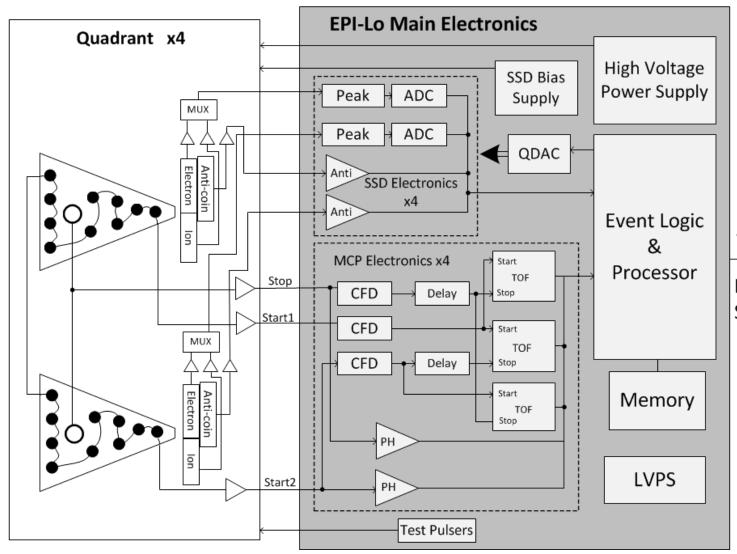
Reid Gurnee

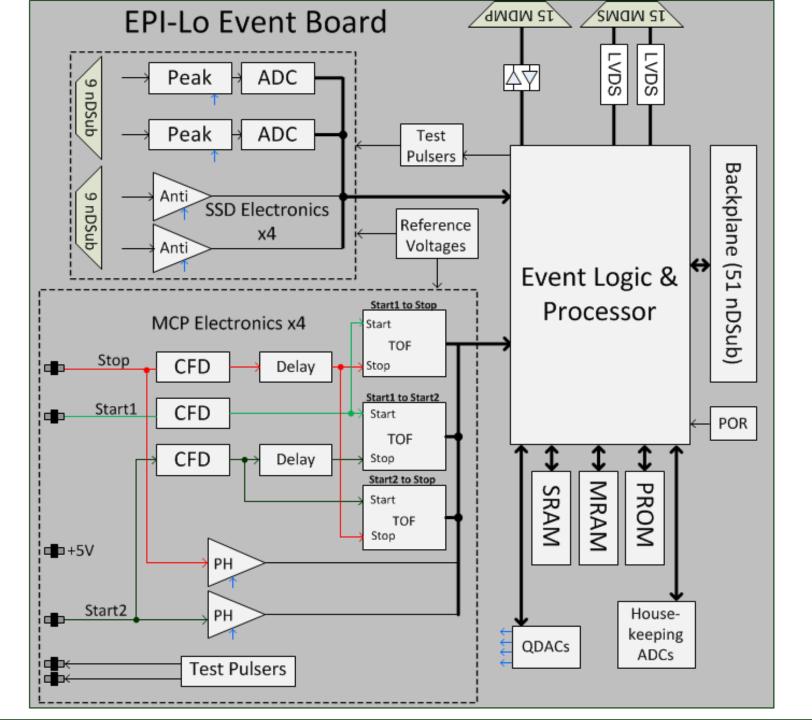
Outline



- Electronics Overview
- Block Diagrams
- Driving Requirements
- Event Board
 - Functionality, Interfaces, prototyping, FPGA, layout
- Anode Board
 - Functionality, Interfaces, prototyping, layout
- Energy Board
 - Functionality, Interfaces, prototyping, layout
- Packaging and thermal considerations
- Radiation analysis
- Plans for testing
- Status
- Preliminary parts list and special screening considerations
- Summary and follow-up from peer reviews

EPI-Lo – Electronics Overview




EPI-Lo Block Diagram

To S/C

LVDS Serial I/F

Electronics Driving Requirements

- Analog Performance
 - Timing resolution < 400pS FWHM
 - Energy resolution < 15KeV (typically sensor / pre-amp dominated)
- MCP pre-amp gain set for 500k electrons resulting in a 10mV signal
- Energy system dynamic range of 30keV to 15MeV
 - Higher energies use pulse width mode

Event Board Functionality

- Instrument processor
 - Embedded processor in RTAX2000
 - Execute Flight Code, Accumulating and Formatting Telemetry,
 Commanding, and Alarm Detection and Action
 - Spacecraft communication
 - Core code in PROM, classification tables and application code in MRAM
 - Accumulate data into classification tables
- Event Processing
 - Communicate and handle timing with ADCs, TOFs
 - Pre-process and accumulate event data
 - Accumulate Rates
- HVPS control
 - Control four opto-coupler generated HVPS outputs
 - Provide high speed safing of HVPS in response to over current

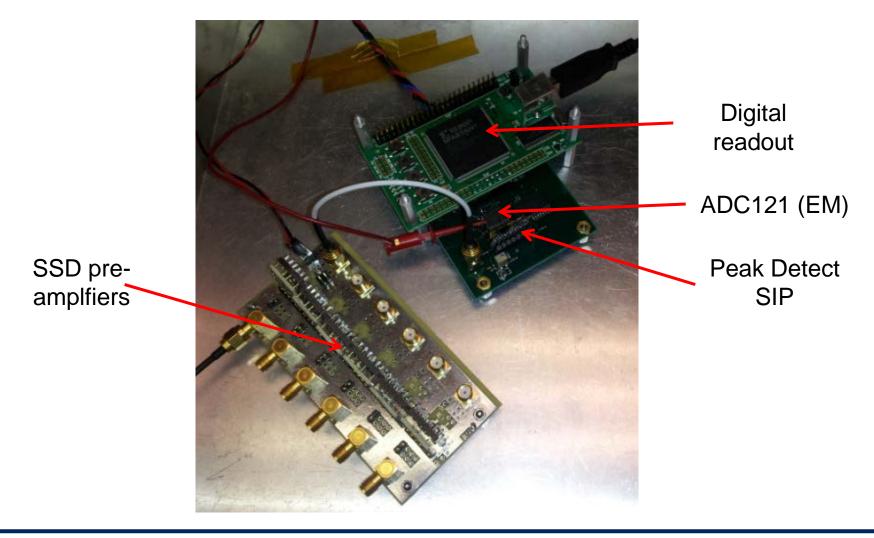
Event Board Functionality

- Time-of-flight based on APL TOD-D and CFD-D ASICs
 - New ASICs developed for future programs
 - Improved size and performance from previous ASICs
 - 12 CFDs and 4 TDCs for timing system
- Solid State Detector Energy Measurements
 - 8 Peak detect and A/D converters for energy system
 - Peak detect chips are APL ASICs flown on previous missions (PEPSSI, Jedi, RBSPICE)
- MCP pulse height comparators
 - Two comparators for each MCP monitor MCP gain
- Pulsers
 - Independent pulsers for start and stop signals on each anode board
 - Two pulsers for Energy system
 - All pulsers have programmable amplitude

Event Board Interfaces

- Solid State Detector Interface
 - 8, 9-pin ndsub connectors to energy boards
 - ~10 mV to over 1 V unipolar-shaped pulses
 - Control, pulser, and power lines
- Anode Board Interface
 - 12 Time-of-Flight Coax connectors to anode
 - ~10 mV to over 1 V fast-shaped pulses
 - 12 power and pulser Coax connectors
- Test Port Connector
 - 1 Test Input (to aid in end-to-end timing tests)
 - 5 Test-point outputs
- Spacecraft data connector
 - Redundant LVDS interface

Energy System Updates


- Energy system re-designed from previous instruments
 - 8 ADC121s read out the 8 peak detect chips
 - Prior designs used MUX and one fast ADC
 - New design allows de-coupling of quadrants each quadrant had completely independent readout electronics and can be operated as an individual instrument
 - Event logic will be identical for each quadrant and then the data will be combined
 - New approach significantly simplifies event logic design and increases data processing rates

Energy System Prototype

■ Test interface of peak – detect chip to ADC

Energy System Prototype Performance

- Energy resolution of test setup far exceeds requirement
- No glitches observed on signal when ADC transitions into track mode after the peak detect SIP captures an event

DB atten	KeV	Codes	Std Dev	FWHM	FWHM (KeV)
0	1820.00	3945	5.15	12.1025	9.92405
-6	912.161	3000	4.56	10.716	8.78712
-7	812.964	2910	3.25	7.6375	6.26275
-8	724.555	2830	3.16	7.426	6.08932
-9	645.760	2761	3.02	7.097	5.81954
-10	575.535	2696	2.9	6.815	5.5883
-15	323.647	2478	2.55	5.9925	4.91385
-20	182.000	2339	2.41	5.6635	4.64407
-25	102.346	2255	2.34	5.499	4.50918
-30	57.553	2203	2.23	5.2405	4.29721
-35	32.365	2174	2.15	5.0525	4.14305
-40	18.200	2157	2.36	5.546	4.54772

FPGA

- FPGA contains all event logic and event processing
 - SCIP: 16-bit 10 MIPS processor (reused custom embedded processor based on Harris RTX2010 and APL's FRISC)
 - Processor memory interface to PROM, MRAM, SRAM
 - Support I/O
 - Provide voltage supply clocks, read safing status, set thresholds, monitor housekeeping, etc.
 - LVDS spacecraft communication interface
 - Processor test port interface
 - Event Logic
 - Count sensor basic rates and diagnostic rates
 - Provide pulser stimulus
 - Collect and process TOF values to generate start direction and particle time-of-flight
 - Select appropriate SSD channel and record energy deposited
 - Detect anti-coincidence (electron only) and pulse-height over-threshold (start and stop)
 - Send selected valid events based on commanded event criteria to processor event buffer
 - Event logic test port for ground testing

FPGA

- Actel RTAX2000SL -1 speed CCGA-624 (common buy part)
 - Estimate ~40% resource utilization based on RBSPICE design
 - Internal RAM for event FIFO only
 - No minimize size required and soft memory is fine
 - # user I/O of 418 user I/O total
 - # spares to power board + 6 spares through Schmitt triggers to test connector + # true spares = # spares
 - Note: At the FPGA requirement review, moderate reuse designs are green for at least 17 uncommitted I/O pins
 - 1.5V Core Voltage, 3.3V I/O Supply Voltage
 - +/-5% voltage tolerance
 - Supplies can be powered up or powered down in any sequence as long as some app note details are considered
 - I/O are tri-stated during power-up
 - Lower standby current part but still significant power contribution at hot temperatures

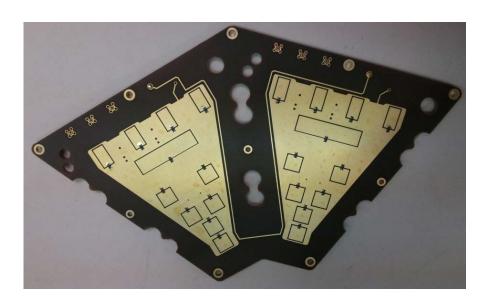
FPGA

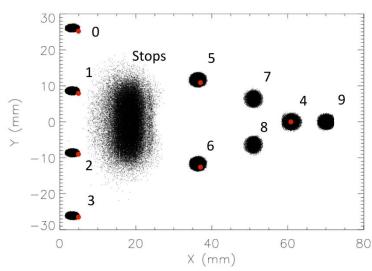
- Part prototyping
 - Reprogrammable Aldec/Actel system for EM
 - Board layout also accommodates commercial socket if needed
 - RTAX2000SL -1 speed CCGA-624 for flight (participating in common buy)
- Design prototyping/reuse
 - SCIP is identical to RBSPICE
 - Similar approach to RBSPICE for many interfaces: S/C communication, power supplies, QDACs, test port, memories, peak detects, pulsers
 - New interfaces prototyped prior to EM: TOF-D rather than TOF-C, new ADC for HK and peak detect
 - Significant previous experience with all design tools: VHDL (with tcl scripts, pdc files etc.), Synplify Pro, Actel Libero, ModelSim
- No expected areas of concern
 - No timing closure challenges expected (most of design at 10MHz, some at 40MHz)
 - Primarily synchronous design techniques with standard clock domain crossing techniques and no gated clocks
 - Straightforward reset filtering and routing network
 - Sufficient clock nets available for clocks and reset

Event Board Layout

- Sensitive analog is separated from digital
 - FPGA, S/C communication, SRAM, PROM, MRAM, and oscillator on top of board
 - TOF electronics on left and right of board
 - Peak detect and ADC electronics on bottom of board
 - All critical routing isolated by ground planes from digital routing
- X layers, X ground and power planes
- Actel located with SRAM directly adjacent
 - Reduce track-length to SRAM to reduce noise
 - Actel on Primary side, to allow the Development Tool access to the program pins

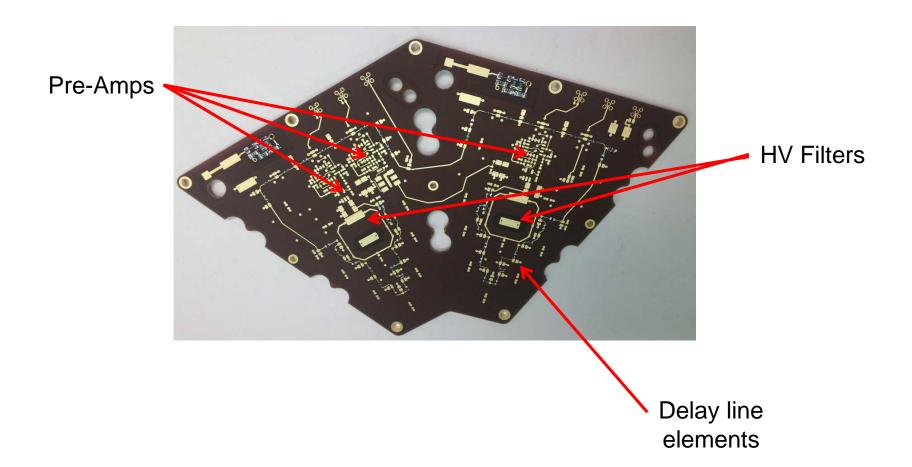
Anode Board Description


- Functionality
 - 3 fast discrete amplifiers
 - Stop anode and each end of the start delay line
 - 50 ohm impedance matched, designed to drive 50 ohms
 - Anode is at 3kV, PCB embedded capacitors isolate HV from LV
 - 1 start pulser and 1 stop pulser
 - Start pulser location in imaginary anode between sensor wedges
- Interfaces
 - 6 coax SSMB connectors
 - Power, 3 outputs, 2 pulsers



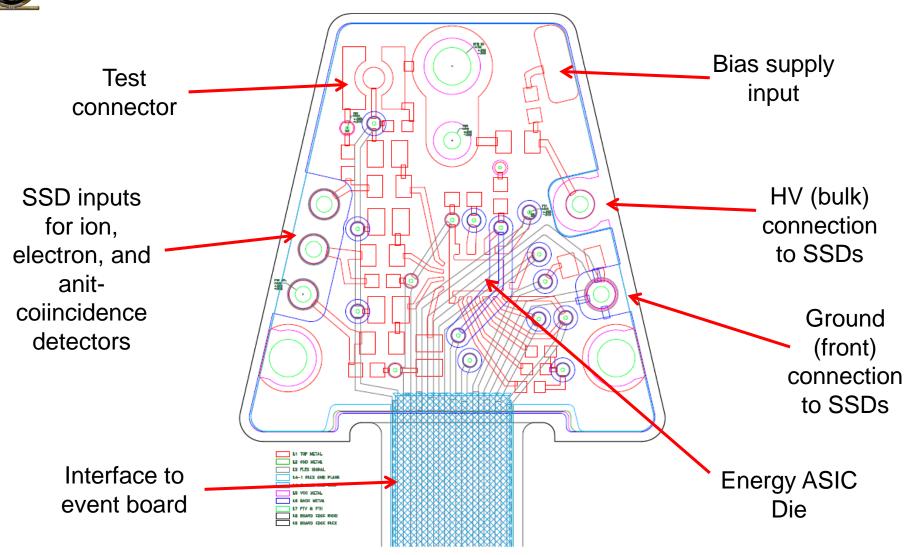
Anode Board Prototyping

- EM anode board fabricated
 - No changes expected to flight board
 - Position mapping on prototype verified simulations for start pad locations
 - Kapton layer provides dielectric strengh of ~20kV for embedded capacitors
 - Passed 10 day, 2x HV standoff test (recommended by Steve Battel)



Anode Board Layout

Energy Board


- Functionality
 - SSD Pre-amplifier and shaper
 - Energy ASIC supports 3 pre-amplifiers and MUX
 - Ion channel, electron channel, anti-coincidence channel
 - Select between Ion channel, or electron and anti-coincidence channel
 - Thermistor on board for temperature measurements
- Interfaces
 - 9pin ndsub connector for power, signals, pulser, and temperature monitor
- EM energy board fabricated and tested

Will have photo of fabricated board in 3 weeks

Energy Board Layout

Event Board Packaging

- Packaged in octagon frame "slice"
 - Board is loaded from the bottom and has six center mounting supports and full contact around the perimeter
 - FPGA is supported on four corners
- Large number of thermal vias under the higher power parts
 - Actel, RAM, and MRAM to dissipate power into the board planes and out to the frame.
 - Total board power is ~1 watt. No thermal issues expected.

Anode and Energy Board Packaging

- Anode Board
 - Anode board is mounted to instrument main support structure by X #X mounting hardware
 - Total board power is 90mW, no thermal concerns
- Energy board is mounted directly behind SSD
 - Total board power is 25mW, no thermal concerns

Add images from model showing board mounting

Radiation Analysis

- FASTRad analysis performed on instrument in S/C model to predict doses seen at electronics
- RESULTS:

Working on updated fast-rad analysis

Plans for testing

- Follows APL Manufacturing Flow, these are significant highlights
 - Populate Passive Components
 - Execute Test Procedure to Verify Passive Components
 - Populate First-level Active Components
 - Voltage References, Power-on Reset, Oscillator, applicable Tailor Flags
 - Execute Test Procedure to Tailor and Verify First-level Active Components
 - Populate Actives and Install Known Tailors or Tailor Flags
 - Install into Flight Frame
 - Execute Test Procedure to Test and Tailor Entire Board
 - ESS Testing
 - Execute Functional Test Procedure
 - Photograph and Conformal Coat
 - Execute Test Procedure to Calibrate and Characterize Board (over temperature)
 - Release to Next Assembly

Status Summary

- Anode EM Board fabricated and populated
 - Geometry matches flight geometry
- Energy EM Board fabricated, populated and tested
 - Noise performance of end-end system (SSD, energy chip, peak detect, ADC meets requirements in prototype)
- Event EM board schematics and layout complete

Is this covered at the end of each section?

Parts

- All parts are rad-hard to 100krad
- No parts concerns

Add table of parts

Plan Forward

- Anode Board
 - Complete testing on Anode board
 - Fabricate flight anode board
- Energy Board
 - Complete testing on energy board
 - Fabricate flight energy board
- Event Board
 - Fabricate EM board
 - Complete testing on EM board
 - Fabricate flight Event board
- Finalize all documentation and procedures for flight build
- Build, tailor, calibrate, and qualify flight units

Peer Review Status

- Event Board Peer Review
 - August 21, 2013. Summarized with action items in memo TBD action items were generated
 - 6 action items generated
 - 6 action items are closed
- Anode Board Peer Review
 - TBD
- Energy Board Peer Review
 - August 26, 2013. Summarized with action items in memo TBD action items were generated
 - 4 action items generated
 - TBD action items are closed
- Parts Stress Analysis is Complete
 - No issues expected
- WCA
 - No issues expected

Outline

- Driving requirements
- Block Diagram
- Electronics Design Overview
 - Anode Board
 - Energy Board
 - Event Board
 - Power Board
- Detailed description of the measurement electronics and signal processing flow
- Detailed description of the control electronics and its associated support circuitry
- Interfaces to the spacecraft
- Packaging and thermal considerations
- Plans for testing
- ASICs
- Maturity of the design (BB sting, design, analysis completed)
- Preliminary parts list and special screening considerations
- Summary and follow-up from peer reviews